Properties

Label 325.10.a.h
Level 325325
Weight 1010
Character orbit 325.a
Self dual yes
Analytic conductor 167.387167.387
Analytic rank 11
Dimension 1717
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,10,Mod(1,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 167.386646753167.386646753
Analytic rank: 11
Dimension: 1717
Coefficient field: Q[x]/(x17)\mathbb{Q}[x]/(x^{17} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x17x166453x1511965x14+16673200x13+68278926x1222023799708x11++22 ⁣ ⁣80 x^{17} - x^{16} - 6453 x^{15} - 11965 x^{14} + 16673200 x^{13} + 68278926 x^{12} - 22023799708 x^{11} + \cdots + 22\!\cdots\!80 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2163458 2^{16}\cdot 3^{4}\cdot 5^{8}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β161,\beta_1,\ldots,\beta_{16} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+2)q2+(β34)q3+(β2+251)q4+(β57β3+63)q6+(β6+2β2+24β1+626)q7+(β44β3+659)q8++(1934β163910β15+178130303)q99+O(q100) q + ( - \beta_1 + 2) q^{2} + ( - \beta_{3} - 4) q^{3} + (\beta_{2} + 251) q^{4} + ( - \beta_{5} - 7 \beta_{3} + \cdots - 63) q^{6} + (\beta_{6} + 2 \beta_{2} + 24 \beta_1 + 626) q^{7} + ( - \beta_{4} - 4 \beta_{3} + \cdots - 659) q^{8}+ \cdots + (1934 \beta_{16} - 3910 \beta_{15} + \cdots - 178130303) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 17q+33q273q3+4267q41103q6+10670q711481q8+47590q9130917q1132239q12485537q13292206q14+1064251q16+193953q17+2026286q18+3023832936q99+O(q100) 17 q + 33 q^{2} - 73 q^{3} + 4267 q^{4} - 1103 q^{6} + 10670 q^{7} - 11481 q^{8} + 47590 q^{9} - 130917 q^{11} - 32239 q^{12} - 485537 q^{13} - 292206 q^{14} + 1064251 q^{16} + 193953 q^{17} + 2026286 q^{18}+ \cdots - 3023832936 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x17x166453x1511965x14+16673200x13+68278926x1222023799708x11++22 ⁣ ⁣80 x^{17} - x^{16} - 6453 x^{15} - 11965 x^{14} + 16673200 x^{13} + 68278926 x^{12} - 22023799708 x^{11} + \cdots + 22\!\cdots\!80 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24ν759 \nu^{2} - 4\nu - 759 Copy content Toggle raw display
β3\beta_{3}== (23 ⁣ ⁣71ν16++98 ⁣ ⁣20)/39 ⁣ ⁣00 ( 23\!\cdots\!71 \nu^{16} + \cdots + 98\!\cdots\!20 ) / 39\!\cdots\!00 Copy content Toggle raw display
β4\beta_{4}== (23 ⁣ ⁣71ν16+62 ⁣ ⁣20)/99 ⁣ ⁣00 ( - 23\!\cdots\!71 \nu^{16} + \cdots - 62\!\cdots\!20 ) / 99\!\cdots\!00 Copy content Toggle raw display
β5\beta_{5}== (38 ⁣ ⁣31ν16++35 ⁣ ⁣80)/39 ⁣ ⁣00 ( 38\!\cdots\!31 \nu^{16} + \cdots + 35\!\cdots\!80 ) / 39\!\cdots\!00 Copy content Toggle raw display
β6\beta_{6}== (23 ⁣ ⁣99ν16+63 ⁣ ⁣00)/44 ⁣ ⁣00 ( - 23\!\cdots\!99 \nu^{16} + \cdots - 63\!\cdots\!00 ) / 44\!\cdots\!00 Copy content Toggle raw display
β7\beta_{7}== (27 ⁣ ⁣35ν16+18 ⁣ ⁣20)/33 ⁣ ⁣00 ( - 27\!\cdots\!35 \nu^{16} + \cdots - 18\!\cdots\!20 ) / 33\!\cdots\!00 Copy content Toggle raw display
β8\beta_{8}== (62 ⁣ ⁣51ν16++14 ⁣ ⁣60)/66 ⁣ ⁣00 ( 62\!\cdots\!51 \nu^{16} + \cdots + 14\!\cdots\!60 ) / 66\!\cdots\!00 Copy content Toggle raw display
β9\beta_{9}== (23 ⁣ ⁣19ν16+17 ⁣ ⁣20)/19 ⁣ ⁣00 ( - 23\!\cdots\!19 \nu^{16} + \cdots - 17\!\cdots\!20 ) / 19\!\cdots\!00 Copy content Toggle raw display
β10\beta_{10}== (17 ⁣ ⁣09ν16++44 ⁣ ⁣40)/14 ⁣ ⁣00 ( - 17\!\cdots\!09 \nu^{16} + \cdots + 44\!\cdots\!40 ) / 14\!\cdots\!00 Copy content Toggle raw display
β11\beta_{11}== (69 ⁣ ⁣51ν16++14 ⁣ ⁣80)/49 ⁣ ⁣00 ( 69\!\cdots\!51 \nu^{16} + \cdots + 14\!\cdots\!80 ) / 49\!\cdots\!00 Copy content Toggle raw display
β12\beta_{12}== (90 ⁣ ⁣67ν16+42 ⁣ ⁣40)/39 ⁣ ⁣00 ( - 90\!\cdots\!67 \nu^{16} + \cdots - 42\!\cdots\!40 ) / 39\!\cdots\!00 Copy content Toggle raw display
β13\beta_{13}== (10 ⁣ ⁣27ν16+57 ⁣ ⁣60)/39 ⁣ ⁣00 ( - 10\!\cdots\!27 \nu^{16} + \cdots - 57\!\cdots\!60 ) / 39\!\cdots\!00 Copy content Toggle raw display
β14\beta_{14}== (14 ⁣ ⁣55ν16++93 ⁣ ⁣20)/39 ⁣ ⁣00 ( - 14\!\cdots\!55 \nu^{16} + \cdots + 93\!\cdots\!20 ) / 39\!\cdots\!00 Copy content Toggle raw display
β15\beta_{15}== (16 ⁣ ⁣83ν16++33 ⁣ ⁣60)/19 ⁣ ⁣00 ( 16\!\cdots\!83 \nu^{16} + \cdots + 33\!\cdots\!60 ) / 19\!\cdots\!00 Copy content Toggle raw display
β16\beta_{16}== (40 ⁣ ⁣77ν16++11 ⁣ ⁣20)/39 ⁣ ⁣00 ( 40\!\cdots\!77 \nu^{16} + \cdots + 11\!\cdots\!20 ) / 39\!\cdots\!00 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4β1+759 \beta_{2} + 4\beta _1 + 759 Copy content Toggle raw display
ν3\nu^{3}== β4+4β3+9β2+1289β1+3173 \beta_{4} + 4\beta_{3} + 9\beta_{2} + 1289\beta _1 + 3173 Copy content Toggle raw display
ν4\nu^{4}== β16β152β123β112β811β5+15β4++979399 \beta_{16} - \beta_{15} - 2 \beta_{12} - 3 \beta_{11} - 2 \beta_{8} - 11 \beta_{5} + 15 \beta_{4} + \cdots + 979399 Copy content Toggle raw display
ν5\nu^{5}== 42β1616β15+21β1473β13+22β12+11β11++9855909 42 \beta_{16} - 16 \beta_{15} + 21 \beta_{14} - 73 \beta_{13} + 22 \beta_{12} + 11 \beta_{11} + \cdots + 9855909 Copy content Toggle raw display
ν6\nu^{6}== 3583β163023β15+104β14212β135926β12++1482284811 3583 \beta_{16} - 3023 \beta_{15} + 104 \beta_{14} - 212 \beta_{13} - 5926 \beta_{12} + \cdots + 1482284811 Copy content Toggle raw display
ν7\nu^{7}== 156122β1667060β15+48215β14199779β13+39810β12++24145260029 156122 \beta_{16} - 67060 \beta_{15} + 48215 \beta_{14} - 199779 \beta_{13} + 39810 \beta_{12} + \cdots + 24145260029 Copy content Toggle raw display
ν8\nu^{8}== 9358991β166937831β15+391748β141127576β1313607806β12++2446213626667 9358991 \beta_{16} - 6937831 \beta_{15} + 391748 \beta_{14} - 1127576 \beta_{13} - 13607806 \beta_{12} + \cdots + 2446213626667 Copy content Toggle raw display
ν9\nu^{9}== 419684982β16195352416β15+83794423β14418523443β13++54033229558469 419684982 \beta_{16} - 195352416 \beta_{15} + 83794423 \beta_{14} - 418523443 \beta_{13} + \cdots + 54033229558469 Copy content Toggle raw display
ν10\nu^{10}== 21855852387β1614786754339β15+907756048β143761389716β13++42 ⁣ ⁣23 21855852387 \beta_{16} - 14786754339 \beta_{15} + 907756048 \beta_{14} - 3761389716 \beta_{13} + \cdots + 42\!\cdots\!23 Copy content Toggle raw display
ν11\nu^{11}== 998996362906β16490312250156β15+128805747539β14808236954127β13++11 ⁣ ⁣69 998996362906 \beta_{16} - 490312250156 \beta_{15} + 128805747539 \beta_{14} - 808236954127 \beta_{13} + \cdots + 11\!\cdots\!69 Copy content Toggle raw display
ν12\nu^{12}== 48620319227551β1630867905424551β15+1606771497484β1410234724463120β13++78 ⁣ ⁣19 48620319227551 \beta_{16} - 30867905424551 \beta_{15} + 1606771497484 \beta_{14} - 10234724463120 \beta_{13} + \cdots + 78\!\cdots\!19 Copy content Toggle raw display
ν13\nu^{13}== 22 ⁣ ⁣46β16++24 ⁣ ⁣61 22\!\cdots\!46 \beta_{16} + \cdots + 24\!\cdots\!61 Copy content Toggle raw display
ν14\nu^{14}== 10 ⁣ ⁣39β16++14 ⁣ ⁣67 10\!\cdots\!39 \beta_{16} + \cdots + 14\!\cdots\!67 Copy content Toggle raw display
ν15\nu^{15}== 49 ⁣ ⁣18β16++50 ⁣ ⁣57 49\!\cdots\!18 \beta_{16} + \cdots + 50\!\cdots\!57 Copy content Toggle raw display
ν16\nu^{16}== 22 ⁣ ⁣91β16++28 ⁣ ⁣91 22\!\cdots\!91 \beta_{16} + \cdots + 28\!\cdots\!91 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
45.5365
41.9783
32.7069
32.3076
22.0262
13.6975
12.0171
8.33068
−6.66848
−8.60741
−11.1845
−15.0241
−27.7222
−30.4531
−33.1624
−35.1331
−39.6455
−43.5365 −112.372 1383.43 0 4892.27 6926.24 −37939.1 −7055.63 0
1.2 −39.9783 152.057 1086.26 0 −6078.99 3359.20 −22958.1 3438.43 0
1.3 −30.7069 −116.164 430.914 0 3567.03 −1957.66 2489.89 −6188.99 0
1.4 −30.3076 7.32501 406.551 0 −222.003 −9118.61 3195.89 −19629.3 0
1.5 −20.0262 143.807 −110.950 0 −2879.91 11821.9 12475.3 997.339 0
1.6 −11.6975 −207.589 −375.168 0 2428.27 5519.45 10377.7 23410.1 0
1.7 −10.0171 174.740 −411.658 0 −1750.39 −417.700 9252.35 10851.2 0
1.8 −6.33068 −33.0585 −471.922 0 209.283 180.411 6228.90 −18590.1 0
1.9 8.66848 −65.6463 −436.857 0 −569.054 −11239.1 −8225.15 −15373.6 0
1.10 10.6074 39.6173 −399.483 0 420.237 7059.84 −9668.47 −18113.5 0
1.11 13.1845 −236.239 −338.168 0 −3114.70 −5988.15 −11209.1 36125.9 0
1.12 17.0241 228.743 −222.181 0 3894.14 −5864.90 −12498.8 32640.5 0
1.13 29.7222 192.679 371.411 0 5726.85 7108.54 −4178.62 17442.2 0
1.14 32.4531 −140.165 541.204 0 −4548.78 −1977.44 947.752 −36.8521 0
1.15 35.1624 −237.080 724.396 0 −8336.29 11662.6 7468.37 36523.7 0
1.16 37.1331 92.8669 866.866 0 3448.44 −3610.83 13177.3 −11058.7 0
1.17 41.6455 43.4764 1222.35 0 1810.60 −2793.78 29582.9 −17792.8 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.10.a.h yes 17
5.b even 2 1 325.10.a.g 17
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
325.10.a.g 17 5.b even 2 1
325.10.a.h yes 17 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T21733T2165941T215+200595T214+13661520T213+26 ⁣ ⁣00 T_{2}^{17} - 33 T_{2}^{16} - 5941 T_{2}^{15} + 200595 T_{2}^{14} + 13661520 T_{2}^{13} + \cdots - 26\!\cdots\!00 acting on S10new(Γ0(325))S_{10}^{\mathrm{new}}(\Gamma_0(325)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T17+26 ⁣ ⁣00 T^{17} + \cdots - 26\!\cdots\!00 Copy content Toggle raw display
33 T17+91 ⁣ ⁣92 T^{17} + \cdots - 91\!\cdots\!92 Copy content Toggle raw display
55 T17 T^{17} Copy content Toggle raw display
77 T17++94 ⁣ ⁣48 T^{17} + \cdots + 94\!\cdots\!48 Copy content Toggle raw display
1111 T17+16 ⁣ ⁣64 T^{17} + \cdots - 16\!\cdots\!64 Copy content Toggle raw display
1313 (T+28561)17 (T + 28561)^{17} Copy content Toggle raw display
1717 T17++10 ⁣ ⁣72 T^{17} + \cdots + 10\!\cdots\!72 Copy content Toggle raw display
1919 T17+34 ⁣ ⁣60 T^{17} + \cdots - 34\!\cdots\!60 Copy content Toggle raw display
2323 T17+13 ⁣ ⁣52 T^{17} + \cdots - 13\!\cdots\!52 Copy content Toggle raw display
2929 T17++11 ⁣ ⁣60 T^{17} + \cdots + 11\!\cdots\!60 Copy content Toggle raw display
3131 T17+13 ⁣ ⁣20 T^{17} + \cdots - 13\!\cdots\!20 Copy content Toggle raw display
3737 T17+49 ⁣ ⁣36 T^{17} + \cdots - 49\!\cdots\!36 Copy content Toggle raw display
4141 T17+23 ⁣ ⁣12 T^{17} + \cdots - 23\!\cdots\!12 Copy content Toggle raw display
4343 T17+14 ⁣ ⁣40 T^{17} + \cdots - 14\!\cdots\!40 Copy content Toggle raw display
4747 T17++13 ⁣ ⁣00 T^{17} + \cdots + 13\!\cdots\!00 Copy content Toggle raw display
5353 T17+10 ⁣ ⁣72 T^{17} + \cdots - 10\!\cdots\!72 Copy content Toggle raw display
5959 T17++74 ⁣ ⁣80 T^{17} + \cdots + 74\!\cdots\!80 Copy content Toggle raw display
6161 T17+73 ⁣ ⁣44 T^{17} + \cdots - 73\!\cdots\!44 Copy content Toggle raw display
6767 T17+24 ⁣ ⁣72 T^{17} + \cdots - 24\!\cdots\!72 Copy content Toggle raw display
7171 T17++66 ⁣ ⁣32 T^{17} + \cdots + 66\!\cdots\!32 Copy content Toggle raw display
7373 T17++11 ⁣ ⁣92 T^{17} + \cdots + 11\!\cdots\!92 Copy content Toggle raw display
7979 T17+29 ⁣ ⁣80 T^{17} + \cdots - 29\!\cdots\!80 Copy content Toggle raw display
8383 T17++33 ⁣ ⁣88 T^{17} + \cdots + 33\!\cdots\!88 Copy content Toggle raw display
8989 T17+16 ⁣ ⁣00 T^{17} + \cdots - 16\!\cdots\!00 Copy content Toggle raw display
9797 T17++64 ⁣ ⁣00 T^{17} + \cdots + 64\!\cdots\!00 Copy content Toggle raw display
show more
show less