Properties

Label 325.2.a.g.1.1
Level $325$
Weight $2$
Character 325.1
Self dual yes
Analytic conductor $2.595$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.59513806569\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +0.732051 q^{3} +1.00000 q^{4} -1.26795 q^{6} -2.00000 q^{7} +1.73205 q^{8} -2.46410 q^{9} -1.26795 q^{11} +0.732051 q^{12} -1.00000 q^{13} +3.46410 q^{14} -5.00000 q^{16} -3.46410 q^{17} +4.26795 q^{18} +4.19615 q^{19} -1.46410 q^{21} +2.19615 q^{22} -4.73205 q^{23} +1.26795 q^{24} +1.73205 q^{26} -4.00000 q^{27} -2.00000 q^{28} -9.46410 q^{29} -0.196152 q^{31} +5.19615 q^{32} -0.928203 q^{33} +6.00000 q^{34} -2.46410 q^{36} +4.00000 q^{37} -7.26795 q^{38} -0.732051 q^{39} -3.46410 q^{41} +2.53590 q^{42} -10.1962 q^{43} -1.26795 q^{44} +8.19615 q^{46} -6.00000 q^{47} -3.66025 q^{48} -3.00000 q^{49} -2.53590 q^{51} -1.00000 q^{52} +10.3923 q^{53} +6.92820 q^{54} -3.46410 q^{56} +3.07180 q^{57} +16.3923 q^{58} -15.1244 q^{59} +12.3923 q^{61} +0.339746 q^{62} +4.92820 q^{63} +1.00000 q^{64} +1.60770 q^{66} +14.3923 q^{67} -3.46410 q^{68} -3.46410 q^{69} +1.26795 q^{71} -4.26795 q^{72} +4.00000 q^{73} -6.92820 q^{74} +4.19615 q^{76} +2.53590 q^{77} +1.26795 q^{78} +12.3923 q^{79} +4.46410 q^{81} +6.00000 q^{82} +6.00000 q^{83} -1.46410 q^{84} +17.6603 q^{86} -6.92820 q^{87} -2.19615 q^{88} +0.928203 q^{89} +2.00000 q^{91} -4.73205 q^{92} -0.143594 q^{93} +10.3923 q^{94} +3.80385 q^{96} -2.00000 q^{97} +5.19615 q^{98} +3.12436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} - 6 q^{6} - 4 q^{7} + 2 q^{9} - 6 q^{11} - 2 q^{12} - 2 q^{13} - 10 q^{16} + 12 q^{18} - 2 q^{19} + 4 q^{21} - 6 q^{22} - 6 q^{23} + 6 q^{24} - 8 q^{27} - 4 q^{28} - 12 q^{29} + 10 q^{31}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.26795 −0.517638
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.73205 0.612372
\(9\) −2.46410 −0.821367
\(10\) 0 0
\(11\) −1.26795 −0.382301 −0.191151 0.981561i \(-0.561222\pi\)
−0.191151 + 0.981561i \(0.561222\pi\)
\(12\) 0.732051 0.211325
\(13\) −1.00000 −0.277350
\(14\) 3.46410 0.925820
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 4.26795 1.00597
\(19\) 4.19615 0.962663 0.481332 0.876539i \(-0.340153\pi\)
0.481332 + 0.876539i \(0.340153\pi\)
\(20\) 0 0
\(21\) −1.46410 −0.319493
\(22\) 2.19615 0.468221
\(23\) −4.73205 −0.986701 −0.493350 0.869831i \(-0.664228\pi\)
−0.493350 + 0.869831i \(0.664228\pi\)
\(24\) 1.26795 0.258819
\(25\) 0 0
\(26\) 1.73205 0.339683
\(27\) −4.00000 −0.769800
\(28\) −2.00000 −0.377964
\(29\) −9.46410 −1.75744 −0.878720 0.477338i \(-0.841602\pi\)
−0.878720 + 0.477338i \(0.841602\pi\)
\(30\) 0 0
\(31\) −0.196152 −0.0352300 −0.0176150 0.999845i \(-0.505607\pi\)
−0.0176150 + 0.999845i \(0.505607\pi\)
\(32\) 5.19615 0.918559
\(33\) −0.928203 −0.161579
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) −2.46410 −0.410684
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −7.26795 −1.17902
\(39\) −0.732051 −0.117222
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 2.53590 0.391298
\(43\) −10.1962 −1.55490 −0.777449 0.628946i \(-0.783487\pi\)
−0.777449 + 0.628946i \(0.783487\pi\)
\(44\) −1.26795 −0.191151
\(45\) 0 0
\(46\) 8.19615 1.20846
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) −3.66025 −0.528312
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −2.53590 −0.355097
\(52\) −1.00000 −0.138675
\(53\) 10.3923 1.42749 0.713746 0.700404i \(-0.246997\pi\)
0.713746 + 0.700404i \(0.246997\pi\)
\(54\) 6.92820 0.942809
\(55\) 0 0
\(56\) −3.46410 −0.462910
\(57\) 3.07180 0.406869
\(58\) 16.3923 2.15242
\(59\) −15.1244 −1.96902 −0.984512 0.175319i \(-0.943904\pi\)
−0.984512 + 0.175319i \(0.943904\pi\)
\(60\) 0 0
\(61\) 12.3923 1.58667 0.793336 0.608784i \(-0.208342\pi\)
0.793336 + 0.608784i \(0.208342\pi\)
\(62\) 0.339746 0.0431478
\(63\) 4.92820 0.620895
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 1.60770 0.197894
\(67\) 14.3923 1.75830 0.879150 0.476545i \(-0.158111\pi\)
0.879150 + 0.476545i \(0.158111\pi\)
\(68\) −3.46410 −0.420084
\(69\) −3.46410 −0.417029
\(70\) 0 0
\(71\) 1.26795 0.150478 0.0752389 0.997166i \(-0.476028\pi\)
0.0752389 + 0.997166i \(0.476028\pi\)
\(72\) −4.26795 −0.502983
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −6.92820 −0.805387
\(75\) 0 0
\(76\) 4.19615 0.481332
\(77\) 2.53590 0.288992
\(78\) 1.26795 0.143567
\(79\) 12.3923 1.39424 0.697122 0.716953i \(-0.254464\pi\)
0.697122 + 0.716953i \(0.254464\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 6.00000 0.662589
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −1.46410 −0.159747
\(85\) 0 0
\(86\) 17.6603 1.90435
\(87\) −6.92820 −0.742781
\(88\) −2.19615 −0.234111
\(89\) 0.928203 0.0983893 0.0491947 0.998789i \(-0.484335\pi\)
0.0491947 + 0.998789i \(0.484335\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −4.73205 −0.493350
\(93\) −0.143594 −0.0148900
\(94\) 10.3923 1.07188
\(95\) 0 0
\(96\) 3.80385 0.388229
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 5.19615 0.524891
\(99\) 3.12436 0.314010
\(100\) 0 0
\(101\) 12.9282 1.28640 0.643202 0.765696i \(-0.277605\pi\)
0.643202 + 0.765696i \(0.277605\pi\)
\(102\) 4.39230 0.434903
\(103\) −10.1962 −1.00466 −0.502328 0.864677i \(-0.667523\pi\)
−0.502328 + 0.864677i \(0.667523\pi\)
\(104\) −1.73205 −0.169842
\(105\) 0 0
\(106\) −18.0000 −1.74831
\(107\) −0.339746 −0.0328445 −0.0164222 0.999865i \(-0.505228\pi\)
−0.0164222 + 0.999865i \(0.505228\pi\)
\(108\) −4.00000 −0.384900
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 2.92820 0.277933
\(112\) 10.0000 0.944911
\(113\) −15.4641 −1.45474 −0.727370 0.686245i \(-0.759258\pi\)
−0.727370 + 0.686245i \(0.759258\pi\)
\(114\) −5.32051 −0.498311
\(115\) 0 0
\(116\) −9.46410 −0.878720
\(117\) 2.46410 0.227806
\(118\) 26.1962 2.41155
\(119\) 6.92820 0.635107
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) −21.4641 −1.94327
\(123\) −2.53590 −0.228654
\(124\) −0.196152 −0.0176150
\(125\) 0 0
\(126\) −8.53590 −0.760438
\(127\) −5.80385 −0.515008 −0.257504 0.966277i \(-0.582900\pi\)
−0.257504 + 0.966277i \(0.582900\pi\)
\(128\) −12.1244 −1.07165
\(129\) −7.46410 −0.657178
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −0.928203 −0.0807897
\(133\) −8.39230 −0.727705
\(134\) −24.9282 −2.15347
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 12.9282 1.10453 0.552265 0.833668i \(-0.313763\pi\)
0.552265 + 0.833668i \(0.313763\pi\)
\(138\) 6.00000 0.510754
\(139\) −8.39230 −0.711826 −0.355913 0.934519i \(-0.615830\pi\)
−0.355913 + 0.934519i \(0.615830\pi\)
\(140\) 0 0
\(141\) −4.39230 −0.369899
\(142\) −2.19615 −0.184297
\(143\) 1.26795 0.106031
\(144\) 12.3205 1.02671
\(145\) 0 0
\(146\) −6.92820 −0.573382
\(147\) −2.19615 −0.181136
\(148\) 4.00000 0.328798
\(149\) 19.8564 1.62670 0.813350 0.581775i \(-0.197641\pi\)
0.813350 + 0.581775i \(0.197641\pi\)
\(150\) 0 0
\(151\) −12.1962 −0.992509 −0.496254 0.868177i \(-0.665292\pi\)
−0.496254 + 0.868177i \(0.665292\pi\)
\(152\) 7.26795 0.589509
\(153\) 8.53590 0.690086
\(154\) −4.39230 −0.353942
\(155\) 0 0
\(156\) −0.732051 −0.0586110
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) −21.4641 −1.70759
\(159\) 7.60770 0.603329
\(160\) 0 0
\(161\) 9.46410 0.745876
\(162\) −7.73205 −0.607487
\(163\) −6.39230 −0.500684 −0.250342 0.968157i \(-0.580543\pi\)
−0.250342 + 0.968157i \(0.580543\pi\)
\(164\) −3.46410 −0.270501
\(165\) 0 0
\(166\) −10.3923 −0.806599
\(167\) −12.9282 −1.00041 −0.500207 0.865906i \(-0.666743\pi\)
−0.500207 + 0.865906i \(0.666743\pi\)
\(168\) −2.53590 −0.195649
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −10.3397 −0.790700
\(172\) −10.1962 −0.777449
\(173\) −15.4641 −1.17571 −0.587857 0.808965i \(-0.700028\pi\)
−0.587857 + 0.808965i \(0.700028\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) 6.33975 0.477876
\(177\) −11.0718 −0.832207
\(178\) −1.60770 −0.120502
\(179\) −5.07180 −0.379084 −0.189542 0.981873i \(-0.560700\pi\)
−0.189542 + 0.981873i \(0.560700\pi\)
\(180\) 0 0
\(181\) −20.3923 −1.51575 −0.757874 0.652401i \(-0.773762\pi\)
−0.757874 + 0.652401i \(0.773762\pi\)
\(182\) −3.46410 −0.256776
\(183\) 9.07180 0.670607
\(184\) −8.19615 −0.604228
\(185\) 0 0
\(186\) 0.248711 0.0182364
\(187\) 4.39230 0.321197
\(188\) −6.00000 −0.437595
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) −18.9282 −1.36960 −0.684798 0.728733i \(-0.740110\pi\)
−0.684798 + 0.728733i \(0.740110\pi\)
\(192\) 0.732051 0.0528312
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 3.46410 0.248708
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −0.928203 −0.0661317 −0.0330659 0.999453i \(-0.510527\pi\)
−0.0330659 + 0.999453i \(0.510527\pi\)
\(198\) −5.41154 −0.384582
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) 10.5359 0.743145
\(202\) −22.3923 −1.57552
\(203\) 18.9282 1.32850
\(204\) −2.53590 −0.177548
\(205\) 0 0
\(206\) 17.6603 1.23045
\(207\) 11.6603 0.810444
\(208\) 5.00000 0.346688
\(209\) −5.32051 −0.368027
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 10.3923 0.713746
\(213\) 0.928203 0.0635994
\(214\) 0.588457 0.0402261
\(215\) 0 0
\(216\) −6.92820 −0.471405
\(217\) 0.392305 0.0266314
\(218\) −3.46410 −0.234619
\(219\) 2.92820 0.197870
\(220\) 0 0
\(221\) 3.46410 0.233021
\(222\) −5.07180 −0.340397
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) −10.3923 −0.694365
\(225\) 0 0
\(226\) 26.7846 1.78169
\(227\) −3.46410 −0.229920 −0.114960 0.993370i \(-0.536674\pi\)
−0.114960 + 0.993370i \(0.536674\pi\)
\(228\) 3.07180 0.203435
\(229\) −14.3923 −0.951070 −0.475535 0.879697i \(-0.657746\pi\)
−0.475535 + 0.879697i \(0.657746\pi\)
\(230\) 0 0
\(231\) 1.85641 0.122143
\(232\) −16.3923 −1.07621
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −4.26795 −0.279005
\(235\) 0 0
\(236\) −15.1244 −0.984512
\(237\) 9.07180 0.589277
\(238\) −12.0000 −0.777844
\(239\) −3.80385 −0.246050 −0.123025 0.992404i \(-0.539260\pi\)
−0.123025 + 0.992404i \(0.539260\pi\)
\(240\) 0 0
\(241\) 18.3923 1.18475 0.592376 0.805661i \(-0.298190\pi\)
0.592376 + 0.805661i \(0.298190\pi\)
\(242\) 16.2679 1.04574
\(243\) 15.2679 0.979439
\(244\) 12.3923 0.793336
\(245\) 0 0
\(246\) 4.39230 0.280043
\(247\) −4.19615 −0.266995
\(248\) −0.339746 −0.0215739
\(249\) 4.39230 0.278351
\(250\) 0 0
\(251\) −14.5359 −0.917498 −0.458749 0.888566i \(-0.651702\pi\)
−0.458749 + 0.888566i \(0.651702\pi\)
\(252\) 4.92820 0.310448
\(253\) 6.00000 0.377217
\(254\) 10.0526 0.630754
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 7.85641 0.490069 0.245035 0.969514i \(-0.421201\pi\)
0.245035 + 0.969514i \(0.421201\pi\)
\(258\) 12.9282 0.804875
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 23.3205 1.44350
\(262\) 0 0
\(263\) −4.73205 −0.291791 −0.145895 0.989300i \(-0.546606\pi\)
−0.145895 + 0.989300i \(0.546606\pi\)
\(264\) −1.60770 −0.0989468
\(265\) 0 0
\(266\) 14.5359 0.891253
\(267\) 0.679492 0.0415842
\(268\) 14.3923 0.879150
\(269\) 7.85641 0.479014 0.239507 0.970895i \(-0.423014\pi\)
0.239507 + 0.970895i \(0.423014\pi\)
\(270\) 0 0
\(271\) −20.9808 −1.27449 −0.637245 0.770661i \(-0.719926\pi\)
−0.637245 + 0.770661i \(0.719926\pi\)
\(272\) 17.3205 1.05021
\(273\) 1.46410 0.0886115
\(274\) −22.3923 −1.35277
\(275\) 0 0
\(276\) −3.46410 −0.208514
\(277\) 5.60770 0.336934 0.168467 0.985707i \(-0.446118\pi\)
0.168467 + 0.985707i \(0.446118\pi\)
\(278\) 14.5359 0.871805
\(279\) 0.483340 0.0289368
\(280\) 0 0
\(281\) 1.60770 0.0959071 0.0479535 0.998850i \(-0.484730\pi\)
0.0479535 + 0.998850i \(0.484730\pi\)
\(282\) 7.60770 0.453032
\(283\) −1.41154 −0.0839075 −0.0419538 0.999120i \(-0.513358\pi\)
−0.0419538 + 0.999120i \(0.513358\pi\)
\(284\) 1.26795 0.0752389
\(285\) 0 0
\(286\) −2.19615 −0.129861
\(287\) 6.92820 0.408959
\(288\) −12.8038 −0.754474
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) −1.46410 −0.0858272
\(292\) 4.00000 0.234082
\(293\) 18.9282 1.10580 0.552899 0.833248i \(-0.313522\pi\)
0.552899 + 0.833248i \(0.313522\pi\)
\(294\) 3.80385 0.221845
\(295\) 0 0
\(296\) 6.92820 0.402694
\(297\) 5.07180 0.294295
\(298\) −34.3923 −1.99229
\(299\) 4.73205 0.273662
\(300\) 0 0
\(301\) 20.3923 1.17539
\(302\) 21.1244 1.21557
\(303\) 9.46410 0.543698
\(304\) −20.9808 −1.20333
\(305\) 0 0
\(306\) −14.7846 −0.845180
\(307\) −22.7846 −1.30039 −0.650193 0.759769i \(-0.725312\pi\)
−0.650193 + 0.759769i \(0.725312\pi\)
\(308\) 2.53590 0.144496
\(309\) −7.46410 −0.424618
\(310\) 0 0
\(311\) 4.39230 0.249065 0.124532 0.992216i \(-0.460257\pi\)
0.124532 + 0.992216i \(0.460257\pi\)
\(312\) −1.26795 −0.0717835
\(313\) −6.39230 −0.361314 −0.180657 0.983546i \(-0.557822\pi\)
−0.180657 + 0.983546i \(0.557822\pi\)
\(314\) −17.3205 −0.977453
\(315\) 0 0
\(316\) 12.3923 0.697122
\(317\) −24.0000 −1.34797 −0.673987 0.738743i \(-0.735420\pi\)
−0.673987 + 0.738743i \(0.735420\pi\)
\(318\) −13.1769 −0.738925
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) −0.248711 −0.0138817
\(322\) −16.3923 −0.913507
\(323\) −14.5359 −0.808799
\(324\) 4.46410 0.248006
\(325\) 0 0
\(326\) 11.0718 0.613210
\(327\) 1.46410 0.0809650
\(328\) −6.00000 −0.331295
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −28.5885 −1.57136 −0.785682 0.618631i \(-0.787688\pi\)
−0.785682 + 0.618631i \(0.787688\pi\)
\(332\) 6.00000 0.329293
\(333\) −9.85641 −0.540128
\(334\) 22.3923 1.22525
\(335\) 0 0
\(336\) 7.32051 0.399366
\(337\) 5.60770 0.305471 0.152735 0.988267i \(-0.451192\pi\)
0.152735 + 0.988267i \(0.451192\pi\)
\(338\) −1.73205 −0.0942111
\(339\) −11.3205 −0.614846
\(340\) 0 0
\(341\) 0.248711 0.0134685
\(342\) 17.9090 0.968406
\(343\) 20.0000 1.07990
\(344\) −17.6603 −0.952177
\(345\) 0 0
\(346\) 26.7846 1.43995
\(347\) −11.6603 −0.625955 −0.312978 0.949761i \(-0.601326\pi\)
−0.312978 + 0.949761i \(0.601326\pi\)
\(348\) −6.92820 −0.371391
\(349\) 6.39230 0.342172 0.171086 0.985256i \(-0.445272\pi\)
0.171086 + 0.985256i \(0.445272\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) −6.58846 −0.351166
\(353\) −27.7128 −1.47500 −0.737502 0.675345i \(-0.763995\pi\)
−0.737502 + 0.675345i \(0.763995\pi\)
\(354\) 19.1769 1.01924
\(355\) 0 0
\(356\) 0.928203 0.0491947
\(357\) 5.07180 0.268428
\(358\) 8.78461 0.464281
\(359\) 8.19615 0.432576 0.216288 0.976330i \(-0.430605\pi\)
0.216288 + 0.976330i \(0.430605\pi\)
\(360\) 0 0
\(361\) −1.39230 −0.0732792
\(362\) 35.3205 1.85640
\(363\) −6.87564 −0.360878
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) −15.7128 −0.821322
\(367\) −22.1962 −1.15863 −0.579315 0.815104i \(-0.696680\pi\)
−0.579315 + 0.815104i \(0.696680\pi\)
\(368\) 23.6603 1.23338
\(369\) 8.53590 0.444361
\(370\) 0 0
\(371\) −20.7846 −1.07908
\(372\) −0.143594 −0.00744498
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −7.60770 −0.393385
\(375\) 0 0
\(376\) −10.3923 −0.535942
\(377\) 9.46410 0.487426
\(378\) −13.8564 −0.712697
\(379\) −32.9808 −1.69411 −0.847054 0.531507i \(-0.821626\pi\)
−0.847054 + 0.531507i \(0.821626\pi\)
\(380\) 0 0
\(381\) −4.24871 −0.217668
\(382\) 32.7846 1.67741
\(383\) 0.928203 0.0474290 0.0237145 0.999719i \(-0.492451\pi\)
0.0237145 + 0.999719i \(0.492451\pi\)
\(384\) −8.87564 −0.452933
\(385\) 0 0
\(386\) −17.3205 −0.881591
\(387\) 25.1244 1.27714
\(388\) −2.00000 −0.101535
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 16.3923 0.828994
\(392\) −5.19615 −0.262445
\(393\) 0 0
\(394\) 1.60770 0.0809945
\(395\) 0 0
\(396\) 3.12436 0.157005
\(397\) 12.7846 0.641641 0.320821 0.947140i \(-0.396041\pi\)
0.320821 + 0.947140i \(0.396041\pi\)
\(398\) −34.6410 −1.73640
\(399\) −6.14359 −0.307564
\(400\) 0 0
\(401\) −23.0718 −1.15215 −0.576075 0.817397i \(-0.695416\pi\)
−0.576075 + 0.817397i \(0.695416\pi\)
\(402\) −18.2487 −0.910163
\(403\) 0.196152 0.00977105
\(404\) 12.9282 0.643202
\(405\) 0 0
\(406\) −32.7846 −1.62707
\(407\) −5.07180 −0.251400
\(408\) −4.39230 −0.217451
\(409\) −38.3923 −1.89838 −0.949189 0.314708i \(-0.898094\pi\)
−0.949189 + 0.314708i \(0.898094\pi\)
\(410\) 0 0
\(411\) 9.46410 0.466830
\(412\) −10.1962 −0.502328
\(413\) 30.2487 1.48844
\(414\) −20.1962 −0.992587
\(415\) 0 0
\(416\) −5.19615 −0.254762
\(417\) −6.14359 −0.300853
\(418\) 9.21539 0.450739
\(419\) −9.46410 −0.462352 −0.231176 0.972912i \(-0.574257\pi\)
−0.231176 + 0.972912i \(0.574257\pi\)
\(420\) 0 0
\(421\) 10.7846 0.525610 0.262805 0.964849i \(-0.415352\pi\)
0.262805 + 0.964849i \(0.415352\pi\)
\(422\) −13.8564 −0.674519
\(423\) 14.7846 0.718852
\(424\) 18.0000 0.874157
\(425\) 0 0
\(426\) −1.60770 −0.0778931
\(427\) −24.7846 −1.19941
\(428\) −0.339746 −0.0164222
\(429\) 0.928203 0.0448141
\(430\) 0 0
\(431\) 19.5167 0.940084 0.470042 0.882644i \(-0.344239\pi\)
0.470042 + 0.882644i \(0.344239\pi\)
\(432\) 20.0000 0.962250
\(433\) 6.78461 0.326048 0.163024 0.986622i \(-0.447875\pi\)
0.163024 + 0.986622i \(0.447875\pi\)
\(434\) −0.679492 −0.0326167
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) −19.8564 −0.949861
\(438\) −5.07180 −0.242340
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 7.39230 0.352015
\(442\) −6.00000 −0.285391
\(443\) −34.9808 −1.66199 −0.830993 0.556283i \(-0.812227\pi\)
−0.830993 + 0.556283i \(0.812227\pi\)
\(444\) 2.92820 0.138966
\(445\) 0 0
\(446\) 3.46410 0.164030
\(447\) 14.5359 0.687524
\(448\) −2.00000 −0.0944911
\(449\) 27.4641 1.29611 0.648056 0.761593i \(-0.275582\pi\)
0.648056 + 0.761593i \(0.275582\pi\)
\(450\) 0 0
\(451\) 4.39230 0.206826
\(452\) −15.4641 −0.727370
\(453\) −8.92820 −0.419484
\(454\) 6.00000 0.281594
\(455\) 0 0
\(456\) 5.32051 0.249156
\(457\) 30.7846 1.44004 0.720022 0.693952i \(-0.244132\pi\)
0.720022 + 0.693952i \(0.244132\pi\)
\(458\) 24.9282 1.16482
\(459\) 13.8564 0.646762
\(460\) 0 0
\(461\) 3.46410 0.161339 0.0806696 0.996741i \(-0.474294\pi\)
0.0806696 + 0.996741i \(0.474294\pi\)
\(462\) −3.21539 −0.149593
\(463\) −18.3923 −0.854763 −0.427381 0.904071i \(-0.640564\pi\)
−0.427381 + 0.904071i \(0.640564\pi\)
\(464\) 47.3205 2.19680
\(465\) 0 0
\(466\) −10.3923 −0.481414
\(467\) −38.1962 −1.76751 −0.883754 0.467953i \(-0.844992\pi\)
−0.883754 + 0.467953i \(0.844992\pi\)
\(468\) 2.46410 0.113903
\(469\) −28.7846 −1.32915
\(470\) 0 0
\(471\) 7.32051 0.337311
\(472\) −26.1962 −1.20578
\(473\) 12.9282 0.594439
\(474\) −15.7128 −0.721713
\(475\) 0 0
\(476\) 6.92820 0.317554
\(477\) −25.6077 −1.17250
\(478\) 6.58846 0.301349
\(479\) 18.3397 0.837964 0.418982 0.907994i \(-0.362387\pi\)
0.418982 + 0.907994i \(0.362387\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) −31.8564 −1.45102
\(483\) 6.92820 0.315244
\(484\) −9.39230 −0.426923
\(485\) 0 0
\(486\) −26.4449 −1.19956
\(487\) 5.60770 0.254109 0.127054 0.991896i \(-0.459448\pi\)
0.127054 + 0.991896i \(0.459448\pi\)
\(488\) 21.4641 0.971634
\(489\) −4.67949 −0.211614
\(490\) 0 0
\(491\) −9.46410 −0.427109 −0.213554 0.976931i \(-0.568504\pi\)
−0.213554 + 0.976931i \(0.568504\pi\)
\(492\) −2.53590 −0.114327
\(493\) 32.7846 1.47654
\(494\) 7.26795 0.327000
\(495\) 0 0
\(496\) 0.980762 0.0440375
\(497\) −2.53590 −0.113751
\(498\) −7.60770 −0.340909
\(499\) 12.9808 0.581099 0.290549 0.956860i \(-0.406162\pi\)
0.290549 + 0.956860i \(0.406162\pi\)
\(500\) 0 0
\(501\) −9.46410 −0.422825
\(502\) 25.1769 1.12370
\(503\) 25.5167 1.13773 0.568866 0.822430i \(-0.307382\pi\)
0.568866 + 0.822430i \(0.307382\pi\)
\(504\) 8.53590 0.380219
\(505\) 0 0
\(506\) −10.3923 −0.461994
\(507\) 0.732051 0.0325115
\(508\) −5.80385 −0.257504
\(509\) 32.5359 1.44213 0.721064 0.692868i \(-0.243653\pi\)
0.721064 + 0.692868i \(0.243653\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) −8.66025 −0.382733
\(513\) −16.7846 −0.741059
\(514\) −13.6077 −0.600210
\(515\) 0 0
\(516\) −7.46410 −0.328589
\(517\) 7.60770 0.334586
\(518\) 13.8564 0.608816
\(519\) −11.3205 −0.496915
\(520\) 0 0
\(521\) −7.60770 −0.333299 −0.166650 0.986016i \(-0.553295\pi\)
−0.166650 + 0.986016i \(0.553295\pi\)
\(522\) −40.3923 −1.76792
\(523\) 13.8038 0.603600 0.301800 0.953371i \(-0.402412\pi\)
0.301800 + 0.953371i \(0.402412\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 8.19615 0.357369
\(527\) 0.679492 0.0295991
\(528\) 4.64102 0.201974
\(529\) −0.607695 −0.0264215
\(530\) 0 0
\(531\) 37.2679 1.61729
\(532\) −8.39230 −0.363853
\(533\) 3.46410 0.150047
\(534\) −1.17691 −0.0509301
\(535\) 0 0
\(536\) 24.9282 1.07673
\(537\) −3.71281 −0.160220
\(538\) −13.6077 −0.586669
\(539\) 3.80385 0.163843
\(540\) 0 0
\(541\) −5.60770 −0.241094 −0.120547 0.992708i \(-0.538465\pi\)
−0.120547 + 0.992708i \(0.538465\pi\)
\(542\) 36.3397 1.56093
\(543\) −14.9282 −0.640631
\(544\) −18.0000 −0.771744
\(545\) 0 0
\(546\) −2.53590 −0.108526
\(547\) 1.80385 0.0771270 0.0385635 0.999256i \(-0.487722\pi\)
0.0385635 + 0.999256i \(0.487722\pi\)
\(548\) 12.9282 0.552265
\(549\) −30.5359 −1.30324
\(550\) 0 0
\(551\) −39.7128 −1.69182
\(552\) −6.00000 −0.255377
\(553\) −24.7846 −1.05395
\(554\) −9.71281 −0.412658
\(555\) 0 0
\(556\) −8.39230 −0.355913
\(557\) 25.8564 1.09557 0.547786 0.836619i \(-0.315471\pi\)
0.547786 + 0.836619i \(0.315471\pi\)
\(558\) −0.837169 −0.0354402
\(559\) 10.1962 0.431251
\(560\) 0 0
\(561\) 3.21539 0.135754
\(562\) −2.78461 −0.117462
\(563\) −16.0526 −0.676535 −0.338267 0.941050i \(-0.609841\pi\)
−0.338267 + 0.941050i \(0.609841\pi\)
\(564\) −4.39230 −0.184949
\(565\) 0 0
\(566\) 2.44486 0.102765
\(567\) −8.92820 −0.374949
\(568\) 2.19615 0.0921485
\(569\) −9.46410 −0.396756 −0.198378 0.980126i \(-0.563567\pi\)
−0.198378 + 0.980126i \(0.563567\pi\)
\(570\) 0 0
\(571\) 15.6077 0.653162 0.326581 0.945169i \(-0.394103\pi\)
0.326581 + 0.945169i \(0.394103\pi\)
\(572\) 1.26795 0.0530156
\(573\) −13.8564 −0.578860
\(574\) −12.0000 −0.500870
\(575\) 0 0
\(576\) −2.46410 −0.102671
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 8.66025 0.360219
\(579\) 7.32051 0.304230
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 2.53590 0.105116
\(583\) −13.1769 −0.545732
\(584\) 6.92820 0.286691
\(585\) 0 0
\(586\) −32.7846 −1.35432
\(587\) 15.4641 0.638272 0.319136 0.947709i \(-0.396607\pi\)
0.319136 + 0.947709i \(0.396607\pi\)
\(588\) −2.19615 −0.0905678
\(589\) −0.823085 −0.0339146
\(590\) 0 0
\(591\) −0.679492 −0.0279506
\(592\) −20.0000 −0.821995
\(593\) 14.7846 0.607131 0.303566 0.952811i \(-0.401823\pi\)
0.303566 + 0.952811i \(0.401823\pi\)
\(594\) −8.78461 −0.360437
\(595\) 0 0
\(596\) 19.8564 0.813350
\(597\) 14.6410 0.599217
\(598\) −8.19615 −0.335166
\(599\) −28.3923 −1.16008 −0.580039 0.814589i \(-0.696963\pi\)
−0.580039 + 0.814589i \(0.696963\pi\)
\(600\) 0 0
\(601\) −39.5692 −1.61406 −0.807031 0.590509i \(-0.798927\pi\)
−0.807031 + 0.590509i \(0.798927\pi\)
\(602\) −35.3205 −1.43956
\(603\) −35.4641 −1.44421
\(604\) −12.1962 −0.496254
\(605\) 0 0
\(606\) −16.3923 −0.665892
\(607\) 26.9808 1.09512 0.547558 0.836768i \(-0.315558\pi\)
0.547558 + 0.836768i \(0.315558\pi\)
\(608\) 21.8038 0.884263
\(609\) 13.8564 0.561490
\(610\) 0 0
\(611\) 6.00000 0.242734
\(612\) 8.53590 0.345043
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 39.4641 1.59264
\(615\) 0 0
\(616\) 4.39230 0.176971
\(617\) 21.7128 0.874125 0.437062 0.899431i \(-0.356019\pi\)
0.437062 + 0.899431i \(0.356019\pi\)
\(618\) 12.9282 0.520049
\(619\) −44.9808 −1.80793 −0.903965 0.427607i \(-0.859357\pi\)
−0.903965 + 0.427607i \(0.859357\pi\)
\(620\) 0 0
\(621\) 18.9282 0.759563
\(622\) −7.60770 −0.305041
\(623\) −1.85641 −0.0743754
\(624\) 3.66025 0.146527
\(625\) 0 0
\(626\) 11.0718 0.442518
\(627\) −3.89488 −0.155547
\(628\) 10.0000 0.399043
\(629\) −13.8564 −0.552491
\(630\) 0 0
\(631\) 16.1962 0.644759 0.322379 0.946611i \(-0.395517\pi\)
0.322379 + 0.946611i \(0.395517\pi\)
\(632\) 21.4641 0.853796
\(633\) 5.85641 0.232771
\(634\) 41.5692 1.65092
\(635\) 0 0
\(636\) 7.60770 0.301665
\(637\) 3.00000 0.118864
\(638\) −20.7846 −0.822871
\(639\) −3.12436 −0.123598
\(640\) 0 0
\(641\) −0.928203 −0.0366618 −0.0183309 0.999832i \(-0.505835\pi\)
−0.0183309 + 0.999832i \(0.505835\pi\)
\(642\) 0.430781 0.0170016
\(643\) −34.7846 −1.37177 −0.685886 0.727709i \(-0.740585\pi\)
−0.685886 + 0.727709i \(0.740585\pi\)
\(644\) 9.46410 0.372938
\(645\) 0 0
\(646\) 25.1769 0.990572
\(647\) 16.0526 0.631091 0.315546 0.948910i \(-0.397812\pi\)
0.315546 + 0.948910i \(0.397812\pi\)
\(648\) 7.73205 0.303744
\(649\) 19.1769 0.752760
\(650\) 0 0
\(651\) 0.287187 0.0112557
\(652\) −6.39230 −0.250342
\(653\) 19.8564 0.777041 0.388521 0.921440i \(-0.372986\pi\)
0.388521 + 0.921440i \(0.372986\pi\)
\(654\) −2.53590 −0.0991615
\(655\) 0 0
\(656\) 17.3205 0.676252
\(657\) −9.85641 −0.384535
\(658\) −20.7846 −0.810268
\(659\) −14.5359 −0.566238 −0.283119 0.959085i \(-0.591369\pi\)
−0.283119 + 0.959085i \(0.591369\pi\)
\(660\) 0 0
\(661\) −30.7846 −1.19738 −0.598691 0.800980i \(-0.704312\pi\)
−0.598691 + 0.800980i \(0.704312\pi\)
\(662\) 49.5167 1.92452
\(663\) 2.53590 0.0984861
\(664\) 10.3923 0.403300
\(665\) 0 0
\(666\) 17.0718 0.661519
\(667\) 44.7846 1.73407
\(668\) −12.9282 −0.500207
\(669\) −1.46410 −0.0566054
\(670\) 0 0
\(671\) −15.7128 −0.606586
\(672\) −7.60770 −0.293473
\(673\) −6.39230 −0.246405 −0.123203 0.992382i \(-0.539317\pi\)
−0.123203 + 0.992382i \(0.539317\pi\)
\(674\) −9.71281 −0.374124
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 10.3923 0.399409 0.199704 0.979856i \(-0.436002\pi\)
0.199704 + 0.979856i \(0.436002\pi\)
\(678\) 19.6077 0.753029
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) −2.53590 −0.0971758
\(682\) −0.430781 −0.0164954
\(683\) −39.4641 −1.51005 −0.755026 0.655695i \(-0.772376\pi\)
−0.755026 + 0.655695i \(0.772376\pi\)
\(684\) −10.3397 −0.395350
\(685\) 0 0
\(686\) −34.6410 −1.32260
\(687\) −10.5359 −0.401970
\(688\) 50.9808 1.94362
\(689\) −10.3923 −0.395915
\(690\) 0 0
\(691\) 45.7654 1.74100 0.870498 0.492171i \(-0.163797\pi\)
0.870498 + 0.492171i \(0.163797\pi\)
\(692\) −15.4641 −0.587857
\(693\) −6.24871 −0.237369
\(694\) 20.1962 0.766635
\(695\) 0 0
\(696\) −12.0000 −0.454859
\(697\) 12.0000 0.454532
\(698\) −11.0718 −0.419074
\(699\) 4.39230 0.166132
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −6.92820 −0.261488
\(703\) 16.7846 0.633044
\(704\) −1.26795 −0.0477876
\(705\) 0 0
\(706\) 48.0000 1.80650
\(707\) −25.8564 −0.972430
\(708\) −11.0718 −0.416104
\(709\) 9.60770 0.360825 0.180412 0.983591i \(-0.442257\pi\)
0.180412 + 0.983591i \(0.442257\pi\)
\(710\) 0 0
\(711\) −30.5359 −1.14519
\(712\) 1.60770 0.0602509
\(713\) 0.928203 0.0347615
\(714\) −8.78461 −0.328756
\(715\) 0 0
\(716\) −5.07180 −0.189542
\(717\) −2.78461 −0.103993
\(718\) −14.1962 −0.529796
\(719\) 1.85641 0.0692323 0.0346161 0.999401i \(-0.488979\pi\)
0.0346161 + 0.999401i \(0.488979\pi\)
\(720\) 0 0
\(721\) 20.3923 0.759449
\(722\) 2.41154 0.0897483
\(723\) 13.4641 0.500735
\(724\) −20.3923 −0.757874
\(725\) 0 0
\(726\) 11.9090 0.441983
\(727\) −13.4115 −0.497407 −0.248703 0.968580i \(-0.580004\pi\)
−0.248703 + 0.968580i \(0.580004\pi\)
\(728\) 3.46410 0.128388
\(729\) −2.21539 −0.0820515
\(730\) 0 0
\(731\) 35.3205 1.30638
\(732\) 9.07180 0.335303
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) 38.4449 1.41903
\(735\) 0 0
\(736\) −24.5885 −0.906343
\(737\) −18.2487 −0.672200
\(738\) −14.7846 −0.544229
\(739\) −7.80385 −0.287069 −0.143535 0.989645i \(-0.545847\pi\)
−0.143535 + 0.989645i \(0.545847\pi\)
\(740\) 0 0
\(741\) −3.07180 −0.112845
\(742\) 36.0000 1.32160
\(743\) 43.8564 1.60894 0.804468 0.593996i \(-0.202451\pi\)
0.804468 + 0.593996i \(0.202451\pi\)
\(744\) −0.248711 −0.00911820
\(745\) 0 0
\(746\) −17.3205 −0.634149
\(747\) −14.7846 −0.540941
\(748\) 4.39230 0.160599
\(749\) 0.679492 0.0248281
\(750\) 0 0
\(751\) 15.6077 0.569533 0.284766 0.958597i \(-0.408084\pi\)
0.284766 + 0.958597i \(0.408084\pi\)
\(752\) 30.0000 1.09399
\(753\) −10.6410 −0.387780
\(754\) −16.3923 −0.596973
\(755\) 0 0
\(756\) 8.00000 0.290957
\(757\) −18.3923 −0.668480 −0.334240 0.942488i \(-0.608480\pi\)
−0.334240 + 0.942488i \(0.608480\pi\)
\(758\) 57.1244 2.07485
\(759\) 4.39230 0.159431
\(760\) 0 0
\(761\) 7.85641 0.284795 0.142397 0.989810i \(-0.454519\pi\)
0.142397 + 0.989810i \(0.454519\pi\)
\(762\) 7.35898 0.266588
\(763\) −4.00000 −0.144810
\(764\) −18.9282 −0.684798
\(765\) 0 0
\(766\) −1.60770 −0.0580884
\(767\) 15.1244 0.546109
\(768\) 13.9090 0.501897
\(769\) −6.78461 −0.244659 −0.122330 0.992490i \(-0.539037\pi\)
−0.122330 + 0.992490i \(0.539037\pi\)
\(770\) 0 0
\(771\) 5.75129 0.207128
\(772\) 10.0000 0.359908
\(773\) 6.92820 0.249190 0.124595 0.992208i \(-0.460237\pi\)
0.124595 + 0.992208i \(0.460237\pi\)
\(774\) −43.5167 −1.56417
\(775\) 0 0
\(776\) −3.46410 −0.124354
\(777\) −5.85641 −0.210097
\(778\) −10.3923 −0.372582
\(779\) −14.5359 −0.520803
\(780\) 0 0
\(781\) −1.60770 −0.0575279
\(782\) −28.3923 −1.01531
\(783\) 37.8564 1.35288
\(784\) 15.0000 0.535714
\(785\) 0 0
\(786\) 0 0
\(787\) 51.5692 1.83824 0.919122 0.393973i \(-0.128900\pi\)
0.919122 + 0.393973i \(0.128900\pi\)
\(788\) −0.928203 −0.0330659
\(789\) −3.46410 −0.123325
\(790\) 0 0
\(791\) 30.9282 1.09968
\(792\) 5.41154 0.192291
\(793\) −12.3923 −0.440064
\(794\) −22.1436 −0.785847
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) −28.6410 −1.01452 −0.507258 0.861794i \(-0.669341\pi\)
−0.507258 + 0.861794i \(0.669341\pi\)
\(798\) 10.6410 0.376688
\(799\) 20.7846 0.735307
\(800\) 0 0
\(801\) −2.28719 −0.0808138
\(802\) 39.9615 1.41109
\(803\) −5.07180 −0.178980
\(804\) 10.5359 0.371572
\(805\) 0 0
\(806\) −0.339746 −0.0119670
\(807\) 5.75129 0.202455
\(808\) 22.3923 0.787759
\(809\) −9.46410 −0.332740 −0.166370 0.986063i \(-0.553205\pi\)
−0.166370 + 0.986063i \(0.553205\pi\)
\(810\) 0 0
\(811\) 28.1962 0.990101 0.495050 0.868864i \(-0.335150\pi\)
0.495050 + 0.868864i \(0.335150\pi\)
\(812\) 18.9282 0.664250
\(813\) −15.3590 −0.538663
\(814\) 8.78461 0.307900
\(815\) 0 0
\(816\) 12.6795 0.443871
\(817\) −42.7846 −1.49684
\(818\) 66.4974 2.32503
\(819\) −4.92820 −0.172205
\(820\) 0 0
\(821\) −40.6410 −1.41838 −0.709191 0.705017i \(-0.750939\pi\)
−0.709191 + 0.705017i \(0.750939\pi\)
\(822\) −16.3923 −0.571747
\(823\) 46.5885 1.62397 0.811986 0.583677i \(-0.198387\pi\)
0.811986 + 0.583677i \(0.198387\pi\)
\(824\) −17.6603 −0.615224
\(825\) 0 0
\(826\) −52.3923 −1.82296
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) 11.6603 0.405222
\(829\) −20.3923 −0.708254 −0.354127 0.935197i \(-0.615222\pi\)
−0.354127 + 0.935197i \(0.615222\pi\)
\(830\) 0 0
\(831\) 4.10512 0.142405
\(832\) −1.00000 −0.0346688
\(833\) 10.3923 0.360072
\(834\) 10.6410 0.368468
\(835\) 0 0
\(836\) −5.32051 −0.184014
\(837\) 0.784610 0.0271201
\(838\) 16.3923 0.566263
\(839\) 17.6603 0.609700 0.304850 0.952400i \(-0.401394\pi\)
0.304850 + 0.952400i \(0.401394\pi\)
\(840\) 0 0
\(841\) 60.5692 2.08859
\(842\) −18.6795 −0.643738
\(843\) 1.17691 0.0405351
\(844\) 8.00000 0.275371
\(845\) 0 0
\(846\) −25.6077 −0.880411
\(847\) 18.7846 0.645447
\(848\) −51.9615 −1.78437
\(849\) −1.03332 −0.0354635
\(850\) 0 0
\(851\) −18.9282 −0.648850
\(852\) 0.928203 0.0317997
\(853\) −8.00000 −0.273915 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(854\) 42.9282 1.46897
\(855\) 0 0
\(856\) −0.588457 −0.0201131
\(857\) −47.5692 −1.62493 −0.812467 0.583007i \(-0.801876\pi\)
−0.812467 + 0.583007i \(0.801876\pi\)
\(858\) −1.60770 −0.0548858
\(859\) 45.1769 1.54142 0.770708 0.637188i \(-0.219903\pi\)
0.770708 + 0.637188i \(0.219903\pi\)
\(860\) 0 0
\(861\) 5.07180 0.172846
\(862\) −33.8038 −1.15136
\(863\) −2.78461 −0.0947892 −0.0473946 0.998876i \(-0.515092\pi\)
−0.0473946 + 0.998876i \(0.515092\pi\)
\(864\) −20.7846 −0.707107
\(865\) 0 0
\(866\) −11.7513 −0.399325
\(867\) −3.66025 −0.124309
\(868\) 0.392305 0.0133157
\(869\) −15.7128 −0.533021
\(870\) 0 0
\(871\) −14.3923 −0.487665
\(872\) 3.46410 0.117309
\(873\) 4.92820 0.166794
\(874\) 34.3923 1.16334
\(875\) 0 0
\(876\) 2.92820 0.0989348
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) −55.4256 −1.87052
\(879\) 13.8564 0.467365
\(880\) 0 0
\(881\) −12.6795 −0.427183 −0.213591 0.976923i \(-0.568516\pi\)
−0.213591 + 0.976923i \(0.568516\pi\)
\(882\) −12.8038 −0.431128
\(883\) −34.1962 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(884\) 3.46410 0.116510
\(885\) 0 0
\(886\) 60.5885 2.03551
\(887\) −17.9090 −0.601324 −0.300662 0.953731i \(-0.597208\pi\)
−0.300662 + 0.953731i \(0.597208\pi\)
\(888\) 5.07180 0.170198
\(889\) 11.6077 0.389310
\(890\) 0 0
\(891\) −5.66025 −0.189626
\(892\) −2.00000 −0.0669650
\(893\) −25.1769 −0.842513
\(894\) −25.1769 −0.842042
\(895\) 0 0
\(896\) 24.2487 0.810093
\(897\) 3.46410 0.115663
\(898\) −47.5692 −1.58741
\(899\) 1.85641 0.0619146
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) −7.60770 −0.253309
\(903\) 14.9282 0.496779
\(904\) −26.7846 −0.890843
\(905\) 0 0
\(906\) 15.4641 0.513760
\(907\) −39.7654 −1.32039 −0.660194 0.751095i \(-0.729526\pi\)
−0.660194 + 0.751095i \(0.729526\pi\)
\(908\) −3.46410 −0.114960
\(909\) −31.8564 −1.05661
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −15.3590 −0.508587
\(913\) −7.60770 −0.251778
\(914\) −53.3205 −1.76369
\(915\) 0 0
\(916\) −14.3923 −0.475535
\(917\) 0 0
\(918\) −24.0000 −0.792118
\(919\) −53.1769 −1.75414 −0.877072 0.480358i \(-0.840507\pi\)
−0.877072 + 0.480358i \(0.840507\pi\)
\(920\) 0 0
\(921\) −16.6795 −0.549608
\(922\) −6.00000 −0.197599
\(923\) −1.26795 −0.0417351
\(924\) 1.85641 0.0610713
\(925\) 0 0
\(926\) 31.8564 1.04687
\(927\) 25.1244 0.825192
\(928\) −49.1769 −1.61431
\(929\) 51.4641 1.68848 0.844241 0.535963i \(-0.180052\pi\)
0.844241 + 0.535963i \(0.180052\pi\)
\(930\) 0 0
\(931\) −12.5885 −0.412570
\(932\) 6.00000 0.196537
\(933\) 3.21539 0.105267
\(934\) 66.1577 2.16475
\(935\) 0 0
\(936\) 4.26795 0.139502
\(937\) 6.78461 0.221644 0.110822 0.993840i \(-0.464652\pi\)
0.110822 + 0.993840i \(0.464652\pi\)
\(938\) 49.8564 1.62787
\(939\) −4.67949 −0.152709
\(940\) 0 0
\(941\) −31.1769 −1.01634 −0.508169 0.861257i \(-0.669678\pi\)
−0.508169 + 0.861257i \(0.669678\pi\)
\(942\) −12.6795 −0.413120
\(943\) 16.3923 0.533807
\(944\) 75.6218 2.46128
\(945\) 0 0
\(946\) −22.3923 −0.728037
\(947\) 28.6410 0.930708 0.465354 0.885125i \(-0.345927\pi\)
0.465354 + 0.885125i \(0.345927\pi\)
\(948\) 9.07180 0.294638
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) −17.5692 −0.569721
\(952\) 12.0000 0.388922
\(953\) 12.9282 0.418786 0.209393 0.977832i \(-0.432851\pi\)
0.209393 + 0.977832i \(0.432851\pi\)
\(954\) 44.3538 1.43601
\(955\) 0 0
\(956\) −3.80385 −0.123025
\(957\) 8.78461 0.283966
\(958\) −31.7654 −1.02629
\(959\) −25.8564 −0.834947
\(960\) 0 0
\(961\) −30.9615 −0.998759
\(962\) 6.92820 0.223374
\(963\) 0.837169 0.0269774
\(964\) 18.3923 0.592376
\(965\) 0 0
\(966\) −12.0000 −0.386094
\(967\) 29.6077 0.952119 0.476060 0.879413i \(-0.342065\pi\)
0.476060 + 0.879413i \(0.342065\pi\)
\(968\) −16.2679 −0.522872
\(969\) −10.6410 −0.341839
\(970\) 0 0
\(971\) 5.07180 0.162762 0.0813809 0.996683i \(-0.474067\pi\)
0.0813809 + 0.996683i \(0.474067\pi\)
\(972\) 15.2679 0.489720
\(973\) 16.7846 0.538090
\(974\) −9.71281 −0.311219
\(975\) 0 0
\(976\) −61.9615 −1.98334
\(977\) −39.7128 −1.27053 −0.635263 0.772296i \(-0.719108\pi\)
−0.635263 + 0.772296i \(0.719108\pi\)
\(978\) 8.10512 0.259173
\(979\) −1.17691 −0.0376144
\(980\) 0 0
\(981\) −4.92820 −0.157345
\(982\) 16.3923 0.523099
\(983\) 13.6077 0.434018 0.217009 0.976170i \(-0.430370\pi\)
0.217009 + 0.976170i \(0.430370\pi\)
\(984\) −4.39230 −0.140022
\(985\) 0 0
\(986\) −56.7846 −1.80839
\(987\) 8.78461 0.279617
\(988\) −4.19615 −0.133497
\(989\) 48.2487 1.53422
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) −1.01924 −0.0323608
\(993\) −20.9282 −0.664136
\(994\) 4.39230 0.139315
\(995\) 0 0
\(996\) 4.39230 0.139176
\(997\) −54.3923 −1.72262 −0.861311 0.508078i \(-0.830356\pi\)
−0.861311 + 0.508078i \(0.830356\pi\)
\(998\) −22.4833 −0.711698
\(999\) −16.0000 −0.506218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.a.g.1.1 2
3.2 odd 2 2925.2.a.z.1.2 2
4.3 odd 2 5200.2.a.ca.1.1 2
5.2 odd 4 325.2.b.e.274.2 4
5.3 odd 4 325.2.b.e.274.3 4
5.4 even 2 65.2.a.c.1.2 2
13.12 even 2 4225.2.a.w.1.2 2
15.2 even 4 2925.2.c.v.2224.3 4
15.8 even 4 2925.2.c.v.2224.2 4
15.14 odd 2 585.2.a.k.1.1 2
20.19 odd 2 1040.2.a.h.1.2 2
35.34 odd 2 3185.2.a.k.1.2 2
40.19 odd 2 4160.2.a.bj.1.1 2
40.29 even 2 4160.2.a.y.1.2 2
55.54 odd 2 7865.2.a.h.1.1 2
60.59 even 2 9360.2.a.cm.1.2 2
65.4 even 6 845.2.e.f.146.2 4
65.9 even 6 845.2.e.e.146.1 4
65.19 odd 12 845.2.m.a.361.2 4
65.24 odd 12 845.2.m.a.316.2 4
65.29 even 6 845.2.e.e.191.1 4
65.34 odd 4 845.2.c.e.506.3 4
65.44 odd 4 845.2.c.e.506.1 4
65.49 even 6 845.2.e.f.191.2 4
65.54 odd 12 845.2.m.c.316.2 4
65.59 odd 12 845.2.m.c.361.2 4
65.64 even 2 845.2.a.d.1.1 2
195.194 odd 2 7605.2.a.be.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.a.c.1.2 2 5.4 even 2
325.2.a.g.1.1 2 1.1 even 1 trivial
325.2.b.e.274.2 4 5.2 odd 4
325.2.b.e.274.3 4 5.3 odd 4
585.2.a.k.1.1 2 15.14 odd 2
845.2.a.d.1.1 2 65.64 even 2
845.2.c.e.506.1 4 65.44 odd 4
845.2.c.e.506.3 4 65.34 odd 4
845.2.e.e.146.1 4 65.9 even 6
845.2.e.e.191.1 4 65.29 even 6
845.2.e.f.146.2 4 65.4 even 6
845.2.e.f.191.2 4 65.49 even 6
845.2.m.a.316.2 4 65.24 odd 12
845.2.m.a.361.2 4 65.19 odd 12
845.2.m.c.316.2 4 65.54 odd 12
845.2.m.c.361.2 4 65.59 odd 12
1040.2.a.h.1.2 2 20.19 odd 2
2925.2.a.z.1.2 2 3.2 odd 2
2925.2.c.v.2224.2 4 15.8 even 4
2925.2.c.v.2224.3 4 15.2 even 4
3185.2.a.k.1.2 2 35.34 odd 2
4160.2.a.y.1.2 2 40.29 even 2
4160.2.a.bj.1.1 2 40.19 odd 2
4225.2.a.w.1.2 2 13.12 even 2
5200.2.a.ca.1.1 2 4.3 odd 2
7605.2.a.be.1.2 2 195.194 odd 2
7865.2.a.h.1.1 2 55.54 odd 2
9360.2.a.cm.1.2 2 60.59 even 2