Properties

Label 325.10.a.j.1.18
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 5 x^{18} - 7725 x^{17} + 25733 x^{16} + 24561606 x^{15} - 42570866 x^{14} + \cdots + 12\!\cdots\!08 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{6}\cdot 5^{10} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Root \(-40.2935\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+42.2935 q^{2} -17.8757 q^{3} +1276.74 q^{4} -756.026 q^{6} +10170.4 q^{7} +32343.7 q^{8} -19363.5 q^{9} +35856.7 q^{11} -22822.7 q^{12} +28561.0 q^{13} +430141. q^{14} +714238. q^{16} -303091. q^{17} -818949. q^{18} +123771. q^{19} -181802. q^{21} +1.51651e6 q^{22} +2.12421e6 q^{23} -578166. q^{24} +1.20795e6 q^{26} +697982. q^{27} +1.29849e7 q^{28} -3.35353e6 q^{29} +6.59212e6 q^{31} +1.36477e7 q^{32} -640963. q^{33} -1.28188e7 q^{34} -2.47222e7 q^{36} +1.47855e7 q^{37} +5.23470e6 q^{38} -510547. q^{39} -1.71561e7 q^{41} -7.68905e6 q^{42} -1.47264e7 q^{43} +4.57799e7 q^{44} +8.98402e7 q^{46} +4.96504e7 q^{47} -1.27675e7 q^{48} +6.30826e7 q^{49} +5.41795e6 q^{51} +3.64651e7 q^{52} -6.53569e7 q^{53} +2.95201e7 q^{54} +3.28947e8 q^{56} -2.21249e6 q^{57} -1.41833e8 q^{58} -4.08231e7 q^{59} -1.53242e8 q^{61} +2.78804e8 q^{62} -1.96933e8 q^{63} +2.11519e8 q^{64} -2.71086e7 q^{66} +2.35390e8 q^{67} -3.86969e8 q^{68} -3.79716e7 q^{69} -1.27603e6 q^{71} -6.26287e8 q^{72} +1.91725e8 q^{73} +6.25330e8 q^{74} +1.58024e8 q^{76} +3.64676e8 q^{77} -2.15928e7 q^{78} -4.06694e8 q^{79} +3.68654e8 q^{81} -7.25593e8 q^{82} -1.84283e8 q^{83} -2.32115e8 q^{84} -6.22830e8 q^{86} +5.99466e7 q^{87} +1.15974e9 q^{88} +5.16484e7 q^{89} +2.90476e8 q^{91} +2.71207e9 q^{92} -1.17839e8 q^{93} +2.09989e9 q^{94} -2.43961e8 q^{96} +1.54370e7 q^{97} +2.66799e9 q^{98} -6.94310e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 33 q^{2} - 73 q^{3} + 5803 q^{4} - 3549 q^{6} - 1066 q^{7} + 20349 q^{8} + 113200 q^{9} + 146427 q^{11} - 135219 q^{12} + 542659 q^{13} - 17870 q^{14} + 2549547 q^{16} - 605113 q^{17} + 1793704 q^{18}+ \cdots + 2637491156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 42.2935 1.86913 0.934564 0.355795i \(-0.115790\pi\)
0.934564 + 0.355795i \(0.115790\pi\)
\(3\) −17.8757 −0.127414 −0.0637069 0.997969i \(-0.520292\pi\)
−0.0637069 + 0.997969i \(0.520292\pi\)
\(4\) 1276.74 2.49364
\(5\) 0 0
\(6\) −756.026 −0.238153
\(7\) 10170.4 1.60101 0.800507 0.599324i \(-0.204564\pi\)
0.800507 + 0.599324i \(0.204564\pi\)
\(8\) 32343.7 2.79181
\(9\) −19363.5 −0.983766
\(10\) 0 0
\(11\) 35856.7 0.738420 0.369210 0.929346i \(-0.379628\pi\)
0.369210 + 0.929346i \(0.379628\pi\)
\(12\) −22822.7 −0.317724
\(13\) 28561.0 0.277350
\(14\) 430141. 2.99250
\(15\) 0 0
\(16\) 714238. 2.72460
\(17\) −303091. −0.880141 −0.440070 0.897963i \(-0.645047\pi\)
−0.440070 + 0.897963i \(0.645047\pi\)
\(18\) −818949. −1.83878
\(19\) 123771. 0.217885 0.108942 0.994048i \(-0.465254\pi\)
0.108942 + 0.994048i \(0.465254\pi\)
\(20\) 0 0
\(21\) −181802. −0.203991
\(22\) 1.51651e6 1.38020
\(23\) 2.12421e6 1.58278 0.791392 0.611310i \(-0.209357\pi\)
0.791392 + 0.611310i \(0.209357\pi\)
\(24\) −578166. −0.355715
\(25\) 0 0
\(26\) 1.20795e6 0.518403
\(27\) 697982. 0.252759
\(28\) 1.29849e7 3.99235
\(29\) −3.35353e6 −0.880463 −0.440231 0.897884i \(-0.645104\pi\)
−0.440231 + 0.897884i \(0.645104\pi\)
\(30\) 0 0
\(31\) 6.59212e6 1.28203 0.641014 0.767529i \(-0.278514\pi\)
0.641014 + 0.767529i \(0.278514\pi\)
\(32\) 1.36477e7 2.30083
\(33\) −640963. −0.0940850
\(34\) −1.28188e7 −1.64510
\(35\) 0 0
\(36\) −2.47222e7 −2.45316
\(37\) 1.47855e7 1.29696 0.648481 0.761231i \(-0.275405\pi\)
0.648481 + 0.761231i \(0.275405\pi\)
\(38\) 5.23470e6 0.407255
\(39\) −510547. −0.0353383
\(40\) 0 0
\(41\) −1.71561e7 −0.948182 −0.474091 0.880476i \(-0.657223\pi\)
−0.474091 + 0.880476i \(0.657223\pi\)
\(42\) −7.68905e6 −0.381286
\(43\) −1.47264e7 −0.656882 −0.328441 0.944524i \(-0.606523\pi\)
−0.328441 + 0.944524i \(0.606523\pi\)
\(44\) 4.57799e7 1.84135
\(45\) 0 0
\(46\) 8.98402e7 2.95842
\(47\) 4.96504e7 1.48417 0.742084 0.670307i \(-0.233838\pi\)
0.742084 + 0.670307i \(0.233838\pi\)
\(48\) −1.27675e7 −0.347152
\(49\) 6.30826e7 1.56325
\(50\) 0 0
\(51\) 5.41795e6 0.112142
\(52\) 3.64651e7 0.691612
\(53\) −6.53569e7 −1.13776 −0.568879 0.822421i \(-0.692623\pi\)
−0.568879 + 0.822421i \(0.692623\pi\)
\(54\) 2.95201e7 0.472440
\(55\) 0 0
\(56\) 3.28947e8 4.46972
\(57\) −2.21249e6 −0.0277615
\(58\) −1.41833e8 −1.64570
\(59\) −4.08231e7 −0.438603 −0.219302 0.975657i \(-0.570378\pi\)
−0.219302 + 0.975657i \(0.570378\pi\)
\(60\) 0 0
\(61\) −1.53242e8 −1.41708 −0.708541 0.705670i \(-0.750646\pi\)
−0.708541 + 0.705670i \(0.750646\pi\)
\(62\) 2.78804e8 2.39628
\(63\) −1.96933e8 −1.57502
\(64\) 2.11519e8 1.57594
\(65\) 0 0
\(66\) −2.71086e7 −0.175857
\(67\) 2.35390e8 1.42709 0.713544 0.700611i \(-0.247089\pi\)
0.713544 + 0.700611i \(0.247089\pi\)
\(68\) −3.86969e8 −2.19476
\(69\) −3.79716e7 −0.201669
\(70\) 0 0
\(71\) −1.27603e6 −0.00595932 −0.00297966 0.999996i \(-0.500948\pi\)
−0.00297966 + 0.999996i \(0.500948\pi\)
\(72\) −6.26287e8 −2.74648
\(73\) 1.91725e8 0.790181 0.395091 0.918642i \(-0.370713\pi\)
0.395091 + 0.918642i \(0.370713\pi\)
\(74\) 6.25330e8 2.42419
\(75\) 0 0
\(76\) 1.58024e8 0.543326
\(77\) 3.64676e8 1.18222
\(78\) −2.15928e7 −0.0660517
\(79\) −4.06694e8 −1.17475 −0.587375 0.809315i \(-0.699839\pi\)
−0.587375 + 0.809315i \(0.699839\pi\)
\(80\) 0 0
\(81\) 3.68654e8 0.951561
\(82\) −7.25593e8 −1.77227
\(83\) −1.84283e8 −0.426220 −0.213110 0.977028i \(-0.568359\pi\)
−0.213110 + 0.977028i \(0.568359\pi\)
\(84\) −2.32115e8 −0.508681
\(85\) 0 0
\(86\) −6.22830e8 −1.22780
\(87\) 5.99466e7 0.112183
\(88\) 1.15974e9 2.06153
\(89\) 5.16484e7 0.0872573 0.0436287 0.999048i \(-0.486108\pi\)
0.0436287 + 0.999048i \(0.486108\pi\)
\(90\) 0 0
\(91\) 2.90476e8 0.444041
\(92\) 2.71207e9 3.94689
\(93\) −1.17839e8 −0.163348
\(94\) 2.09989e9 2.77410
\(95\) 0 0
\(96\) −2.43961e8 −0.293157
\(97\) 1.54370e7 0.0177047 0.00885237 0.999961i \(-0.497182\pi\)
0.00885237 + 0.999961i \(0.497182\pi\)
\(98\) 2.66799e9 2.92191
\(99\) −6.94310e8 −0.726433
\(100\) 0 0
\(101\) 1.28995e9 1.23347 0.616734 0.787172i \(-0.288455\pi\)
0.616734 + 0.787172i \(0.288455\pi\)
\(102\) 2.29144e8 0.209608
\(103\) −3.76841e8 −0.329906 −0.164953 0.986301i \(-0.552747\pi\)
−0.164953 + 0.986301i \(0.552747\pi\)
\(104\) 9.23770e8 0.774308
\(105\) 0 0
\(106\) −2.76418e9 −2.12662
\(107\) 2.53670e9 1.87086 0.935431 0.353509i \(-0.115012\pi\)
0.935431 + 0.353509i \(0.115012\pi\)
\(108\) 8.91144e8 0.630291
\(109\) −8.27423e8 −0.561447 −0.280723 0.959789i \(-0.590574\pi\)
−0.280723 + 0.959789i \(0.590574\pi\)
\(110\) 0 0
\(111\) −2.64300e8 −0.165251
\(112\) 7.26406e9 4.36213
\(113\) 2.48830e9 1.43565 0.717826 0.696222i \(-0.245137\pi\)
0.717826 + 0.696222i \(0.245137\pi\)
\(114\) −9.35739e7 −0.0518899
\(115\) 0 0
\(116\) −4.28160e9 −2.19556
\(117\) −5.53040e8 −0.272848
\(118\) −1.72655e9 −0.819806
\(119\) −3.08254e9 −1.40912
\(120\) 0 0
\(121\) −1.07224e9 −0.454735
\(122\) −6.48117e9 −2.64871
\(123\) 3.06677e8 0.120812
\(124\) 8.41645e9 3.19692
\(125\) 0 0
\(126\) −8.32901e9 −2.94392
\(127\) −4.91507e9 −1.67654 −0.838268 0.545258i \(-0.816432\pi\)
−0.838268 + 0.545258i \(0.816432\pi\)
\(128\) 1.95827e9 0.644803
\(129\) 2.63244e8 0.0836959
\(130\) 0 0
\(131\) −4.26467e9 −1.26522 −0.632608 0.774472i \(-0.718016\pi\)
−0.632608 + 0.774472i \(0.718016\pi\)
\(132\) −8.18346e8 −0.234614
\(133\) 1.25879e9 0.348837
\(134\) 9.95546e9 2.66741
\(135\) 0 0
\(136\) −9.80308e9 −2.45718
\(137\) 3.27883e9 0.795199 0.397599 0.917559i \(-0.369843\pi\)
0.397599 + 0.917559i \(0.369843\pi\)
\(138\) −1.60595e9 −0.376944
\(139\) 6.78731e9 1.54216 0.771082 0.636735i \(-0.219716\pi\)
0.771082 + 0.636735i \(0.219716\pi\)
\(140\) 0 0
\(141\) −8.87535e8 −0.189103
\(142\) −5.39677e7 −0.0111387
\(143\) 1.02410e9 0.204801
\(144\) −1.38301e10 −2.68037
\(145\) 0 0
\(146\) 8.10875e9 1.47695
\(147\) −1.12764e9 −0.199179
\(148\) 1.88773e10 3.23416
\(149\) 2.68819e9 0.446809 0.223404 0.974726i \(-0.428283\pi\)
0.223404 + 0.974726i \(0.428283\pi\)
\(150\) 0 0
\(151\) −4.88103e9 −0.764038 −0.382019 0.924154i \(-0.624771\pi\)
−0.382019 + 0.924154i \(0.624771\pi\)
\(152\) 4.00321e9 0.608292
\(153\) 5.86888e9 0.865852
\(154\) 1.54234e10 2.20972
\(155\) 0 0
\(156\) −6.51838e8 −0.0881209
\(157\) 9.49953e8 0.124782 0.0623912 0.998052i \(-0.480127\pi\)
0.0623912 + 0.998052i \(0.480127\pi\)
\(158\) −1.72005e10 −2.19576
\(159\) 1.16830e9 0.144966
\(160\) 0 0
\(161\) 2.16039e10 2.53406
\(162\) 1.55917e10 1.77859
\(163\) 7.76185e9 0.861234 0.430617 0.902535i \(-0.358296\pi\)
0.430617 + 0.902535i \(0.358296\pi\)
\(164\) −2.19040e10 −2.36443
\(165\) 0 0
\(166\) −7.79398e9 −0.796659
\(167\) 1.78166e10 1.77255 0.886277 0.463155i \(-0.153283\pi\)
0.886277 + 0.463155i \(0.153283\pi\)
\(168\) −5.88016e9 −0.569504
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −2.39663e9 −0.214348
\(172\) −1.88018e10 −1.63803
\(173\) −1.43386e10 −1.21702 −0.608512 0.793544i \(-0.708233\pi\)
−0.608512 + 0.793544i \(0.708233\pi\)
\(174\) 2.53535e9 0.209685
\(175\) 0 0
\(176\) 2.56103e10 2.01190
\(177\) 7.29740e8 0.0558841
\(178\) 2.18439e9 0.163095
\(179\) −6.90523e9 −0.502735 −0.251368 0.967892i \(-0.580880\pi\)
−0.251368 + 0.967892i \(0.580880\pi\)
\(180\) 0 0
\(181\) −2.82582e9 −0.195700 −0.0978499 0.995201i \(-0.531197\pi\)
−0.0978499 + 0.995201i \(0.531197\pi\)
\(182\) 1.22852e10 0.829970
\(183\) 2.73931e9 0.180556
\(184\) 6.87048e10 4.41882
\(185\) 0 0
\(186\) −4.98381e9 −0.305319
\(187\) −1.08678e10 −0.649914
\(188\) 6.33909e10 3.70098
\(189\) 7.09872e9 0.404671
\(190\) 0 0
\(191\) 1.72412e10 0.937382 0.468691 0.883362i \(-0.344726\pi\)
0.468691 + 0.883362i \(0.344726\pi\)
\(192\) −3.78104e9 −0.200796
\(193\) 3.21481e10 1.66781 0.833907 0.551905i \(-0.186099\pi\)
0.833907 + 0.551905i \(0.186099\pi\)
\(194\) 6.52885e8 0.0330924
\(195\) 0 0
\(196\) 8.05403e10 3.89817
\(197\) 1.00080e10 0.473422 0.236711 0.971580i \(-0.423931\pi\)
0.236711 + 0.971580i \(0.423931\pi\)
\(198\) −2.93649e10 −1.35780
\(199\) −3.12646e10 −1.41324 −0.706618 0.707596i \(-0.749780\pi\)
−0.706618 + 0.707596i \(0.749780\pi\)
\(200\) 0 0
\(201\) −4.20775e9 −0.181831
\(202\) 5.45567e10 2.30551
\(203\) −3.41066e10 −1.40963
\(204\) 6.91733e9 0.279642
\(205\) 0 0
\(206\) −1.59379e10 −0.616637
\(207\) −4.11320e10 −1.55709
\(208\) 2.03994e10 0.755669
\(209\) 4.43802e9 0.160891
\(210\) 0 0
\(211\) −9.88825e9 −0.343438 −0.171719 0.985146i \(-0.554932\pi\)
−0.171719 + 0.985146i \(0.554932\pi\)
\(212\) −8.34441e10 −2.83716
\(213\) 2.28098e7 0.000759301 0
\(214\) 1.07286e11 3.49688
\(215\) 0 0
\(216\) 2.25753e10 0.705655
\(217\) 6.70442e10 2.05254
\(218\) −3.49947e10 −1.04942
\(219\) −3.42722e9 −0.100680
\(220\) 0 0
\(221\) −8.65657e9 −0.244107
\(222\) −1.11782e10 −0.308875
\(223\) −5.89227e10 −1.59555 −0.797776 0.602954i \(-0.793990\pi\)
−0.797776 + 0.602954i \(0.793990\pi\)
\(224\) 1.38802e11 3.68366
\(225\) 0 0
\(226\) 1.05239e11 2.68342
\(227\) −3.17692e10 −0.794128 −0.397064 0.917791i \(-0.629971\pi\)
−0.397064 + 0.917791i \(0.629971\pi\)
\(228\) −2.82478e9 −0.0692273
\(229\) −3.69817e10 −0.888642 −0.444321 0.895868i \(-0.646555\pi\)
−0.444321 + 0.895868i \(0.646555\pi\)
\(230\) 0 0
\(231\) −6.51883e9 −0.150631
\(232\) −1.08466e11 −2.45808
\(233\) −6.74223e10 −1.49866 −0.749328 0.662199i \(-0.769623\pi\)
−0.749328 + 0.662199i \(0.769623\pi\)
\(234\) −2.33900e10 −0.509987
\(235\) 0 0
\(236\) −5.21206e10 −1.09372
\(237\) 7.26992e9 0.149679
\(238\) −1.30372e11 −2.63382
\(239\) −4.01567e10 −0.796099 −0.398050 0.917364i \(-0.630313\pi\)
−0.398050 + 0.917364i \(0.630313\pi\)
\(240\) 0 0
\(241\) −6.18884e10 −1.18177 −0.590884 0.806756i \(-0.701221\pi\)
−0.590884 + 0.806756i \(0.701221\pi\)
\(242\) −4.53489e10 −0.849959
\(243\) −2.03283e10 −0.374001
\(244\) −1.95651e11 −3.53369
\(245\) 0 0
\(246\) 1.29705e10 0.225812
\(247\) 3.53502e9 0.0604304
\(248\) 2.13214e11 3.57917
\(249\) 3.29418e9 0.0543063
\(250\) 0 0
\(251\) 2.92543e10 0.465219 0.232609 0.972570i \(-0.425274\pi\)
0.232609 + 0.972570i \(0.425274\pi\)
\(252\) −2.51433e11 −3.92754
\(253\) 7.61671e10 1.16876
\(254\) −2.07876e11 −3.13366
\(255\) 0 0
\(256\) −2.54756e10 −0.370718
\(257\) −8.76039e10 −1.25263 −0.626317 0.779568i \(-0.715438\pi\)
−0.626317 + 0.779568i \(0.715438\pi\)
\(258\) 1.11335e10 0.156438
\(259\) 1.50374e11 2.07645
\(260\) 0 0
\(261\) 6.49359e10 0.866169
\(262\) −1.80368e11 −2.36485
\(263\) 4.82761e10 0.622202 0.311101 0.950377i \(-0.399302\pi\)
0.311101 + 0.950377i \(0.399302\pi\)
\(264\) −2.07311e10 −0.262667
\(265\) 0 0
\(266\) 5.32388e10 0.652020
\(267\) −9.23250e8 −0.0111178
\(268\) 3.00532e11 3.55864
\(269\) 9.63805e10 1.12229 0.561144 0.827718i \(-0.310362\pi\)
0.561144 + 0.827718i \(0.310362\pi\)
\(270\) 0 0
\(271\) −1.73796e10 −0.195739 −0.0978697 0.995199i \(-0.531203\pi\)
−0.0978697 + 0.995199i \(0.531203\pi\)
\(272\) −2.16479e11 −2.39803
\(273\) −5.19245e9 −0.0565770
\(274\) 1.38673e11 1.48633
\(275\) 0 0
\(276\) −4.84800e10 −0.502889
\(277\) −4.25024e10 −0.433764 −0.216882 0.976198i \(-0.569589\pi\)
−0.216882 + 0.976198i \(0.569589\pi\)
\(278\) 2.87059e11 2.88250
\(279\) −1.27646e11 −1.26122
\(280\) 0 0
\(281\) −8.07754e10 −0.772859 −0.386430 0.922319i \(-0.626292\pi\)
−0.386430 + 0.922319i \(0.626292\pi\)
\(282\) −3.75370e10 −0.353459
\(283\) −8.54297e10 −0.791717 −0.395859 0.918311i \(-0.629553\pi\)
−0.395859 + 0.918311i \(0.629553\pi\)
\(284\) −1.62916e9 −0.0148604
\(285\) 0 0
\(286\) 4.33130e10 0.382799
\(287\) −1.74484e11 −1.51805
\(288\) −2.64266e11 −2.26347
\(289\) −2.67240e10 −0.225352
\(290\) 0 0
\(291\) −2.75947e8 −0.00225583
\(292\) 2.44784e11 1.97043
\(293\) −5.02198e10 −0.398080 −0.199040 0.979991i \(-0.563782\pi\)
−0.199040 + 0.979991i \(0.563782\pi\)
\(294\) −4.76920e10 −0.372291
\(295\) 0 0
\(296\) 4.78217e11 3.62087
\(297\) 2.50273e10 0.186643
\(298\) 1.13693e11 0.835143
\(299\) 6.06695e10 0.438985
\(300\) 0 0
\(301\) −1.49772e11 −1.05168
\(302\) −2.06436e11 −1.42809
\(303\) −2.30588e10 −0.157161
\(304\) 8.84018e10 0.593650
\(305\) 0 0
\(306\) 2.48216e11 1.61839
\(307\) 1.90032e11 1.22097 0.610483 0.792030i \(-0.290976\pi\)
0.610483 + 0.792030i \(0.290976\pi\)
\(308\) 4.65598e11 2.94803
\(309\) 6.73628e9 0.0420346
\(310\) 0 0
\(311\) −4.45118e10 −0.269807 −0.134904 0.990859i \(-0.543072\pi\)
−0.134904 + 0.990859i \(0.543072\pi\)
\(312\) −1.65130e10 −0.0986576
\(313\) −2.86916e11 −1.68968 −0.844840 0.535019i \(-0.820304\pi\)
−0.844840 + 0.535019i \(0.820304\pi\)
\(314\) 4.01769e10 0.233234
\(315\) 0 0
\(316\) −5.19244e11 −2.92940
\(317\) 6.81403e10 0.378998 0.189499 0.981881i \(-0.439314\pi\)
0.189499 + 0.981881i \(0.439314\pi\)
\(318\) 4.94115e10 0.270961
\(319\) −1.20247e11 −0.650151
\(320\) 0 0
\(321\) −4.53452e10 −0.238374
\(322\) 9.13707e11 4.73648
\(323\) −3.75137e10 −0.191769
\(324\) 4.70677e11 2.37285
\(325\) 0 0
\(326\) 3.28276e11 1.60976
\(327\) 1.47907e10 0.0715361
\(328\) −5.54893e11 −2.64714
\(329\) 5.04963e11 2.37617
\(330\) 0 0
\(331\) 1.38162e11 0.632648 0.316324 0.948651i \(-0.397551\pi\)
0.316324 + 0.948651i \(0.397551\pi\)
\(332\) −2.35282e11 −1.06284
\(333\) −2.86298e11 −1.27591
\(334\) 7.53525e11 3.31313
\(335\) 0 0
\(336\) −1.29850e11 −0.555796
\(337\) −1.49223e11 −0.630232 −0.315116 0.949053i \(-0.602043\pi\)
−0.315116 + 0.949053i \(0.602043\pi\)
\(338\) 3.45001e10 0.143779
\(339\) −4.44800e10 −0.182922
\(340\) 0 0
\(341\) 2.36372e11 0.946676
\(342\) −1.01362e11 −0.400643
\(343\) 2.31162e11 0.901763
\(344\) −4.76306e11 −1.83389
\(345\) 0 0
\(346\) −6.06431e11 −2.27478
\(347\) −4.69450e11 −1.73823 −0.869114 0.494612i \(-0.835310\pi\)
−0.869114 + 0.494612i \(0.835310\pi\)
\(348\) 7.65364e10 0.279744
\(349\) 1.76945e11 0.638446 0.319223 0.947680i \(-0.396578\pi\)
0.319223 + 0.947680i \(0.396578\pi\)
\(350\) 0 0
\(351\) 1.99351e10 0.0701028
\(352\) 4.89361e11 1.69898
\(353\) −2.07921e11 −0.712710 −0.356355 0.934351i \(-0.615981\pi\)
−0.356355 + 0.934351i \(0.615981\pi\)
\(354\) 3.08633e10 0.104455
\(355\) 0 0
\(356\) 6.59418e10 0.217588
\(357\) 5.51025e10 0.179541
\(358\) −2.92047e11 −0.939677
\(359\) −2.60546e11 −0.827866 −0.413933 0.910307i \(-0.635845\pi\)
−0.413933 + 0.910307i \(0.635845\pi\)
\(360\) 0 0
\(361\) −3.07368e11 −0.952526
\(362\) −1.19514e11 −0.365788
\(363\) 1.91671e10 0.0579396
\(364\) 3.70863e11 1.10728
\(365\) 0 0
\(366\) 1.15855e11 0.337482
\(367\) 4.03039e11 1.15971 0.579856 0.814719i \(-0.303109\pi\)
0.579856 + 0.814719i \(0.303109\pi\)
\(368\) 1.51719e12 4.31246
\(369\) 3.32202e11 0.932789
\(370\) 0 0
\(371\) −6.64703e11 −1.82157
\(372\) −1.50450e11 −0.407332
\(373\) 5.77536e10 0.154486 0.0772430 0.997012i \(-0.475388\pi\)
0.0772430 + 0.997012i \(0.475388\pi\)
\(374\) −4.59639e11 −1.21477
\(375\) 0 0
\(376\) 1.60588e12 4.14351
\(377\) −9.57801e10 −0.244196
\(378\) 3.00230e11 0.756382
\(379\) −4.67395e11 −1.16361 −0.581805 0.813329i \(-0.697653\pi\)
−0.581805 + 0.813329i \(0.697653\pi\)
\(380\) 0 0
\(381\) 8.78602e10 0.213614
\(382\) 7.29190e11 1.75209
\(383\) −5.86328e11 −1.39234 −0.696171 0.717876i \(-0.745115\pi\)
−0.696171 + 0.717876i \(0.745115\pi\)
\(384\) −3.50053e10 −0.0821568
\(385\) 0 0
\(386\) 1.35966e12 3.11736
\(387\) 2.85153e11 0.646218
\(388\) 1.97091e10 0.0441493
\(389\) 3.66240e11 0.810947 0.405473 0.914107i \(-0.367107\pi\)
0.405473 + 0.914107i \(0.367107\pi\)
\(390\) 0 0
\(391\) −6.43827e11 −1.39307
\(392\) 2.04033e12 4.36428
\(393\) 7.62339e10 0.161206
\(394\) 4.23273e11 0.884886
\(395\) 0 0
\(396\) −8.86457e11 −1.81146
\(397\) 5.28128e11 1.06704 0.533521 0.845787i \(-0.320868\pi\)
0.533521 + 0.845787i \(0.320868\pi\)
\(398\) −1.32229e12 −2.64152
\(399\) −2.25018e10 −0.0444466
\(400\) 0 0
\(401\) 7.52669e11 1.45363 0.726815 0.686833i \(-0.241000\pi\)
0.726815 + 0.686833i \(0.241000\pi\)
\(402\) −1.77961e11 −0.339865
\(403\) 1.88278e11 0.355571
\(404\) 1.64694e12 3.07583
\(405\) 0 0
\(406\) −1.44249e12 −2.63478
\(407\) 5.30159e11 0.957703
\(408\) 1.75237e11 0.313079
\(409\) −9.37938e11 −1.65737 −0.828684 0.559716i \(-0.810910\pi\)
−0.828684 + 0.559716i \(0.810910\pi\)
\(410\) 0 0
\(411\) −5.86112e10 −0.101319
\(412\) −4.81129e11 −0.822667
\(413\) −4.15185e11 −0.702210
\(414\) −1.73962e12 −2.91040
\(415\) 0 0
\(416\) 3.89791e11 0.638135
\(417\) −1.21328e11 −0.196493
\(418\) 1.87699e11 0.300725
\(419\) 7.29788e11 1.15673 0.578367 0.815777i \(-0.303690\pi\)
0.578367 + 0.815777i \(0.303690\pi\)
\(420\) 0 0
\(421\) −2.02779e11 −0.314596 −0.157298 0.987551i \(-0.550278\pi\)
−0.157298 + 0.987551i \(0.550278\pi\)
\(422\) −4.18209e11 −0.641930
\(423\) −9.61404e11 −1.46007
\(424\) −2.11389e12 −3.17640
\(425\) 0 0
\(426\) 9.64708e8 0.00141923
\(427\) −1.55853e12 −2.26877
\(428\) 3.23871e12 4.66526
\(429\) −1.83066e10 −0.0260945
\(430\) 0 0
\(431\) 1.02524e12 1.43113 0.715565 0.698546i \(-0.246169\pi\)
0.715565 + 0.698546i \(0.246169\pi\)
\(432\) 4.98525e11 0.688669
\(433\) 3.63091e11 0.496386 0.248193 0.968711i \(-0.420163\pi\)
0.248193 + 0.968711i \(0.420163\pi\)
\(434\) 2.83554e12 3.83647
\(435\) 0 0
\(436\) −1.05641e12 −1.40005
\(437\) 2.62915e11 0.344864
\(438\) −1.44949e11 −0.188184
\(439\) −9.87803e11 −1.26935 −0.634673 0.772781i \(-0.718865\pi\)
−0.634673 + 0.772781i \(0.718865\pi\)
\(440\) 0 0
\(441\) −1.22150e12 −1.53787
\(442\) −3.66117e11 −0.456268
\(443\) 5.18736e11 0.639926 0.319963 0.947430i \(-0.396330\pi\)
0.319963 + 0.947430i \(0.396330\pi\)
\(444\) −3.37444e11 −0.412077
\(445\) 0 0
\(446\) −2.49205e12 −2.98229
\(447\) −4.80532e10 −0.0569296
\(448\) 2.15122e12 2.52310
\(449\) 4.17040e11 0.484249 0.242124 0.970245i \(-0.422156\pi\)
0.242124 + 0.970245i \(0.422156\pi\)
\(450\) 0 0
\(451\) −6.15162e11 −0.700157
\(452\) 3.17692e12 3.58000
\(453\) 8.72517e10 0.0973491
\(454\) −1.34363e12 −1.48433
\(455\) 0 0
\(456\) −7.15601e10 −0.0775049
\(457\) −6.20773e11 −0.665748 −0.332874 0.942971i \(-0.608018\pi\)
−0.332874 + 0.942971i \(0.608018\pi\)
\(458\) −1.56409e12 −1.66099
\(459\) −2.11552e11 −0.222464
\(460\) 0 0
\(461\) −1.48991e10 −0.0153640 −0.00768202 0.999970i \(-0.502445\pi\)
−0.00768202 + 0.999970i \(0.502445\pi\)
\(462\) −2.75704e11 −0.281549
\(463\) −4.48193e11 −0.453263 −0.226632 0.973981i \(-0.572771\pi\)
−0.226632 + 0.973981i \(0.572771\pi\)
\(464\) −2.39522e12 −2.39891
\(465\) 0 0
\(466\) −2.85153e12 −2.80118
\(467\) −1.03476e12 −1.00673 −0.503364 0.864074i \(-0.667905\pi\)
−0.503364 + 0.864074i \(0.667905\pi\)
\(468\) −7.06090e11 −0.680384
\(469\) 2.39400e12 2.28479
\(470\) 0 0
\(471\) −1.69810e10 −0.0158990
\(472\) −1.32037e12 −1.22450
\(473\) −5.28039e11 −0.485055
\(474\) 3.07471e11 0.279770
\(475\) 0 0
\(476\) −3.93561e12 −3.51383
\(477\) 1.26554e12 1.11929
\(478\) −1.69837e12 −1.48801
\(479\) 1.04148e12 0.903944 0.451972 0.892032i \(-0.350721\pi\)
0.451972 + 0.892032i \(0.350721\pi\)
\(480\) 0 0
\(481\) 4.22288e11 0.359713
\(482\) −2.61748e12 −2.20888
\(483\) −3.86185e11 −0.322874
\(484\) −1.36898e12 −1.13395
\(485\) 0 0
\(486\) −8.59757e11 −0.699056
\(487\) −1.70613e12 −1.37446 −0.687230 0.726440i \(-0.741173\pi\)
−0.687230 + 0.726440i \(0.741173\pi\)
\(488\) −4.95644e12 −3.95622
\(489\) −1.38748e11 −0.109733
\(490\) 0 0
\(491\) −1.18015e12 −0.916371 −0.458185 0.888857i \(-0.651500\pi\)
−0.458185 + 0.888857i \(0.651500\pi\)
\(492\) 3.91548e11 0.301261
\(493\) 1.01642e12 0.774931
\(494\) 1.49508e11 0.112952
\(495\) 0 0
\(496\) 4.70835e12 3.49302
\(497\) −1.29776e10 −0.00954096
\(498\) 1.39323e11 0.101505
\(499\) 7.31237e11 0.527966 0.263983 0.964527i \(-0.414964\pi\)
0.263983 + 0.964527i \(0.414964\pi\)
\(500\) 0 0
\(501\) −3.18483e11 −0.225848
\(502\) 1.23727e12 0.869554
\(503\) 7.77902e11 0.541837 0.270919 0.962602i \(-0.412673\pi\)
0.270919 + 0.962602i \(0.412673\pi\)
\(504\) −6.36956e12 −4.39716
\(505\) 0 0
\(506\) 3.22138e12 2.18456
\(507\) −1.45817e10 −0.00980107
\(508\) −6.27529e12 −4.18068
\(509\) 4.16231e11 0.274855 0.137428 0.990512i \(-0.456117\pi\)
0.137428 + 0.990512i \(0.456117\pi\)
\(510\) 0 0
\(511\) 1.94992e12 1.26509
\(512\) −2.08009e12 −1.33772
\(513\) 8.63897e10 0.0550724
\(514\) −3.70508e12 −2.34133
\(515\) 0 0
\(516\) 3.36095e11 0.208707
\(517\) 1.78030e12 1.09594
\(518\) 6.35983e12 3.88116
\(519\) 2.56312e11 0.155066
\(520\) 0 0
\(521\) 1.04282e12 0.620070 0.310035 0.950725i \(-0.399659\pi\)
0.310035 + 0.950725i \(0.399659\pi\)
\(522\) 2.74637e12 1.61898
\(523\) −2.17118e12 −1.26893 −0.634466 0.772951i \(-0.718780\pi\)
−0.634466 + 0.772951i \(0.718780\pi\)
\(524\) −5.44490e12 −3.15500
\(525\) 0 0
\(526\) 2.04177e12 1.16298
\(527\) −1.99801e12 −1.12837
\(528\) −4.57801e11 −0.256344
\(529\) 2.71110e12 1.50520
\(530\) 0 0
\(531\) 7.90476e11 0.431483
\(532\) 1.60716e12 0.869873
\(533\) −4.89996e11 −0.262978
\(534\) −3.90475e10 −0.0207806
\(535\) 0 0
\(536\) 7.61338e12 3.98415
\(537\) 1.23436e11 0.0640555
\(538\) 4.07627e12 2.09770
\(539\) 2.26194e12 1.15433
\(540\) 0 0
\(541\) 1.38440e12 0.694825 0.347412 0.937712i \(-0.387060\pi\)
0.347412 + 0.937712i \(0.387060\pi\)
\(542\) −7.35045e11 −0.365862
\(543\) 5.05134e10 0.0249349
\(544\) −4.13648e12 −2.02505
\(545\) 0 0
\(546\) −2.19607e11 −0.105750
\(547\) −3.33424e12 −1.59240 −0.796202 0.605030i \(-0.793161\pi\)
−0.796202 + 0.605030i \(0.793161\pi\)
\(548\) 4.18622e12 1.98294
\(549\) 2.96731e12 1.39408
\(550\) 0 0
\(551\) −4.15069e11 −0.191839
\(552\) −1.22814e12 −0.563019
\(553\) −4.13622e12 −1.88079
\(554\) −1.79758e12 −0.810761
\(555\) 0 0
\(556\) 8.66565e12 3.84561
\(557\) 1.71526e12 0.755062 0.377531 0.925997i \(-0.376773\pi\)
0.377531 + 0.925997i \(0.376773\pi\)
\(558\) −5.39861e12 −2.35737
\(559\) −4.20600e11 −0.182186
\(560\) 0 0
\(561\) 1.94270e11 0.0828081
\(562\) −3.41628e12 −1.44457
\(563\) −3.47052e12 −1.45582 −0.727909 0.685674i \(-0.759508\pi\)
−0.727909 + 0.685674i \(0.759508\pi\)
\(564\) −1.13316e12 −0.471556
\(565\) 0 0
\(566\) −3.61313e12 −1.47982
\(567\) 3.74934e12 1.52346
\(568\) −4.12715e10 −0.0166373
\(569\) −5.47669e11 −0.219035 −0.109517 0.993985i \(-0.534931\pi\)
−0.109517 + 0.993985i \(0.534931\pi\)
\(570\) 0 0
\(571\) −1.29752e12 −0.510802 −0.255401 0.966835i \(-0.582207\pi\)
−0.255401 + 0.966835i \(0.582207\pi\)
\(572\) 1.30752e12 0.510700
\(573\) −3.08198e11 −0.119436
\(574\) −7.37954e12 −2.83744
\(575\) 0 0
\(576\) −4.09574e12 −1.55035
\(577\) −3.94524e12 −1.48177 −0.740887 0.671629i \(-0.765595\pi\)
−0.740887 + 0.671629i \(0.765595\pi\)
\(578\) −1.13025e12 −0.421212
\(579\) −5.74669e11 −0.212503
\(580\) 0 0
\(581\) −1.87422e12 −0.682384
\(582\) −1.16708e10 −0.00421644
\(583\) −2.34349e12 −0.840144
\(584\) 6.20112e12 2.20603
\(585\) 0 0
\(586\) −2.12397e12 −0.744063
\(587\) −1.69635e12 −0.589717 −0.294859 0.955541i \(-0.595273\pi\)
−0.294859 + 0.955541i \(0.595273\pi\)
\(588\) −1.43971e12 −0.496681
\(589\) 8.15912e11 0.279334
\(590\) 0 0
\(591\) −1.78899e11 −0.0603205
\(592\) 1.05603e13 3.53371
\(593\) −3.51053e12 −1.16581 −0.582904 0.812541i \(-0.698084\pi\)
−0.582904 + 0.812541i \(0.698084\pi\)
\(594\) 1.05850e12 0.348859
\(595\) 0 0
\(596\) 3.43213e12 1.11418
\(597\) 5.58876e11 0.180066
\(598\) 2.56593e12 0.820519
\(599\) 4.59342e11 0.145786 0.0728929 0.997340i \(-0.476777\pi\)
0.0728929 + 0.997340i \(0.476777\pi\)
\(600\) 0 0
\(601\) −3.63058e12 −1.13512 −0.567559 0.823333i \(-0.692112\pi\)
−0.567559 + 0.823333i \(0.692112\pi\)
\(602\) −6.33440e12 −1.96572
\(603\) −4.55796e12 −1.40392
\(604\) −6.23183e12 −1.90524
\(605\) 0 0
\(606\) −9.75238e11 −0.293754
\(607\) 2.08854e12 0.624444 0.312222 0.950009i \(-0.398927\pi\)
0.312222 + 0.950009i \(0.398927\pi\)
\(608\) 1.68918e12 0.501315
\(609\) 6.09678e11 0.179607
\(610\) 0 0
\(611\) 1.41807e12 0.411634
\(612\) 7.49306e12 2.15912
\(613\) −1.12371e11 −0.0321428 −0.0160714 0.999871i \(-0.505116\pi\)
−0.0160714 + 0.999871i \(0.505116\pi\)
\(614\) 8.03711e12 2.28214
\(615\) 0 0
\(616\) 1.17950e13 3.30053
\(617\) 2.51656e12 0.699075 0.349537 0.936922i \(-0.386339\pi\)
0.349537 + 0.936922i \(0.386339\pi\)
\(618\) 2.84901e11 0.0785681
\(619\) −5.12708e12 −1.40366 −0.701830 0.712344i \(-0.747633\pi\)
−0.701830 + 0.712344i \(0.747633\pi\)
\(620\) 0 0
\(621\) 1.48266e12 0.400063
\(622\) −1.88256e12 −0.504304
\(623\) 5.25283e11 0.139700
\(624\) −3.64652e11 −0.0962827
\(625\) 0 0
\(626\) −1.21347e13 −3.15823
\(627\) −7.93325e10 −0.0204997
\(628\) 1.21285e12 0.311163
\(629\) −4.48134e12 −1.14151
\(630\) 0 0
\(631\) −5.35545e12 −1.34482 −0.672410 0.740179i \(-0.734741\pi\)
−0.672410 + 0.740179i \(0.734741\pi\)
\(632\) −1.31540e13 −3.27967
\(633\) 1.76759e11 0.0437588
\(634\) 2.88189e12 0.708396
\(635\) 0 0
\(636\) 1.49162e12 0.361494
\(637\) 1.80170e12 0.433566
\(638\) −5.08565e12 −1.21522
\(639\) 2.47083e10 0.00586258
\(640\) 0 0
\(641\) 3.36716e12 0.787776 0.393888 0.919158i \(-0.371130\pi\)
0.393888 + 0.919158i \(0.371130\pi\)
\(642\) −1.91781e12 −0.445551
\(643\) −2.48176e12 −0.572545 −0.286272 0.958148i \(-0.592416\pi\)
−0.286272 + 0.958148i \(0.592416\pi\)
\(644\) 2.75827e13 6.31903
\(645\) 0 0
\(646\) −1.58659e12 −0.358441
\(647\) −7.11628e12 −1.59656 −0.798278 0.602289i \(-0.794255\pi\)
−0.798278 + 0.602289i \(0.794255\pi\)
\(648\) 1.19237e13 2.65657
\(649\) −1.46378e12 −0.323874
\(650\) 0 0
\(651\) −1.19846e12 −0.261523
\(652\) 9.90990e12 2.14761
\(653\) −8.18428e12 −1.76145 −0.880727 0.473624i \(-0.842945\pi\)
−0.880727 + 0.473624i \(0.842945\pi\)
\(654\) 6.25553e11 0.133710
\(655\) 0 0
\(656\) −1.22536e13 −2.58342
\(657\) −3.71247e12 −0.777353
\(658\) 2.13567e13 4.44137
\(659\) 7.93218e12 1.63835 0.819177 0.573540i \(-0.194430\pi\)
0.819177 + 0.573540i \(0.194430\pi\)
\(660\) 0 0
\(661\) −6.95667e12 −1.41741 −0.708704 0.705506i \(-0.750720\pi\)
−0.708704 + 0.705506i \(0.750720\pi\)
\(662\) 5.84336e12 1.18250
\(663\) 1.54742e11 0.0311026
\(664\) −5.96040e12 −1.18992
\(665\) 0 0
\(666\) −1.21086e13 −2.38483
\(667\) −7.12358e12 −1.39358
\(668\) 2.27472e13 4.42011
\(669\) 1.05328e12 0.203295
\(670\) 0 0
\(671\) −5.49478e12 −1.04640
\(672\) −2.48118e12 −0.469349
\(673\) 8.76776e12 1.64748 0.823741 0.566966i \(-0.191883\pi\)
0.823741 + 0.566966i \(0.191883\pi\)
\(674\) −6.31116e12 −1.17798
\(675\) 0 0
\(676\) 1.04148e12 0.191819
\(677\) 8.27870e12 1.51465 0.757327 0.653036i \(-0.226505\pi\)
0.757327 + 0.653036i \(0.226505\pi\)
\(678\) −1.88122e12 −0.341905
\(679\) 1.57000e11 0.0283455
\(680\) 0 0
\(681\) 5.67896e11 0.101183
\(682\) 9.99701e12 1.76946
\(683\) −2.14169e12 −0.376585 −0.188292 0.982113i \(-0.560295\pi\)
−0.188292 + 0.982113i \(0.560295\pi\)
\(684\) −3.05988e12 −0.534506
\(685\) 0 0
\(686\) 9.77665e12 1.68551
\(687\) 6.61072e11 0.113225
\(688\) −1.05181e13 −1.78974
\(689\) −1.86666e12 −0.315558
\(690\) 0 0
\(691\) 6.38018e12 1.06459 0.532294 0.846559i \(-0.321330\pi\)
0.532294 + 0.846559i \(0.321330\pi\)
\(692\) −1.83067e13 −3.03482
\(693\) −7.06139e12 −1.16303
\(694\) −1.98547e13 −3.24897
\(695\) 0 0
\(696\) 1.93890e12 0.313194
\(697\) 5.19986e12 0.834534
\(698\) 7.48364e12 1.19334
\(699\) 1.20522e12 0.190950
\(700\) 0 0
\(701\) −1.01425e13 −1.58640 −0.793199 0.608963i \(-0.791586\pi\)
−0.793199 + 0.608963i \(0.791586\pi\)
\(702\) 8.43124e11 0.131031
\(703\) 1.83001e12 0.282588
\(704\) 7.58437e12 1.16370
\(705\) 0 0
\(706\) −8.79373e12 −1.33215
\(707\) 1.31193e13 1.97480
\(708\) 9.31691e11 0.139355
\(709\) 2.51804e12 0.374244 0.187122 0.982337i \(-0.440084\pi\)
0.187122 + 0.982337i \(0.440084\pi\)
\(710\) 0 0
\(711\) 7.87500e12 1.15568
\(712\) 1.67050e12 0.243606
\(713\) 1.40030e13 2.02917
\(714\) 2.33048e12 0.335585
\(715\) 0 0
\(716\) −8.81621e12 −1.25364
\(717\) 7.17827e11 0.101434
\(718\) −1.10194e13 −1.54739
\(719\) 4.71730e12 0.658284 0.329142 0.944280i \(-0.393241\pi\)
0.329142 + 0.944280i \(0.393241\pi\)
\(720\) 0 0
\(721\) −3.83261e12 −0.528184
\(722\) −1.29997e13 −1.78039
\(723\) 1.10630e12 0.150574
\(724\) −3.60784e12 −0.488005
\(725\) 0 0
\(726\) 8.10643e11 0.108297
\(727\) −5.95951e12 −0.791235 −0.395617 0.918415i \(-0.629469\pi\)
−0.395617 + 0.918415i \(0.629469\pi\)
\(728\) 9.39507e12 1.23968
\(729\) −6.89284e12 −0.903908
\(730\) 0 0
\(731\) 4.46342e12 0.578149
\(732\) 3.49740e12 0.450242
\(733\) −7.46488e11 −0.0955113 −0.0477556 0.998859i \(-0.515207\pi\)
−0.0477556 + 0.998859i \(0.515207\pi\)
\(734\) 1.70460e13 2.16765
\(735\) 0 0
\(736\) 2.89905e13 3.64171
\(737\) 8.44030e12 1.05379
\(738\) 1.40500e13 1.74350
\(739\) −7.26086e12 −0.895547 −0.447773 0.894147i \(-0.647783\pi\)
−0.447773 + 0.894147i \(0.647783\pi\)
\(740\) 0 0
\(741\) −6.31908e10 −0.00769967
\(742\) −2.81127e13 −3.40474
\(743\) 4.75048e12 0.571857 0.285929 0.958251i \(-0.407698\pi\)
0.285929 + 0.958251i \(0.407698\pi\)
\(744\) −3.81134e12 −0.456037
\(745\) 0 0
\(746\) 2.44260e12 0.288754
\(747\) 3.56835e12 0.419300
\(748\) −1.38754e13 −1.62065
\(749\) 2.57991e13 2.99528
\(750\) 0 0
\(751\) 4.92391e12 0.564847 0.282423 0.959290i \(-0.408862\pi\)
0.282423 + 0.959290i \(0.408862\pi\)
\(752\) 3.54623e13 4.04377
\(753\) −5.22939e11 −0.0592753
\(754\) −4.05088e12 −0.456434
\(755\) 0 0
\(756\) 9.06325e12 1.00910
\(757\) 1.68932e13 1.86974 0.934870 0.354990i \(-0.115516\pi\)
0.934870 + 0.354990i \(0.115516\pi\)
\(758\) −1.97678e13 −2.17494
\(759\) −1.36154e12 −0.148916
\(760\) 0 0
\(761\) 4.94344e12 0.534317 0.267158 0.963653i \(-0.413915\pi\)
0.267158 + 0.963653i \(0.413915\pi\)
\(762\) 3.71592e12 0.399272
\(763\) −8.41519e12 −0.898884
\(764\) 2.20126e13 2.33749
\(765\) 0 0
\(766\) −2.47979e13 −2.60247
\(767\) −1.16595e12 −0.121647
\(768\) 4.55393e11 0.0472347
\(769\) 1.27886e13 1.31873 0.659363 0.751824i \(-0.270826\pi\)
0.659363 + 0.751824i \(0.270826\pi\)
\(770\) 0 0
\(771\) 1.56598e12 0.159603
\(772\) 4.10449e13 4.15893
\(773\) −6.68503e12 −0.673435 −0.336718 0.941606i \(-0.609317\pi\)
−0.336718 + 0.941606i \(0.609317\pi\)
\(774\) 1.20601e13 1.20786
\(775\) 0 0
\(776\) 4.99290e11 0.0494282
\(777\) −2.68803e12 −0.264569
\(778\) 1.54896e13 1.51576
\(779\) −2.12343e12 −0.206594
\(780\) 0 0
\(781\) −4.57541e10 −0.00440049
\(782\) −2.72297e13 −2.60383
\(783\) −2.34070e12 −0.222545
\(784\) 4.50560e13 4.25922
\(785\) 0 0
\(786\) 3.22420e12 0.301315
\(787\) −2.01354e13 −1.87100 −0.935502 0.353320i \(-0.885053\pi\)
−0.935502 + 0.353320i \(0.885053\pi\)
\(788\) 1.27776e13 1.18054
\(789\) −8.62968e11 −0.0792772
\(790\) 0 0
\(791\) 2.53069e13 2.29850
\(792\) −2.24566e13 −2.02806
\(793\) −4.37676e12 −0.393028
\(794\) 2.23364e13 1.99444
\(795\) 0 0
\(796\) −3.99169e13 −3.52410
\(797\) −9.69728e12 −0.851309 −0.425655 0.904886i \(-0.639956\pi\)
−0.425655 + 0.904886i \(0.639956\pi\)
\(798\) −9.51680e11 −0.0830764
\(799\) −1.50486e13 −1.30628
\(800\) 0 0
\(801\) −1.00009e12 −0.0858408
\(802\) 3.18330e13 2.71702
\(803\) 6.87465e12 0.583486
\(804\) −5.37222e12 −0.453421
\(805\) 0 0
\(806\) 7.96293e12 0.664607
\(807\) −1.72287e12 −0.142995
\(808\) 4.17219e13 3.44360
\(809\) 1.58607e13 1.30183 0.650915 0.759150i \(-0.274385\pi\)
0.650915 + 0.759150i \(0.274385\pi\)
\(810\) 0 0
\(811\) 5.88758e12 0.477906 0.238953 0.971031i \(-0.423196\pi\)
0.238953 + 0.971031i \(0.423196\pi\)
\(812\) −4.35454e13 −3.51512
\(813\) 3.10672e11 0.0249399
\(814\) 2.24223e13 1.79007
\(815\) 0 0
\(816\) 3.86971e12 0.305543
\(817\) −1.82269e12 −0.143125
\(818\) −3.96687e13 −3.09783
\(819\) −5.62461e12 −0.436833
\(820\) 0 0
\(821\) 5.94820e12 0.456921 0.228461 0.973553i \(-0.426631\pi\)
0.228461 + 0.973553i \(0.426631\pi\)
\(822\) −2.47888e12 −0.189379
\(823\) −7.68915e12 −0.584223 −0.292112 0.956384i \(-0.594358\pi\)
−0.292112 + 0.956384i \(0.594358\pi\)
\(824\) −1.21884e13 −0.921034
\(825\) 0 0
\(826\) −1.75597e13 −1.31252
\(827\) 1.51025e13 1.12273 0.561363 0.827570i \(-0.310277\pi\)
0.561363 + 0.827570i \(0.310277\pi\)
\(828\) −5.25150e13 −3.88282
\(829\) −7.23186e12 −0.531808 −0.265904 0.964000i \(-0.585670\pi\)
−0.265904 + 0.964000i \(0.585670\pi\)
\(830\) 0 0
\(831\) 7.59758e11 0.0552676
\(832\) 6.04119e12 0.437087
\(833\) −1.91197e13 −1.37588
\(834\) −5.13138e12 −0.367271
\(835\) 0 0
\(836\) 5.66621e12 0.401203
\(837\) 4.60118e12 0.324045
\(838\) 3.08653e13 2.16208
\(839\) −1.30902e13 −0.912050 −0.456025 0.889967i \(-0.650727\pi\)
−0.456025 + 0.889967i \(0.650727\pi\)
\(840\) 0 0
\(841\) −3.26100e12 −0.224786
\(842\) −8.57624e12 −0.588021
\(843\) 1.44391e12 0.0984730
\(844\) −1.26248e13 −0.856411
\(845\) 0 0
\(846\) −4.06612e13 −2.72906
\(847\) −1.09051e13 −0.728038
\(848\) −4.66804e13 −3.09994
\(849\) 1.52711e12 0.100876
\(850\) 0 0
\(851\) 3.14074e13 2.05281
\(852\) 2.91223e10 0.00189342
\(853\) 2.60628e13 1.68559 0.842793 0.538238i \(-0.180910\pi\)
0.842793 + 0.538238i \(0.180910\pi\)
\(854\) −6.59158e13 −4.24062
\(855\) 0 0
\(856\) 8.20463e13 5.22308
\(857\) 2.77627e13 1.75812 0.879060 0.476711i \(-0.158171\pi\)
0.879060 + 0.476711i \(0.158171\pi\)
\(858\) −7.74249e11 −0.0487739
\(859\) 2.87614e13 1.80236 0.901180 0.433446i \(-0.142703\pi\)
0.901180 + 0.433446i \(0.142703\pi\)
\(860\) 0 0
\(861\) 3.11902e12 0.193421
\(862\) 4.33612e13 2.67497
\(863\) 2.86159e13 1.75614 0.878068 0.478536i \(-0.158832\pi\)
0.878068 + 0.478536i \(0.158832\pi\)
\(864\) 9.52583e12 0.581555
\(865\) 0 0
\(866\) 1.53564e13 0.927810
\(867\) 4.77710e11 0.0287130
\(868\) 8.55983e13 5.11831
\(869\) −1.45827e13 −0.867459
\(870\) 0 0
\(871\) 6.72296e12 0.395803
\(872\) −2.67620e13 −1.56745
\(873\) −2.98913e11 −0.0174173
\(874\) 1.11196e13 0.644596
\(875\) 0 0
\(876\) −4.37568e12 −0.251060
\(877\) −1.76665e13 −1.00845 −0.504224 0.863573i \(-0.668221\pi\)
−0.504224 + 0.863573i \(0.668221\pi\)
\(878\) −4.17777e13 −2.37257
\(879\) 8.97713e11 0.0507210
\(880\) 0 0
\(881\) 3.19102e13 1.78459 0.892294 0.451455i \(-0.149095\pi\)
0.892294 + 0.451455i \(0.149095\pi\)
\(882\) −5.16614e13 −2.87447
\(883\) 1.95092e13 1.07998 0.539990 0.841671i \(-0.318428\pi\)
0.539990 + 0.841671i \(0.318428\pi\)
\(884\) −1.10522e13 −0.608716
\(885\) 0 0
\(886\) 2.19392e13 1.19610
\(887\) 2.56301e13 1.39025 0.695126 0.718888i \(-0.255349\pi\)
0.695126 + 0.718888i \(0.255349\pi\)
\(888\) −8.54846e12 −0.461349
\(889\) −4.99880e13 −2.68416
\(890\) 0 0
\(891\) 1.32187e13 0.702652
\(892\) −7.52292e13 −3.97873
\(893\) 6.14527e12 0.323377
\(894\) −2.03234e12 −0.106409
\(895\) 0 0
\(896\) 1.99163e13 1.03234
\(897\) −1.08451e12 −0.0559328
\(898\) 1.76381e13 0.905124
\(899\) −2.21069e13 −1.12878
\(900\) 0 0
\(901\) 1.98091e13 1.00139
\(902\) −2.60174e13 −1.30868
\(903\) 2.67728e12 0.133998
\(904\) 8.04808e13 4.00806
\(905\) 0 0
\(906\) 3.69018e12 0.181958
\(907\) 3.55084e13 1.74220 0.871101 0.491104i \(-0.163406\pi\)
0.871101 + 0.491104i \(0.163406\pi\)
\(908\) −4.05612e13 −1.98027
\(909\) −2.49780e13 −1.21344
\(910\) 0 0
\(911\) −3.11189e13 −1.49689 −0.748447 0.663195i \(-0.769200\pi\)
−0.748447 + 0.663195i \(0.769200\pi\)
\(912\) −1.58024e12 −0.0756392
\(913\) −6.60778e12 −0.314729
\(914\) −2.62547e13 −1.24437
\(915\) 0 0
\(916\) −4.72161e13 −2.21595
\(917\) −4.33732e13 −2.02563
\(918\) −8.94727e12 −0.415813
\(919\) 1.24776e13 0.577047 0.288524 0.957473i \(-0.406836\pi\)
0.288524 + 0.957473i \(0.406836\pi\)
\(920\) 0 0
\(921\) −3.39694e12 −0.155568
\(922\) −6.30135e11 −0.0287174
\(923\) −3.64446e10 −0.00165282
\(924\) −8.32287e12 −0.375621
\(925\) 0 0
\(926\) −1.89557e13 −0.847208
\(927\) 7.29694e12 0.324550
\(928\) −4.57679e13 −2.02579
\(929\) −2.91792e13 −1.28529 −0.642647 0.766162i \(-0.722164\pi\)
−0.642647 + 0.766162i \(0.722164\pi\)
\(930\) 0 0
\(931\) 7.80778e12 0.340607
\(932\) −8.60810e13 −3.73711
\(933\) 7.95679e11 0.0343772
\(934\) −4.37635e13 −1.88170
\(935\) 0 0
\(936\) −1.78874e13 −0.761737
\(937\) 7.53729e12 0.319438 0.159719 0.987163i \(-0.448941\pi\)
0.159719 + 0.987163i \(0.448941\pi\)
\(938\) 1.01251e14 4.27056
\(939\) 5.12881e12 0.215289
\(940\) 0 0
\(941\) −3.07136e13 −1.27696 −0.638480 0.769638i \(-0.720437\pi\)
−0.638480 + 0.769638i \(0.720437\pi\)
\(942\) −7.18188e11 −0.0297173
\(943\) −3.64431e13 −1.50077
\(944\) −2.91574e13 −1.19502
\(945\) 0 0
\(946\) −2.23326e13 −0.906630
\(947\) 3.53276e13 1.42738 0.713690 0.700461i \(-0.247022\pi\)
0.713690 + 0.700461i \(0.247022\pi\)
\(948\) 9.28183e12 0.373247
\(949\) 5.47587e12 0.219157
\(950\) 0 0
\(951\) −1.21805e12 −0.0482896
\(952\) −9.97008e13 −3.93398
\(953\) −1.78624e13 −0.701491 −0.350745 0.936471i \(-0.614072\pi\)
−0.350745 + 0.936471i \(0.614072\pi\)
\(954\) 5.35240e13 2.09209
\(955\) 0 0
\(956\) −5.12698e13 −1.98519
\(957\) 2.14949e12 0.0828383
\(958\) 4.40479e13 1.68959
\(959\) 3.33468e13 1.27312
\(960\) 0 0
\(961\) 1.70164e13 0.643596
\(962\) 1.78600e13 0.672349
\(963\) −4.91193e13 −1.84049
\(964\) −7.90156e13 −2.94691
\(965\) 0 0
\(966\) −1.63331e13 −0.603493
\(967\) 3.15343e13 1.15975 0.579875 0.814706i \(-0.303101\pi\)
0.579875 + 0.814706i \(0.303101\pi\)
\(968\) −3.46803e13 −1.26953
\(969\) 6.70583e11 0.0244341
\(970\) 0 0
\(971\) −2.38079e13 −0.859476 −0.429738 0.902954i \(-0.641394\pi\)
−0.429738 + 0.902954i \(0.641394\pi\)
\(972\) −2.59541e13 −0.932625
\(973\) 6.90293e13 2.46903
\(974\) −7.21583e13 −2.56904
\(975\) 0 0
\(976\) −1.09452e14 −3.86099
\(977\) −6.31083e12 −0.221595 −0.110798 0.993843i \(-0.535341\pi\)
−0.110798 + 0.993843i \(0.535341\pi\)
\(978\) −5.86816e12 −0.205105
\(979\) 1.85194e12 0.0644326
\(980\) 0 0
\(981\) 1.60218e13 0.552332
\(982\) −4.99128e13 −1.71281
\(983\) 4.48363e12 0.153158 0.0765789 0.997064i \(-0.475600\pi\)
0.0765789 + 0.997064i \(0.475600\pi\)
\(984\) 9.91909e12 0.337282
\(985\) 0 0
\(986\) 4.29881e13 1.44845
\(987\) −9.02655e12 −0.302757
\(988\) 4.51331e12 0.150692
\(989\) −3.12818e13 −1.03970
\(990\) 0 0
\(991\) −6.89574e12 −0.227117 −0.113559 0.993531i \(-0.536225\pi\)
−0.113559 + 0.993531i \(0.536225\pi\)
\(992\) 8.99672e13 2.94973
\(993\) −2.46974e12 −0.0806082
\(994\) −5.48871e11 −0.0178333
\(995\) 0 0
\(996\) 4.20583e12 0.135420
\(997\) 5.61756e13 1.80061 0.900305 0.435260i \(-0.143344\pi\)
0.900305 + 0.435260i \(0.143344\pi\)
\(998\) 3.09266e13 0.986835
\(999\) 1.03200e13 0.327819
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.j.1.18 yes 19
5.4 even 2 325.10.a.i.1.2 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.10.a.i.1.2 19 5.4 even 2
325.10.a.j.1.18 yes 19 1.1 even 1 trivial