Properties

Label 325.6.a.e.1.3
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1878612.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} + 16x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.13795\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.75180 q^{2} +26.2145 q^{3} +44.5940 q^{4} +229.424 q^{6} -8.06989 q^{7} +110.220 q^{8} +444.199 q^{9} +591.993 q^{11} +1169.01 q^{12} +169.000 q^{13} -70.6260 q^{14} -462.381 q^{16} +936.856 q^{17} +3887.54 q^{18} -560.050 q^{19} -211.548 q^{21} +5181.00 q^{22} -2970.19 q^{23} +2889.37 q^{24} +1479.05 q^{26} +5274.32 q^{27} -359.869 q^{28} +802.996 q^{29} -4511.01 q^{31} -7573.72 q^{32} +15518.8 q^{33} +8199.18 q^{34} +19808.6 q^{36} -9143.29 q^{37} -4901.45 q^{38} +4430.25 q^{39} +15224.1 q^{41} -1851.42 q^{42} +20927.4 q^{43} +26399.3 q^{44} -25994.5 q^{46} +20002.7 q^{47} -12121.1 q^{48} -16741.9 q^{49} +24559.2 q^{51} +7536.39 q^{52} -19701.8 q^{53} +46159.8 q^{54} -889.467 q^{56} -14681.4 q^{57} +7027.66 q^{58} -41769.8 q^{59} +41527.5 q^{61} -39479.5 q^{62} -3584.63 q^{63} -51487.5 q^{64} +135817. q^{66} +8814.24 q^{67} +41778.2 q^{68} -77862.0 q^{69} -11984.8 q^{71} +48959.8 q^{72} +59144.1 q^{73} -80020.3 q^{74} -24974.9 q^{76} -4777.31 q^{77} +38772.6 q^{78} -69794.0 q^{79} +30323.3 q^{81} +133238. q^{82} +17957.2 q^{83} -9433.77 q^{84} +183152. q^{86} +21050.1 q^{87} +65249.7 q^{88} -110432. q^{89} -1363.81 q^{91} -132453. q^{92} -118254. q^{93} +175060. q^{94} -198541. q^{96} -136379. q^{97} -146522. q^{98} +262962. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} + 4 q^{3} + 93 q^{4} - 74 q^{6} + 136 q^{7} + 447 q^{8} + 644 q^{9} - 516 q^{11} + 710 q^{12} + 676 q^{13} + 1604 q^{14} - 719 q^{16} - 344 q^{17} + 6905 q^{18} - 5012 q^{19} - 4448 q^{21}+ \cdots + 290668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.75180 1.54711 0.773557 0.633726i \(-0.218475\pi\)
0.773557 + 0.633726i \(0.218475\pi\)
\(3\) 26.2145 1.68166 0.840830 0.541300i \(-0.182068\pi\)
0.840830 + 0.541300i \(0.182068\pi\)
\(4\) 44.5940 1.39356
\(5\) 0 0
\(6\) 229.424 2.60172
\(7\) −8.06989 −0.0622476 −0.0311238 0.999516i \(-0.509909\pi\)
−0.0311238 + 0.999516i \(0.509909\pi\)
\(8\) 110.220 0.608888
\(9\) 444.199 1.82798
\(10\) 0 0
\(11\) 591.993 1.47514 0.737572 0.675268i \(-0.235972\pi\)
0.737572 + 0.675268i \(0.235972\pi\)
\(12\) 1169.01 2.34350
\(13\) 169.000 0.277350
\(14\) −70.6260 −0.0963041
\(15\) 0 0
\(16\) −462.381 −0.451544
\(17\) 936.856 0.786232 0.393116 0.919489i \(-0.371397\pi\)
0.393116 + 0.919489i \(0.371397\pi\)
\(18\) 3887.54 2.82809
\(19\) −560.050 −0.355912 −0.177956 0.984038i \(-0.556949\pi\)
−0.177956 + 0.984038i \(0.556949\pi\)
\(20\) 0 0
\(21\) −211.548 −0.104679
\(22\) 5181.00 2.28222
\(23\) −2970.19 −1.17075 −0.585376 0.810762i \(-0.699053\pi\)
−0.585376 + 0.810762i \(0.699053\pi\)
\(24\) 2889.37 1.02394
\(25\) 0 0
\(26\) 1479.05 0.429092
\(27\) 5274.32 1.39238
\(28\) −359.869 −0.0867459
\(29\) 802.996 0.177304 0.0886520 0.996063i \(-0.471744\pi\)
0.0886520 + 0.996063i \(0.471744\pi\)
\(30\) 0 0
\(31\) −4511.01 −0.843082 −0.421541 0.906809i \(-0.638511\pi\)
−0.421541 + 0.906809i \(0.638511\pi\)
\(32\) −7573.72 −1.30748
\(33\) 15518.8 2.48069
\(34\) 8199.18 1.21639
\(35\) 0 0
\(36\) 19808.6 2.54740
\(37\) −9143.29 −1.09799 −0.548995 0.835826i \(-0.684989\pi\)
−0.548995 + 0.835826i \(0.684989\pi\)
\(38\) −4901.45 −0.550637
\(39\) 4430.25 0.466408
\(40\) 0 0
\(41\) 15224.1 1.41440 0.707199 0.707014i \(-0.249958\pi\)
0.707199 + 0.707014i \(0.249958\pi\)
\(42\) −1851.42 −0.161951
\(43\) 20927.4 1.72601 0.863006 0.505193i \(-0.168579\pi\)
0.863006 + 0.505193i \(0.168579\pi\)
\(44\) 26399.3 2.05571
\(45\) 0 0
\(46\) −25994.5 −1.81129
\(47\) 20002.7 1.32082 0.660411 0.750904i \(-0.270382\pi\)
0.660411 + 0.750904i \(0.270382\pi\)
\(48\) −12121.1 −0.759344
\(49\) −16741.9 −0.996125
\(50\) 0 0
\(51\) 24559.2 1.32217
\(52\) 7536.39 0.386505
\(53\) −19701.8 −0.963423 −0.481711 0.876330i \(-0.659985\pi\)
−0.481711 + 0.876330i \(0.659985\pi\)
\(54\) 46159.8 2.15417
\(55\) 0 0
\(56\) −889.467 −0.0379018
\(57\) −14681.4 −0.598523
\(58\) 7027.66 0.274310
\(59\) −41769.8 −1.56218 −0.781092 0.624416i \(-0.785337\pi\)
−0.781092 + 0.624416i \(0.785337\pi\)
\(60\) 0 0
\(61\) 41527.5 1.42893 0.714466 0.699670i \(-0.246670\pi\)
0.714466 + 0.699670i \(0.246670\pi\)
\(62\) −39479.5 −1.30434
\(63\) −3584.63 −0.113787
\(64\) −51487.5 −1.57127
\(65\) 0 0
\(66\) 135817. 3.83791
\(67\) 8814.24 0.239882 0.119941 0.992781i \(-0.461729\pi\)
0.119941 + 0.992781i \(0.461729\pi\)
\(68\) 41778.2 1.09566
\(69\) −77862.0 −1.96881
\(70\) 0 0
\(71\) −11984.8 −0.282152 −0.141076 0.989999i \(-0.545056\pi\)
−0.141076 + 0.989999i \(0.545056\pi\)
\(72\) 48959.8 1.11303
\(73\) 59144.1 1.29899 0.649493 0.760368i \(-0.274981\pi\)
0.649493 + 0.760368i \(0.274981\pi\)
\(74\) −80020.3 −1.69872
\(75\) 0 0
\(76\) −24974.9 −0.495986
\(77\) −4777.31 −0.0918241
\(78\) 38772.6 0.721587
\(79\) −69794.0 −1.25820 −0.629101 0.777323i \(-0.716577\pi\)
−0.629101 + 0.777323i \(0.716577\pi\)
\(80\) 0 0
\(81\) 30323.3 0.513527
\(82\) 133238. 2.18824
\(83\) 17957.2 0.286117 0.143058 0.989714i \(-0.454306\pi\)
0.143058 + 0.989714i \(0.454306\pi\)
\(84\) −9433.77 −0.145877
\(85\) 0 0
\(86\) 183152. 2.67034
\(87\) 21050.1 0.298165
\(88\) 65249.7 0.898198
\(89\) −110432. −1.47781 −0.738907 0.673807i \(-0.764658\pi\)
−0.738907 + 0.673807i \(0.764658\pi\)
\(90\) 0 0
\(91\) −1363.81 −0.0172644
\(92\) −132453. −1.63152
\(93\) −118254. −1.41778
\(94\) 175060. 2.04346
\(95\) 0 0
\(96\) −198541. −2.19873
\(97\) −136379. −1.47170 −0.735850 0.677144i \(-0.763217\pi\)
−0.735850 + 0.677144i \(0.763217\pi\)
\(98\) −146522. −1.54112
\(99\) 262962. 2.69653
\(100\) 0 0
\(101\) −65451.1 −0.638430 −0.319215 0.947682i \(-0.603419\pi\)
−0.319215 + 0.947682i \(0.603419\pi\)
\(102\) 214937. 2.04556
\(103\) 101771. 0.945215 0.472607 0.881273i \(-0.343313\pi\)
0.472607 + 0.881273i \(0.343313\pi\)
\(104\) 18627.3 0.168875
\(105\) 0 0
\(106\) −172427. −1.49053
\(107\) −179471. −1.51543 −0.757715 0.652586i \(-0.773684\pi\)
−0.757715 + 0.652586i \(0.773684\pi\)
\(108\) 235203. 1.94037
\(109\) −40851.4 −0.329337 −0.164669 0.986349i \(-0.552655\pi\)
−0.164669 + 0.986349i \(0.552655\pi\)
\(110\) 0 0
\(111\) −239687. −1.84644
\(112\) 3731.36 0.0281075
\(113\) −227150. −1.67347 −0.836733 0.547612i \(-0.815537\pi\)
−0.836733 + 0.547612i \(0.815537\pi\)
\(114\) −128489. −0.925984
\(115\) 0 0
\(116\) 35808.8 0.247084
\(117\) 75069.6 0.506990
\(118\) −365561. −2.41688
\(119\) −7560.32 −0.0489410
\(120\) 0 0
\(121\) 189404. 1.17605
\(122\) 363441. 2.21072
\(123\) 399092. 2.37854
\(124\) −201164. −1.17489
\(125\) 0 0
\(126\) −31372.0 −0.176042
\(127\) −38400.2 −0.211263 −0.105632 0.994405i \(-0.533686\pi\)
−0.105632 + 0.994405i \(0.533686\pi\)
\(128\) −208249. −1.12346
\(129\) 548601. 2.90257
\(130\) 0 0
\(131\) 114414. 0.582509 0.291254 0.956646i \(-0.405927\pi\)
0.291254 + 0.956646i \(0.405927\pi\)
\(132\) 692045. 3.45700
\(133\) 4519.54 0.0221547
\(134\) 77140.5 0.371125
\(135\) 0 0
\(136\) 103261. 0.478727
\(137\) 299097. 1.36148 0.680739 0.732526i \(-0.261659\pi\)
0.680739 + 0.732526i \(0.261659\pi\)
\(138\) −681433. −3.04597
\(139\) −148537. −0.652074 −0.326037 0.945357i \(-0.605713\pi\)
−0.326037 + 0.945357i \(0.605713\pi\)
\(140\) 0 0
\(141\) 524361. 2.22117
\(142\) −104888. −0.436522
\(143\) 100047. 0.409132
\(144\) −205389. −0.825413
\(145\) 0 0
\(146\) 517618. 2.00968
\(147\) −438880. −1.67514
\(148\) −407736. −1.53012
\(149\) −295183. −1.08924 −0.544622 0.838682i \(-0.683327\pi\)
−0.544622 + 0.838682i \(0.683327\pi\)
\(150\) 0 0
\(151\) −406812. −1.45195 −0.725974 0.687722i \(-0.758611\pi\)
−0.725974 + 0.687722i \(0.758611\pi\)
\(152\) −61729.0 −0.216711
\(153\) 416150. 1.43722
\(154\) −41810.1 −0.142062
\(155\) 0 0
\(156\) 197563. 0.649970
\(157\) 103767. 0.335978 0.167989 0.985789i \(-0.446273\pi\)
0.167989 + 0.985789i \(0.446273\pi\)
\(158\) −610824. −1.94658
\(159\) −516473. −1.62015
\(160\) 0 0
\(161\) 23969.1 0.0728765
\(162\) 265383. 0.794485
\(163\) 520351. 1.53401 0.767004 0.641642i \(-0.221747\pi\)
0.767004 + 0.641642i \(0.221747\pi\)
\(164\) 678904. 1.97105
\(165\) 0 0
\(166\) 157158. 0.442655
\(167\) 225112. 0.624609 0.312305 0.949982i \(-0.398899\pi\)
0.312305 + 0.949982i \(0.398899\pi\)
\(168\) −23316.9 −0.0637379
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −248774. −0.650600
\(172\) 933237. 2.40531
\(173\) −326742. −0.830023 −0.415011 0.909816i \(-0.636222\pi\)
−0.415011 + 0.909816i \(0.636222\pi\)
\(174\) 184227. 0.461295
\(175\) 0 0
\(176\) −273726. −0.666093
\(177\) −1.09497e6 −2.62706
\(178\) −966479. −2.28635
\(179\) 312278. 0.728465 0.364232 0.931308i \(-0.381331\pi\)
0.364232 + 0.931308i \(0.381331\pi\)
\(180\) 0 0
\(181\) −34110.0 −0.0773901 −0.0386951 0.999251i \(-0.512320\pi\)
−0.0386951 + 0.999251i \(0.512320\pi\)
\(182\) −11935.8 −0.0267100
\(183\) 1.08862e6 2.40298
\(184\) −327376. −0.712857
\(185\) 0 0
\(186\) −1.03493e6 −2.19346
\(187\) 554612. 1.15981
\(188\) 892002. 1.84065
\(189\) −42563.2 −0.0866721
\(190\) 0 0
\(191\) −232313. −0.460776 −0.230388 0.973099i \(-0.574000\pi\)
−0.230388 + 0.973099i \(0.574000\pi\)
\(192\) −1.34972e6 −2.64235
\(193\) 493813. 0.954265 0.477132 0.878831i \(-0.341676\pi\)
0.477132 + 0.878831i \(0.341676\pi\)
\(194\) −1.19357e6 −2.27689
\(195\) 0 0
\(196\) −746588. −1.38816
\(197\) 172838. 0.317302 0.158651 0.987335i \(-0.449286\pi\)
0.158651 + 0.987335i \(0.449286\pi\)
\(198\) 2.30139e6 4.17185
\(199\) 382327. 0.684388 0.342194 0.939629i \(-0.388830\pi\)
0.342194 + 0.939629i \(0.388830\pi\)
\(200\) 0 0
\(201\) 231061. 0.403400
\(202\) −572815. −0.987725
\(203\) −6480.09 −0.0110367
\(204\) 1.09519e6 1.84253
\(205\) 0 0
\(206\) 890679. 1.46236
\(207\) −1.31936e6 −2.14011
\(208\) −78142.5 −0.125236
\(209\) −331546. −0.525022
\(210\) 0 0
\(211\) 789495. 1.22080 0.610398 0.792095i \(-0.291009\pi\)
0.610398 + 0.792095i \(0.291009\pi\)
\(212\) −878584. −1.34259
\(213\) −314174. −0.474484
\(214\) −1.57070e6 −2.34454
\(215\) 0 0
\(216\) 581338. 0.847802
\(217\) 36403.4 0.0524798
\(218\) −357524. −0.509523
\(219\) 1.55043e6 2.18445
\(220\) 0 0
\(221\) 158329. 0.218062
\(222\) −2.09769e6 −2.85666
\(223\) −898082. −1.20936 −0.604678 0.796470i \(-0.706698\pi\)
−0.604678 + 0.796470i \(0.706698\pi\)
\(224\) 61119.1 0.0813873
\(225\) 0 0
\(226\) −1.98797e6 −2.58904
\(227\) 426009. 0.548725 0.274362 0.961626i \(-0.411533\pi\)
0.274362 + 0.961626i \(0.411533\pi\)
\(228\) −654704. −0.834080
\(229\) −221579. −0.279216 −0.139608 0.990207i \(-0.544584\pi\)
−0.139608 + 0.990207i \(0.544584\pi\)
\(230\) 0 0
\(231\) −125235. −0.154417
\(232\) 88506.6 0.107958
\(233\) 1.48218e6 1.78859 0.894296 0.447475i \(-0.147677\pi\)
0.894296 + 0.447475i \(0.147677\pi\)
\(234\) 656994. 0.784372
\(235\) 0 0
\(236\) −1.86268e6 −2.17700
\(237\) −1.82961e6 −2.11587
\(238\) −66166.4 −0.0757174
\(239\) −698853. −0.791391 −0.395695 0.918382i \(-0.629496\pi\)
−0.395695 + 0.918382i \(0.629496\pi\)
\(240\) 0 0
\(241\) −367154. −0.407198 −0.203599 0.979054i \(-0.565264\pi\)
−0.203599 + 0.979054i \(0.565264\pi\)
\(242\) 1.65763e6 1.81949
\(243\) −486752. −0.528800
\(244\) 1.85188e6 1.99131
\(245\) 0 0
\(246\) 3.49277e6 3.67987
\(247\) −94648.5 −0.0987123
\(248\) −497206. −0.513342
\(249\) 470738. 0.481151
\(250\) 0 0
\(251\) 469145. 0.470027 0.235013 0.971992i \(-0.424487\pi\)
0.235013 + 0.971992i \(0.424487\pi\)
\(252\) −159853. −0.158570
\(253\) −1.75833e6 −1.72703
\(254\) −336071. −0.326849
\(255\) 0 0
\(256\) −174957. −0.166852
\(257\) 1.28756e6 1.21600 0.607999 0.793938i \(-0.291972\pi\)
0.607999 + 0.793938i \(0.291972\pi\)
\(258\) 4.80124e6 4.49060
\(259\) 73785.3 0.0683472
\(260\) 0 0
\(261\) 356690. 0.324108
\(262\) 1.00133e6 0.901208
\(263\) 470260. 0.419227 0.209613 0.977784i \(-0.432779\pi\)
0.209613 + 0.977784i \(0.432779\pi\)
\(264\) 1.71049e6 1.51046
\(265\) 0 0
\(266\) 39554.1 0.0342758
\(267\) −2.89492e6 −2.48518
\(268\) 393062. 0.334291
\(269\) −1.19043e6 −1.00305 −0.501525 0.865143i \(-0.667227\pi\)
−0.501525 + 0.865143i \(0.667227\pi\)
\(270\) 0 0
\(271\) 205159. 0.169694 0.0848472 0.996394i \(-0.472960\pi\)
0.0848472 + 0.996394i \(0.472960\pi\)
\(272\) −433185. −0.355019
\(273\) −35751.6 −0.0290328
\(274\) 2.61764e6 2.10636
\(275\) 0 0
\(276\) −3.47218e6 −2.74366
\(277\) −1.35799e6 −1.06340 −0.531702 0.846932i \(-0.678447\pi\)
−0.531702 + 0.846932i \(0.678447\pi\)
\(278\) −1.29996e6 −1.00883
\(279\) −2.00379e6 −1.54114
\(280\) 0 0
\(281\) 1.13136e6 0.854745 0.427372 0.904076i \(-0.359439\pi\)
0.427372 + 0.904076i \(0.359439\pi\)
\(282\) 4.58910e6 3.43641
\(283\) 896684. 0.665539 0.332769 0.943008i \(-0.392017\pi\)
0.332769 + 0.943008i \(0.392017\pi\)
\(284\) −534449. −0.393197
\(285\) 0 0
\(286\) 875589. 0.632973
\(287\) −122857. −0.0880429
\(288\) −3.36424e6 −2.39004
\(289\) −542157. −0.381839
\(290\) 0 0
\(291\) −3.57512e6 −2.47490
\(292\) 2.63747e6 1.81022
\(293\) 732944. 0.498772 0.249386 0.968404i \(-0.419771\pi\)
0.249386 + 0.968404i \(0.419771\pi\)
\(294\) −3.84099e6 −2.59164
\(295\) 0 0
\(296\) −1.00778e6 −0.668552
\(297\) 3.12236e6 2.05396
\(298\) −2.58338e6 −1.68519
\(299\) −501963. −0.324708
\(300\) 0 0
\(301\) −168882. −0.107440
\(302\) −3.56033e6 −2.24633
\(303\) −1.71577e6 −1.07362
\(304\) 258957. 0.160710
\(305\) 0 0
\(306\) 3.64207e6 2.22354
\(307\) 1.12669e6 0.682275 0.341138 0.940013i \(-0.389188\pi\)
0.341138 + 0.940013i \(0.389188\pi\)
\(308\) −213040. −0.127963
\(309\) 2.66787e6 1.58953
\(310\) 0 0
\(311\) −1.97792e6 −1.15960 −0.579799 0.814760i \(-0.696869\pi\)
−0.579799 + 0.814760i \(0.696869\pi\)
\(312\) 488304. 0.283990
\(313\) −2.48485e6 −1.43364 −0.716818 0.697261i \(-0.754402\pi\)
−0.716818 + 0.697261i \(0.754402\pi\)
\(314\) 908148. 0.519796
\(315\) 0 0
\(316\) −3.11240e6 −1.75339
\(317\) −953844. −0.533125 −0.266563 0.963818i \(-0.585888\pi\)
−0.266563 + 0.963818i \(0.585888\pi\)
\(318\) −4.52007e6 −2.50656
\(319\) 475368. 0.261549
\(320\) 0 0
\(321\) −4.70475e6 −2.54844
\(322\) 209773. 0.112748
\(323\) −524687. −0.279830
\(324\) 1.35224e6 0.715633
\(325\) 0 0
\(326\) 4.55401e6 2.37329
\(327\) −1.07090e6 −0.553833
\(328\) 1.67801e6 0.861210
\(329\) −161420. −0.0822179
\(330\) 0 0
\(331\) 21507.4 0.0107899 0.00539496 0.999985i \(-0.498283\pi\)
0.00539496 + 0.999985i \(0.498283\pi\)
\(332\) 800783. 0.398722
\(333\) −4.06144e6 −2.00710
\(334\) 1.97014e6 0.966342
\(335\) 0 0
\(336\) 97815.8 0.0472673
\(337\) 3.16342e6 1.51734 0.758668 0.651477i \(-0.225850\pi\)
0.758668 + 0.651477i \(0.225850\pi\)
\(338\) 249960. 0.119009
\(339\) −5.95462e6 −2.81420
\(340\) 0 0
\(341\) −2.67049e6 −1.24367
\(342\) −2.17722e6 −1.00655
\(343\) 270736. 0.124254
\(344\) 2.30663e6 1.05095
\(345\) 0 0
\(346\) −2.85958e6 −1.28414
\(347\) 2.20243e6 0.981927 0.490963 0.871180i \(-0.336645\pi\)
0.490963 + 0.871180i \(0.336645\pi\)
\(348\) 938710. 0.415512
\(349\) 4.44911e6 1.95528 0.977642 0.210276i \(-0.0674361\pi\)
0.977642 + 0.210276i \(0.0674361\pi\)
\(350\) 0 0
\(351\) 891360. 0.386176
\(352\) −4.48359e6 −1.92872
\(353\) 23142.7 0.00988501 0.00494251 0.999988i \(-0.498427\pi\)
0.00494251 + 0.999988i \(0.498427\pi\)
\(354\) −9.58298e6 −4.06436
\(355\) 0 0
\(356\) −4.92461e6 −2.05943
\(357\) −198190. −0.0823021
\(358\) 2.73299e6 1.12702
\(359\) 852005. 0.348904 0.174452 0.984666i \(-0.444185\pi\)
0.174452 + 0.984666i \(0.444185\pi\)
\(360\) 0 0
\(361\) −2.16244e6 −0.873326
\(362\) −298524. −0.119731
\(363\) 4.96513e6 1.97772
\(364\) −60817.8 −0.0240590
\(365\) 0 0
\(366\) 9.52741e6 3.71768
\(367\) 2.60560e6 1.00982 0.504908 0.863173i \(-0.331526\pi\)
0.504908 + 0.863173i \(0.331526\pi\)
\(368\) 1.37336e6 0.528647
\(369\) 6.76253e6 2.58549
\(370\) 0 0
\(371\) 158992. 0.0599707
\(372\) −5.27342e6 −1.97576
\(373\) 2.33488e6 0.868947 0.434473 0.900685i \(-0.356935\pi\)
0.434473 + 0.900685i \(0.356935\pi\)
\(374\) 4.85385e6 1.79435
\(375\) 0 0
\(376\) 2.20471e6 0.804232
\(377\) 135706. 0.0491753
\(378\) −372504. −0.134092
\(379\) −2.67829e6 −0.957767 −0.478883 0.877878i \(-0.658958\pi\)
−0.478883 + 0.877878i \(0.658958\pi\)
\(380\) 0 0
\(381\) −1.00664e6 −0.355273
\(382\) −2.03316e6 −0.712874
\(383\) 2.37423e6 0.827038 0.413519 0.910496i \(-0.364300\pi\)
0.413519 + 0.910496i \(0.364300\pi\)
\(384\) −5.45915e6 −1.88928
\(385\) 0 0
\(386\) 4.32175e6 1.47636
\(387\) 9.29592e6 3.15511
\(388\) −6.08171e6 −2.05091
\(389\) 1.87573e6 0.628487 0.314244 0.949342i \(-0.398249\pi\)
0.314244 + 0.949342i \(0.398249\pi\)
\(390\) 0 0
\(391\) −2.78264e6 −0.920483
\(392\) −1.84530e6 −0.606528
\(393\) 2.99931e6 0.979582
\(394\) 1.51264e6 0.490902
\(395\) 0 0
\(396\) 1.17266e7 3.75779
\(397\) 4.12523e6 1.31363 0.656814 0.754053i \(-0.271904\pi\)
0.656814 + 0.754053i \(0.271904\pi\)
\(398\) 3.34605e6 1.05883
\(399\) 118477. 0.0372566
\(400\) 0 0
\(401\) 4.32492e6 1.34313 0.671564 0.740947i \(-0.265623\pi\)
0.671564 + 0.740947i \(0.265623\pi\)
\(402\) 2.02220e6 0.624106
\(403\) −762361. −0.233829
\(404\) −2.91873e6 −0.889693
\(405\) 0 0
\(406\) −56712.5 −0.0170751
\(407\) −5.41276e6 −1.61969
\(408\) 2.70693e6 0.805056
\(409\) 3.45008e6 1.01981 0.509907 0.860229i \(-0.329680\pi\)
0.509907 + 0.860229i \(0.329680\pi\)
\(410\) 0 0
\(411\) 7.84067e6 2.28954
\(412\) 4.53837e6 1.31722
\(413\) 337077. 0.0972421
\(414\) −1.15467e7 −3.31100
\(415\) 0 0
\(416\) −1.27996e6 −0.362629
\(417\) −3.89381e6 −1.09657
\(418\) −2.90162e6 −0.812269
\(419\) −1.56769e6 −0.436238 −0.218119 0.975922i \(-0.569992\pi\)
−0.218119 + 0.975922i \(0.569992\pi\)
\(420\) 0 0
\(421\) 6.01650e6 1.65439 0.827196 0.561913i \(-0.189935\pi\)
0.827196 + 0.561913i \(0.189935\pi\)
\(422\) 6.90950e6 1.88871
\(423\) 8.88518e6 2.41443
\(424\) −2.17155e6 −0.586616
\(425\) 0 0
\(426\) −2.74959e6 −0.734081
\(427\) −335122. −0.0889475
\(428\) −8.00335e6 −2.11185
\(429\) 2.62267e6 0.688020
\(430\) 0 0
\(431\) −4.41465e6 −1.14473 −0.572365 0.819999i \(-0.693974\pi\)
−0.572365 + 0.819999i \(0.693974\pi\)
\(432\) −2.43875e6 −0.628720
\(433\) −264873. −0.0678919 −0.0339460 0.999424i \(-0.510807\pi\)
−0.0339460 + 0.999424i \(0.510807\pi\)
\(434\) 318595. 0.0811923
\(435\) 0 0
\(436\) −1.82173e6 −0.458953
\(437\) 1.66346e6 0.416685
\(438\) 1.35691e7 3.37960
\(439\) 2.43360e6 0.602682 0.301341 0.953516i \(-0.402566\pi\)
0.301341 + 0.953516i \(0.402566\pi\)
\(440\) 0 0
\(441\) −7.43672e6 −1.82090
\(442\) 1.38566e6 0.337366
\(443\) −6.67033e6 −1.61487 −0.807436 0.589955i \(-0.799145\pi\)
−0.807436 + 0.589955i \(0.799145\pi\)
\(444\) −1.06886e7 −2.57314
\(445\) 0 0
\(446\) −7.85984e6 −1.87101
\(447\) −7.73806e6 −1.83174
\(448\) 415499. 0.0978080
\(449\) 1.86259e6 0.436014 0.218007 0.975947i \(-0.430044\pi\)
0.218007 + 0.975947i \(0.430044\pi\)
\(450\) 0 0
\(451\) 9.01255e6 2.08644
\(452\) −1.01295e7 −2.33208
\(453\) −1.06644e7 −2.44168
\(454\) 3.72835e6 0.848940
\(455\) 0 0
\(456\) −1.61819e6 −0.364433
\(457\) 4.66486e6 1.04484 0.522418 0.852690i \(-0.325030\pi\)
0.522418 + 0.852690i \(0.325030\pi\)
\(458\) −1.93922e6 −0.431979
\(459\) 4.94128e6 1.09473
\(460\) 0 0
\(461\) 5.59911e6 1.22706 0.613531 0.789670i \(-0.289748\pi\)
0.613531 + 0.789670i \(0.289748\pi\)
\(462\) −1.09603e6 −0.238901
\(463\) 6.71396e6 1.45555 0.727773 0.685818i \(-0.240555\pi\)
0.727773 + 0.685818i \(0.240555\pi\)
\(464\) −371291. −0.0800606
\(465\) 0 0
\(466\) 1.29718e7 2.76716
\(467\) −2.57048e6 −0.545409 −0.272704 0.962098i \(-0.587918\pi\)
−0.272704 + 0.962098i \(0.587918\pi\)
\(468\) 3.34766e6 0.706523
\(469\) −71129.9 −0.0149321
\(470\) 0 0
\(471\) 2.72020e6 0.565000
\(472\) −4.60388e6 −0.951194
\(473\) 1.23889e7 2.54612
\(474\) −1.60124e7 −3.27349
\(475\) 0 0
\(476\) −337145. −0.0682024
\(477\) −8.75153e6 −1.76112
\(478\) −6.11622e6 −1.22437
\(479\) 1.24698e6 0.248325 0.124163 0.992262i \(-0.460376\pi\)
0.124163 + 0.992262i \(0.460376\pi\)
\(480\) 0 0
\(481\) −1.54522e6 −0.304528
\(482\) −3.21326e6 −0.629981
\(483\) 628338. 0.122553
\(484\) 8.44630e6 1.63890
\(485\) 0 0
\(486\) −4.25995e6 −0.818115
\(487\) 8.90535e6 1.70149 0.850743 0.525582i \(-0.176152\pi\)
0.850743 + 0.525582i \(0.176152\pi\)
\(488\) 4.57718e6 0.870059
\(489\) 1.36407e7 2.57968
\(490\) 0 0
\(491\) −4.97397e6 −0.931107 −0.465553 0.885020i \(-0.654145\pi\)
−0.465553 + 0.885020i \(0.654145\pi\)
\(492\) 1.77971e7 3.31464
\(493\) 752292. 0.139402
\(494\) −828345. −0.152719
\(495\) 0 0
\(496\) 2.08581e6 0.380689
\(497\) 96715.7 0.0175633
\(498\) 4.11981e6 0.744395
\(499\) −3.44325e6 −0.619038 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(500\) 0 0
\(501\) 5.90121e6 1.05038
\(502\) 4.10586e6 0.727185
\(503\) 3.02775e6 0.533580 0.266790 0.963755i \(-0.414037\pi\)
0.266790 + 0.963755i \(0.414037\pi\)
\(504\) −395100. −0.0692836
\(505\) 0 0
\(506\) −1.53886e7 −2.67191
\(507\) 748712. 0.129358
\(508\) −1.71242e6 −0.294409
\(509\) 4.45477e6 0.762134 0.381067 0.924547i \(-0.375557\pi\)
0.381067 + 0.924547i \(0.375557\pi\)
\(510\) 0 0
\(511\) −477286. −0.0808587
\(512\) 5.13279e6 0.865324
\(513\) −2.95388e6 −0.495564
\(514\) 1.12684e7 1.88129
\(515\) 0 0
\(516\) 2.44643e7 4.04491
\(517\) 1.18415e7 1.94840
\(518\) 645754. 0.105741
\(519\) −8.56538e6 −1.39582
\(520\) 0 0
\(521\) −3.88354e6 −0.626806 −0.313403 0.949620i \(-0.601469\pi\)
−0.313403 + 0.949620i \(0.601469\pi\)
\(522\) 3.12168e6 0.501432
\(523\) −1.09959e7 −1.75783 −0.878913 0.476983i \(-0.841730\pi\)
−0.878913 + 0.476983i \(0.841730\pi\)
\(524\) 5.10220e6 0.811763
\(525\) 0 0
\(526\) 4.11563e6 0.648592
\(527\) −4.22617e6 −0.662858
\(528\) −7.17559e6 −1.12014
\(529\) 2.38570e6 0.370661
\(530\) 0 0
\(531\) −1.85541e7 −2.85564
\(532\) 201545. 0.0308739
\(533\) 2.57287e6 0.392284
\(534\) −2.53357e7 −3.84486
\(535\) 0 0
\(536\) 971510. 0.146061
\(537\) 8.18620e6 1.22503
\(538\) −1.04184e7 −1.55183
\(539\) −9.91107e6 −1.46943
\(540\) 0 0
\(541\) 2.61308e6 0.383848 0.191924 0.981410i \(-0.438527\pi\)
0.191924 + 0.981410i \(0.438527\pi\)
\(542\) 1.79551e6 0.262537
\(543\) −894176. −0.130144
\(544\) −7.09549e6 −1.02798
\(545\) 0 0
\(546\) −312891. −0.0449170
\(547\) −3.49357e6 −0.499230 −0.249615 0.968345i \(-0.580304\pi\)
−0.249615 + 0.968345i \(0.580304\pi\)
\(548\) 1.33379e7 1.89731
\(549\) 1.84465e7 2.61206
\(550\) 0 0
\(551\) −449718. −0.0631047
\(552\) −8.58199e6 −1.19878
\(553\) 563230. 0.0783200
\(554\) −1.18849e7 −1.64521
\(555\) 0 0
\(556\) −6.62385e6 −0.908706
\(557\) 7.52693e6 1.02797 0.513984 0.857800i \(-0.328169\pi\)
0.513984 + 0.857800i \(0.328169\pi\)
\(558\) −1.75367e7 −2.38431
\(559\) 3.53673e6 0.478710
\(560\) 0 0
\(561\) 1.45389e7 1.95040
\(562\) 9.90147e6 1.32239
\(563\) 8.11431e6 1.07890 0.539450 0.842018i \(-0.318632\pi\)
0.539450 + 0.842018i \(0.318632\pi\)
\(564\) 2.33834e7 3.09534
\(565\) 0 0
\(566\) 7.84760e6 1.02966
\(567\) −244705. −0.0319658
\(568\) −1.32097e6 −0.171799
\(569\) 3.42992e6 0.444123 0.222061 0.975033i \(-0.428721\pi\)
0.222061 + 0.975033i \(0.428721\pi\)
\(570\) 0 0
\(571\) 1.17647e7 1.51005 0.755026 0.655695i \(-0.227624\pi\)
0.755026 + 0.655695i \(0.227624\pi\)
\(572\) 4.46149e6 0.570151
\(573\) −6.08997e6 −0.774869
\(574\) −1.07522e6 −0.136212
\(575\) 0 0
\(576\) −2.28707e7 −2.87226
\(577\) −8.73061e6 −1.09170 −0.545852 0.837882i \(-0.683794\pi\)
−0.545852 + 0.837882i \(0.683794\pi\)
\(578\) −4.74485e6 −0.590749
\(579\) 1.29450e7 1.60475
\(580\) 0 0
\(581\) −144912. −0.0178101
\(582\) −3.12887e7 −3.82895
\(583\) −1.16633e7 −1.42119
\(584\) 6.51889e6 0.790936
\(585\) 0 0
\(586\) 6.41458e6 0.771657
\(587\) −6.33682e6 −0.759060 −0.379530 0.925179i \(-0.623914\pi\)
−0.379530 + 0.925179i \(0.623914\pi\)
\(588\) −1.95714e7 −2.33442
\(589\) 2.52639e6 0.300063
\(590\) 0 0
\(591\) 4.53085e6 0.533593
\(592\) 4.22769e6 0.495791
\(593\) −1.23132e6 −0.143792 −0.0718960 0.997412i \(-0.522905\pi\)
−0.0718960 + 0.997412i \(0.522905\pi\)
\(594\) 2.73263e7 3.17771
\(595\) 0 0
\(596\) −1.31634e7 −1.51793
\(597\) 1.00225e7 1.15091
\(598\) −4.39308e6 −0.502361
\(599\) −6.75482e6 −0.769213 −0.384607 0.923081i \(-0.625663\pi\)
−0.384607 + 0.923081i \(0.625663\pi\)
\(600\) 0 0
\(601\) −20587.5 −0.00232497 −0.00116248 0.999999i \(-0.500370\pi\)
−0.00116248 + 0.999999i \(0.500370\pi\)
\(602\) −1.47802e6 −0.166222
\(603\) 3.91527e6 0.438499
\(604\) −1.81414e7 −2.02338
\(605\) 0 0
\(606\) −1.50160e7 −1.66102
\(607\) −6.97910e6 −0.768826 −0.384413 0.923161i \(-0.625596\pi\)
−0.384413 + 0.923161i \(0.625596\pi\)
\(608\) 4.24167e6 0.465348
\(609\) −169872. −0.0185600
\(610\) 0 0
\(611\) 3.38046e6 0.366330
\(612\) 1.85578e7 2.00285
\(613\) 3.83537e6 0.412246 0.206123 0.978526i \(-0.433915\pi\)
0.206123 + 0.978526i \(0.433915\pi\)
\(614\) 9.86059e6 1.05556
\(615\) 0 0
\(616\) −526558. −0.0559106
\(617\) −1.16850e7 −1.23571 −0.617853 0.786293i \(-0.711997\pi\)
−0.617853 + 0.786293i \(0.711997\pi\)
\(618\) 2.33487e7 2.45918
\(619\) −8.33735e6 −0.874583 −0.437292 0.899320i \(-0.644062\pi\)
−0.437292 + 0.899320i \(0.644062\pi\)
\(620\) 0 0
\(621\) −1.56658e7 −1.63013
\(622\) −1.73103e7 −1.79403
\(623\) 891174. 0.0919903
\(624\) −2.04846e6 −0.210604
\(625\) 0 0
\(626\) −2.17469e7 −2.21800
\(627\) −8.69129e6 −0.882908
\(628\) 4.62739e6 0.468206
\(629\) −8.56595e6 −0.863274
\(630\) 0 0
\(631\) −1.66983e7 −1.66955 −0.834775 0.550591i \(-0.814402\pi\)
−0.834775 + 0.550591i \(0.814402\pi\)
\(632\) −7.69273e6 −0.766104
\(633\) 2.06962e7 2.05296
\(634\) −8.34785e6 −0.824805
\(635\) 0 0
\(636\) −2.30316e7 −2.25778
\(637\) −2.82938e6 −0.276275
\(638\) 4.16033e6 0.404646
\(639\) −5.32362e6 −0.515768
\(640\) 0 0
\(641\) −1.69010e7 −1.62468 −0.812340 0.583184i \(-0.801807\pi\)
−0.812340 + 0.583184i \(0.801807\pi\)
\(642\) −4.11750e7 −3.94272
\(643\) 1.01899e7 0.971947 0.485974 0.873974i \(-0.338465\pi\)
0.485974 + 0.873974i \(0.338465\pi\)
\(644\) 1.06888e6 0.101558
\(645\) 0 0
\(646\) −4.59195e6 −0.432928
\(647\) −6.44562e6 −0.605347 −0.302673 0.953094i \(-0.597879\pi\)
−0.302673 + 0.953094i \(0.597879\pi\)
\(648\) 3.34224e6 0.312680
\(649\) −2.47274e7 −2.30445
\(650\) 0 0
\(651\) 954295. 0.0882531
\(652\) 2.32046e7 2.13774
\(653\) −1.82109e7 −1.67128 −0.835640 0.549277i \(-0.814903\pi\)
−0.835640 + 0.549277i \(0.814903\pi\)
\(654\) −9.37229e6 −0.856844
\(655\) 0 0
\(656\) −7.03934e6 −0.638664
\(657\) 2.62717e7 2.37452
\(658\) −1.41271e6 −0.127201
\(659\) 4.70706e6 0.422217 0.211109 0.977463i \(-0.432293\pi\)
0.211109 + 0.977463i \(0.432293\pi\)
\(660\) 0 0
\(661\) −5.15844e6 −0.459213 −0.229607 0.973284i \(-0.573744\pi\)
−0.229607 + 0.973284i \(0.573744\pi\)
\(662\) 188229. 0.0166932
\(663\) 4.15050e6 0.366705
\(664\) 1.97925e6 0.174213
\(665\) 0 0
\(666\) −3.55449e7 −3.10522
\(667\) −2.38505e6 −0.207579
\(668\) 1.00387e7 0.870433
\(669\) −2.35428e7 −2.03372
\(670\) 0 0
\(671\) 2.45840e7 2.10788
\(672\) 1.60221e6 0.136866
\(673\) −8.41092e6 −0.715823 −0.357911 0.933756i \(-0.616511\pi\)
−0.357911 + 0.933756i \(0.616511\pi\)
\(674\) 2.76856e7 2.34749
\(675\) 0 0
\(676\) 1.27365e6 0.107197
\(677\) 1.05108e7 0.881378 0.440689 0.897660i \(-0.354734\pi\)
0.440689 + 0.897660i \(0.354734\pi\)
\(678\) −5.21136e7 −4.35389
\(679\) 1.10057e6 0.0916098
\(680\) 0 0
\(681\) 1.11676e7 0.922768
\(682\) −2.33716e7 −1.92410
\(683\) −1.27854e7 −1.04873 −0.524364 0.851494i \(-0.675697\pi\)
−0.524364 + 0.851494i \(0.675697\pi\)
\(684\) −1.10938e7 −0.906652
\(685\) 0 0
\(686\) 2.36942e6 0.192235
\(687\) −5.80858e6 −0.469546
\(688\) −9.67644e6 −0.779371
\(689\) −3.32961e6 −0.267205
\(690\) 0 0
\(691\) 1.46556e7 1.16764 0.583818 0.811884i \(-0.301558\pi\)
0.583818 + 0.811884i \(0.301558\pi\)
\(692\) −1.45708e7 −1.15669
\(693\) −2.12208e6 −0.167853
\(694\) 1.92753e7 1.51915
\(695\) 0 0
\(696\) 2.32015e6 0.181549
\(697\) 1.42628e7 1.11205
\(698\) 3.89378e7 3.02505
\(699\) 3.88546e7 3.00780
\(700\) 0 0
\(701\) 1.62766e7 1.25103 0.625517 0.780210i \(-0.284888\pi\)
0.625517 + 0.780210i \(0.284888\pi\)
\(702\) 7.80101e6 0.597459
\(703\) 5.12070e6 0.390788
\(704\) −3.04802e7 −2.31786
\(705\) 0 0
\(706\) 202540. 0.0152932
\(707\) 528183. 0.0397407
\(708\) −4.88292e7 −3.66098
\(709\) −1.32627e7 −0.990873 −0.495436 0.868644i \(-0.664992\pi\)
−0.495436 + 0.868644i \(0.664992\pi\)
\(710\) 0 0
\(711\) −3.10024e7 −2.29997
\(712\) −1.21719e7 −0.899823
\(713\) 1.33986e7 0.987040
\(714\) −1.73452e6 −0.127331
\(715\) 0 0
\(716\) 1.39257e7 1.01516
\(717\) −1.83201e7 −1.33085
\(718\) 7.45658e6 0.539794
\(719\) 1.58913e7 1.14640 0.573201 0.819415i \(-0.305701\pi\)
0.573201 + 0.819415i \(0.305701\pi\)
\(720\) 0 0
\(721\) −821280. −0.0588373
\(722\) −1.89253e7 −1.35114
\(723\) −9.62474e6 −0.684768
\(724\) −1.52110e6 −0.107848
\(725\) 0 0
\(726\) 4.34539e7 3.05976
\(727\) −1.21979e7 −0.855950 −0.427975 0.903791i \(-0.640773\pi\)
−0.427975 + 0.903791i \(0.640773\pi\)
\(728\) −150320. −0.0105121
\(729\) −2.01285e7 −1.40279
\(730\) 0 0
\(731\) 1.96060e7 1.35705
\(732\) 4.85461e7 3.34870
\(733\) 3.40342e6 0.233968 0.116984 0.993134i \(-0.462677\pi\)
0.116984 + 0.993134i \(0.462677\pi\)
\(734\) 2.28037e7 1.56230
\(735\) 0 0
\(736\) 2.24954e7 1.53073
\(737\) 5.21796e6 0.353861
\(738\) 5.91843e7 4.00005
\(739\) −8.97838e6 −0.604765 −0.302383 0.953187i \(-0.597782\pi\)
−0.302383 + 0.953187i \(0.597782\pi\)
\(740\) 0 0
\(741\) −2.48116e6 −0.166000
\(742\) 1.39146e6 0.0927816
\(743\) −1.67949e7 −1.11611 −0.558054 0.829804i \(-0.688452\pi\)
−0.558054 + 0.829804i \(0.688452\pi\)
\(744\) −1.30340e7 −0.863267
\(745\) 0 0
\(746\) 2.04344e7 1.34436
\(747\) 7.97656e6 0.523015
\(748\) 2.47324e7 1.61626
\(749\) 1.44831e6 0.0943318
\(750\) 0 0
\(751\) −1.55176e7 −1.00398 −0.501989 0.864874i \(-0.667398\pi\)
−0.501989 + 0.864874i \(0.667398\pi\)
\(752\) −9.24888e6 −0.596410
\(753\) 1.22984e7 0.790425
\(754\) 1.18768e6 0.0760798
\(755\) 0 0
\(756\) −1.89806e6 −0.120783
\(757\) 1.23231e7 0.781592 0.390796 0.920477i \(-0.372200\pi\)
0.390796 + 0.920477i \(0.372200\pi\)
\(758\) −2.34399e7 −1.48178
\(759\) −4.60938e7 −2.90427
\(760\) 0 0
\(761\) 1.01874e7 0.637677 0.318838 0.947809i \(-0.396707\pi\)
0.318838 + 0.947809i \(0.396707\pi\)
\(762\) −8.80992e6 −0.549648
\(763\) 329666. 0.0205004
\(764\) −1.03598e7 −0.642121
\(765\) 0 0
\(766\) 2.07788e7 1.27952
\(767\) −7.05909e6 −0.433272
\(768\) −4.58641e6 −0.280588
\(769\) 5.61745e6 0.342550 0.171275 0.985223i \(-0.445211\pi\)
0.171275 + 0.985223i \(0.445211\pi\)
\(770\) 0 0
\(771\) 3.37526e7 2.04490
\(772\) 2.20211e7 1.32983
\(773\) −1.86328e7 −1.12158 −0.560790 0.827958i \(-0.689502\pi\)
−0.560790 + 0.827958i \(0.689502\pi\)
\(774\) 8.13561e7 4.88132
\(775\) 0 0
\(776\) −1.50318e7 −0.896101
\(777\) 1.93424e6 0.114937
\(778\) 1.64160e7 0.972342
\(779\) −8.52626e6 −0.503402
\(780\) 0 0
\(781\) −7.09489e6 −0.416215
\(782\) −2.43531e7 −1.42409
\(783\) 4.23526e6 0.246874
\(784\) 7.74113e6 0.449795
\(785\) 0 0
\(786\) 2.62494e7 1.51552
\(787\) 2.13328e7 1.22775 0.613877 0.789402i \(-0.289609\pi\)
0.613877 + 0.789402i \(0.289609\pi\)
\(788\) 7.70752e6 0.442180
\(789\) 1.23276e7 0.704997
\(790\) 0 0
\(791\) 1.83307e6 0.104169
\(792\) 2.89838e7 1.64189
\(793\) 7.01815e6 0.396314
\(794\) 3.61032e7 2.03233
\(795\) 0 0
\(796\) 1.70495e7 0.953738
\(797\) −7.53097e6 −0.419957 −0.209979 0.977706i \(-0.567339\pi\)
−0.209979 + 0.977706i \(0.567339\pi\)
\(798\) 1.03689e6 0.0576402
\(799\) 1.87397e7 1.03847
\(800\) 0 0
\(801\) −4.90538e7 −2.70141
\(802\) 3.78509e7 2.07797
\(803\) 3.50129e7 1.91619
\(804\) 1.03039e7 0.562163
\(805\) 0 0
\(806\) −6.67203e6 −0.361760
\(807\) −3.12064e7 −1.68679
\(808\) −7.21405e6 −0.388732
\(809\) 2.98814e7 1.60520 0.802601 0.596516i \(-0.203449\pi\)
0.802601 + 0.596516i \(0.203449\pi\)
\(810\) 0 0
\(811\) −7.90498e6 −0.422035 −0.211018 0.977482i \(-0.567678\pi\)
−0.211018 + 0.977482i \(0.567678\pi\)
\(812\) −288973. −0.0153804
\(813\) 5.37814e6 0.285368
\(814\) −4.73714e7 −2.50585
\(815\) 0 0
\(816\) −1.13557e7 −0.597020
\(817\) −1.17204e7 −0.614309
\(818\) 3.01944e7 1.57777
\(819\) −605803. −0.0315589
\(820\) 0 0
\(821\) −1.45139e7 −0.751494 −0.375747 0.926722i \(-0.622614\pi\)
−0.375747 + 0.926722i \(0.622614\pi\)
\(822\) 6.86200e7 3.54218
\(823\) 6.15126e6 0.316566 0.158283 0.987394i \(-0.449404\pi\)
0.158283 + 0.987394i \(0.449404\pi\)
\(824\) 1.12172e7 0.575530
\(825\) 0 0
\(826\) 2.95003e6 0.150445
\(827\) 3.97991e6 0.202353 0.101176 0.994869i \(-0.467739\pi\)
0.101176 + 0.994869i \(0.467739\pi\)
\(828\) −5.88354e7 −2.98238
\(829\) 4.29025e6 0.216819 0.108409 0.994106i \(-0.465424\pi\)
0.108409 + 0.994106i \(0.465424\pi\)
\(830\) 0 0
\(831\) −3.55991e7 −1.78828
\(832\) −8.70139e6 −0.435793
\(833\) −1.56847e7 −0.783185
\(834\) −3.40779e7 −1.69651
\(835\) 0 0
\(836\) −1.47850e7 −0.731652
\(837\) −2.37925e7 −1.17389
\(838\) −1.37201e7 −0.674911
\(839\) 2.83937e7 1.39257 0.696284 0.717766i \(-0.254835\pi\)
0.696284 + 0.717766i \(0.254835\pi\)
\(840\) 0 0
\(841\) −1.98663e7 −0.968563
\(842\) 5.26552e7 2.55953
\(843\) 2.96581e7 1.43739
\(844\) 3.52068e7 1.70126
\(845\) 0 0
\(846\) 7.77613e7 3.73541
\(847\) −1.52847e6 −0.0732063
\(848\) 9.10976e6 0.435028
\(849\) 2.35061e7 1.11921
\(850\) 0 0
\(851\) 2.71573e7 1.28547
\(852\) −1.40103e7 −0.661224
\(853\) 1.61127e7 0.758222 0.379111 0.925351i \(-0.376230\pi\)
0.379111 + 0.925351i \(0.376230\pi\)
\(854\) −2.93292e6 −0.137612
\(855\) 0 0
\(856\) −1.97814e7 −0.922726
\(857\) −2.56599e7 −1.19344 −0.596722 0.802448i \(-0.703531\pi\)
−0.596722 + 0.802448i \(0.703531\pi\)
\(858\) 2.29531e7 1.06445
\(859\) −1.56669e7 −0.724439 −0.362219 0.932093i \(-0.617981\pi\)
−0.362219 + 0.932093i \(0.617981\pi\)
\(860\) 0 0
\(861\) −3.22062e6 −0.148058
\(862\) −3.86362e7 −1.77103
\(863\) 2.50939e7 1.14694 0.573471 0.819226i \(-0.305597\pi\)
0.573471 + 0.819226i \(0.305597\pi\)
\(864\) −3.99463e7 −1.82050
\(865\) 0 0
\(866\) −2.31812e6 −0.105037
\(867\) −1.42124e7 −0.642124
\(868\) 1.62337e6 0.0731339
\(869\) −4.13176e7 −1.85603
\(870\) 0 0
\(871\) 1.48961e6 0.0665313
\(872\) −4.50266e6 −0.200530
\(873\) −6.05796e7 −2.69024
\(874\) 1.45582e7 0.644660
\(875\) 0 0
\(876\) 6.91400e7 3.04417
\(877\) −9.38359e6 −0.411974 −0.205987 0.978555i \(-0.566040\pi\)
−0.205987 + 0.978555i \(0.566040\pi\)
\(878\) 2.12984e7 0.932419
\(879\) 1.92137e7 0.838764
\(880\) 0 0
\(881\) 2.07853e7 0.902227 0.451114 0.892466i \(-0.351027\pi\)
0.451114 + 0.892466i \(0.351027\pi\)
\(882\) −6.50847e7 −2.81713
\(883\) 2.64517e6 0.114170 0.0570850 0.998369i \(-0.481819\pi\)
0.0570850 + 0.998369i \(0.481819\pi\)
\(884\) 7.06052e6 0.303883
\(885\) 0 0
\(886\) −5.83774e7 −2.49839
\(887\) 1.19650e7 0.510628 0.255314 0.966858i \(-0.417821\pi\)
0.255314 + 0.966858i \(0.417821\pi\)
\(888\) −2.64184e7 −1.12428
\(889\) 309885. 0.0131506
\(890\) 0 0
\(891\) 1.79512e7 0.757527
\(892\) −4.00491e7 −1.68531
\(893\) −1.12025e7 −0.470097
\(894\) −6.77220e7 −2.83391
\(895\) 0 0
\(896\) 1.68055e6 0.0699329
\(897\) −1.31587e7 −0.546049
\(898\) 1.63010e7 0.674563
\(899\) −3.62233e6 −0.149482
\(900\) 0 0
\(901\) −1.84578e7 −0.757474
\(902\) 7.88761e7 3.22797
\(903\) −4.42714e6 −0.180678
\(904\) −2.50366e7 −1.01895
\(905\) 0 0
\(906\) −9.33323e7 −3.77756
\(907\) −9.86913e6 −0.398346 −0.199173 0.979964i \(-0.563826\pi\)
−0.199173 + 0.979964i \(0.563826\pi\)
\(908\) 1.89975e7 0.764683
\(909\) −2.90733e7 −1.16704
\(910\) 0 0
\(911\) 1.49818e7 0.598092 0.299046 0.954239i \(-0.403332\pi\)
0.299046 + 0.954239i \(0.403332\pi\)
\(912\) 6.78842e6 0.270260
\(913\) 1.06305e7 0.422063
\(914\) 4.08259e7 1.61648
\(915\) 0 0
\(916\) −9.88111e6 −0.389105
\(917\) −923311. −0.0362598
\(918\) 4.32451e7 1.69368
\(919\) −3.28227e7 −1.28199 −0.640997 0.767543i \(-0.721479\pi\)
−0.640997 + 0.767543i \(0.721479\pi\)
\(920\) 0 0
\(921\) 2.95357e7 1.14735
\(922\) 4.90023e7 1.89841
\(923\) −2.02543e6 −0.0782550
\(924\) −5.58472e6 −0.215190
\(925\) 0 0
\(926\) 5.87592e7 2.25190
\(927\) 4.52065e7 1.72783
\(928\) −6.08167e6 −0.231821
\(929\) 2.17184e7 0.825635 0.412818 0.910814i \(-0.364545\pi\)
0.412818 + 0.910814i \(0.364545\pi\)
\(930\) 0 0
\(931\) 9.37629e6 0.354533
\(932\) 6.60964e7 2.49252
\(933\) −5.18501e7 −1.95005
\(934\) −2.24963e7 −0.843810
\(935\) 0 0
\(936\) 8.27421e6 0.308700
\(937\) 2.19377e7 0.816286 0.408143 0.912918i \(-0.366176\pi\)
0.408143 + 0.912918i \(0.366176\pi\)
\(938\) −622515. −0.0231016
\(939\) −6.51390e7 −2.41089
\(940\) 0 0
\(941\) −3.70200e7 −1.36289 −0.681447 0.731867i \(-0.738649\pi\)
−0.681447 + 0.731867i \(0.738649\pi\)
\(942\) 2.38066e7 0.874119
\(943\) −4.52185e7 −1.65591
\(944\) 1.93136e7 0.705395
\(945\) 0 0
\(946\) 1.08425e8 3.93914
\(947\) 2.28075e7 0.826422 0.413211 0.910635i \(-0.364407\pi\)
0.413211 + 0.910635i \(0.364407\pi\)
\(948\) −8.15899e7 −2.94860
\(949\) 9.99535e6 0.360274
\(950\) 0 0
\(951\) −2.50045e7 −0.896535
\(952\) −833302. −0.0297996
\(953\) −1.14558e7 −0.408595 −0.204298 0.978909i \(-0.565491\pi\)
−0.204298 + 0.978909i \(0.565491\pi\)
\(954\) −7.65917e7 −2.72465
\(955\) 0 0
\(956\) −3.11647e7 −1.10285
\(957\) 1.24615e7 0.439836
\(958\) 1.09133e7 0.384188
\(959\) −2.41368e6 −0.0847487
\(960\) 0 0
\(961\) −8.27991e6 −0.289213
\(962\) −1.35234e7 −0.471139
\(963\) −7.97210e7 −2.77017
\(964\) −1.63729e7 −0.567456
\(965\) 0 0
\(966\) 5.49909e6 0.189604
\(967\) −2.44915e7 −0.842265 −0.421132 0.906999i \(-0.638367\pi\)
−0.421132 + 0.906999i \(0.638367\pi\)
\(968\) 2.08762e7 0.716084
\(969\) −1.37544e7 −0.470578
\(970\) 0 0
\(971\) −1.10404e6 −0.0375783 −0.0187891 0.999823i \(-0.505981\pi\)
−0.0187891 + 0.999823i \(0.505981\pi\)
\(972\) −2.17062e7 −0.736917
\(973\) 1.19867e6 0.0405900
\(974\) 7.79378e7 2.63239
\(975\) 0 0
\(976\) −1.92016e7 −0.645226
\(977\) 2.44544e7 0.819636 0.409818 0.912167i \(-0.365592\pi\)
0.409818 + 0.912167i \(0.365592\pi\)
\(978\) 1.19381e8 3.99106
\(979\) −6.53749e7 −2.17999
\(980\) 0 0
\(981\) −1.81462e7 −0.602022
\(982\) −4.35312e7 −1.44053
\(983\) −7.78582e6 −0.256993 −0.128496 0.991710i \(-0.541015\pi\)
−0.128496 + 0.991710i \(0.541015\pi\)
\(984\) 4.39881e7 1.44826
\(985\) 0 0
\(986\) 6.58391e6 0.215671
\(987\) −4.23153e6 −0.138263
\(988\) −4.22076e6 −0.137562
\(989\) −6.21584e7 −2.02073
\(990\) 0 0
\(991\) 7.12590e6 0.230492 0.115246 0.993337i \(-0.463234\pi\)
0.115246 + 0.993337i \(0.463234\pi\)
\(992\) 3.41652e7 1.10231
\(993\) 563805. 0.0181450
\(994\) 846436. 0.0271724
\(995\) 0 0
\(996\) 2.09921e7 0.670514
\(997\) −4.38741e7 −1.39788 −0.698940 0.715180i \(-0.746345\pi\)
−0.698940 + 0.715180i \(0.746345\pi\)
\(998\) −3.01346e7 −0.957722
\(999\) −4.82247e7 −1.52882
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.e.1.3 4
5.2 odd 4 325.6.b.e.274.7 8
5.3 odd 4 325.6.b.e.274.2 8
5.4 even 2 65.6.a.c.1.2 4
15.14 odd 2 585.6.a.g.1.3 4
20.19 odd 2 1040.6.a.o.1.4 4
65.64 even 2 845.6.a.f.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.c.1.2 4 5.4 even 2
325.6.a.e.1.3 4 1.1 even 1 trivial
325.6.b.e.274.2 8 5.3 odd 4
325.6.b.e.274.7 8 5.2 odd 4
585.6.a.g.1.3 4 15.14 odd 2
845.6.a.f.1.3 4 65.64 even 2
1040.6.a.o.1.4 4 20.19 odd 2