Properties

Label 325.6.a.i.1.7
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-6.50844\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.50844 q^{2} +17.3551 q^{3} +24.3767 q^{4} +130.310 q^{6} -149.455 q^{7} -57.2388 q^{8} +58.2000 q^{9} -492.989 q^{11} +423.061 q^{12} -169.000 q^{13} -1122.18 q^{14} -1209.83 q^{16} +1824.24 q^{17} +436.991 q^{18} +424.035 q^{19} -2593.81 q^{21} -3701.58 q^{22} -3660.46 q^{23} -993.387 q^{24} -1268.93 q^{26} -3207.23 q^{27} -3643.23 q^{28} -8193.74 q^{29} +8113.24 q^{31} -7252.30 q^{32} -8555.87 q^{33} +13697.2 q^{34} +1418.73 q^{36} -6297.67 q^{37} +3183.84 q^{38} -2933.01 q^{39} +4298.36 q^{41} -19475.5 q^{42} +5822.12 q^{43} -12017.5 q^{44} -27484.4 q^{46} -8502.70 q^{47} -20996.7 q^{48} +5529.90 q^{49} +31660.0 q^{51} -4119.67 q^{52} +7049.74 q^{53} -24081.3 q^{54} +8554.65 q^{56} +7359.17 q^{57} -61522.2 q^{58} -21509.2 q^{59} +35743.1 q^{61} +60917.8 q^{62} -8698.30 q^{63} -15738.9 q^{64} -64241.3 q^{66} +15239.3 q^{67} +44469.1 q^{68} -63527.7 q^{69} +69104.1 q^{71} -3331.30 q^{72} -4134.60 q^{73} -47285.7 q^{74} +10336.6 q^{76} +73679.8 q^{77} -22022.4 q^{78} -16065.3 q^{79} -69804.4 q^{81} +32274.0 q^{82} -115739. q^{83} -63228.7 q^{84} +43715.0 q^{86} -142203. q^{87} +28218.1 q^{88} -35250.6 q^{89} +25258.0 q^{91} -89230.1 q^{92} +140806. q^{93} -63842.1 q^{94} -125864. q^{96} +32169.5 q^{97} +41520.9 q^{98} -28691.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{3} + 91 q^{4} - 83 q^{6} - 12 q^{7} + 639 q^{8} + 562 q^{9} - 1422 q^{11} - 1567 q^{12} - 1521 q^{13} - 342 q^{14} - 1061 q^{16} - 648 q^{17} - 418 q^{18} - 408 q^{19} - 3912 q^{21}+ \cdots - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.50844 1.32732 0.663659 0.748035i \(-0.269003\pi\)
0.663659 + 0.748035i \(0.269003\pi\)
\(3\) 17.3551 1.11333 0.556666 0.830737i \(-0.312081\pi\)
0.556666 + 0.830737i \(0.312081\pi\)
\(4\) 24.3767 0.761773
\(5\) 0 0
\(6\) 130.310 1.47774
\(7\) −149.455 −1.15283 −0.576416 0.817156i \(-0.695549\pi\)
−0.576416 + 0.817156i \(0.695549\pi\)
\(8\) −57.2388 −0.316203
\(9\) 58.2000 0.239506
\(10\) 0 0
\(11\) −492.989 −1.22844 −0.614222 0.789133i \(-0.710530\pi\)
−0.614222 + 0.789133i \(0.710530\pi\)
\(12\) 423.061 0.848106
\(13\) −169.000 −0.277350
\(14\) −1122.18 −1.53018
\(15\) 0 0
\(16\) −1209.83 −1.18147
\(17\) 1824.24 1.53095 0.765475 0.643466i \(-0.222504\pi\)
0.765475 + 0.643466i \(0.222504\pi\)
\(18\) 436.991 0.317901
\(19\) 424.035 0.269474 0.134737 0.990881i \(-0.456981\pi\)
0.134737 + 0.990881i \(0.456981\pi\)
\(20\) 0 0
\(21\) −2593.81 −1.28348
\(22\) −3701.58 −1.63054
\(23\) −3660.46 −1.44283 −0.721417 0.692501i \(-0.756509\pi\)
−0.721417 + 0.692501i \(0.756509\pi\)
\(24\) −993.387 −0.352039
\(25\) 0 0
\(26\) −1268.93 −0.368132
\(27\) −3207.23 −0.846682
\(28\) −3643.23 −0.878197
\(29\) −8193.74 −1.80920 −0.904601 0.426259i \(-0.859831\pi\)
−0.904601 + 0.426259i \(0.859831\pi\)
\(30\) 0 0
\(31\) 8113.24 1.51632 0.758158 0.652070i \(-0.226099\pi\)
0.758158 + 0.652070i \(0.226099\pi\)
\(32\) −7252.30 −1.25199
\(33\) −8555.87 −1.36766
\(34\) 13697.2 2.03206
\(35\) 0 0
\(36\) 1418.73 0.182449
\(37\) −6297.67 −0.756268 −0.378134 0.925751i \(-0.623434\pi\)
−0.378134 + 0.925751i \(0.623434\pi\)
\(38\) 3183.84 0.357678
\(39\) −2933.01 −0.308782
\(40\) 0 0
\(41\) 4298.36 0.399341 0.199670 0.979863i \(-0.436013\pi\)
0.199670 + 0.979863i \(0.436013\pi\)
\(42\) −19475.5 −1.70359
\(43\) 5822.12 0.480186 0.240093 0.970750i \(-0.422822\pi\)
0.240093 + 0.970750i \(0.422822\pi\)
\(44\) −12017.5 −0.935795
\(45\) 0 0
\(46\) −27484.4 −1.91510
\(47\) −8502.70 −0.561452 −0.280726 0.959788i \(-0.590575\pi\)
−0.280726 + 0.959788i \(0.590575\pi\)
\(48\) −20996.7 −1.31537
\(49\) 5529.90 0.329023
\(50\) 0 0
\(51\) 31660.0 1.70445
\(52\) −4119.67 −0.211278
\(53\) 7049.74 0.344733 0.172367 0.985033i \(-0.444859\pi\)
0.172367 + 0.985033i \(0.444859\pi\)
\(54\) −24081.3 −1.12382
\(55\) 0 0
\(56\) 8554.65 0.364529
\(57\) 7359.17 0.300014
\(58\) −61522.2 −2.40139
\(59\) −21509.2 −0.804440 −0.402220 0.915543i \(-0.631761\pi\)
−0.402220 + 0.915543i \(0.631761\pi\)
\(60\) 0 0
\(61\) 35743.1 1.22989 0.614947 0.788568i \(-0.289177\pi\)
0.614947 + 0.788568i \(0.289177\pi\)
\(62\) 60917.8 2.01263
\(63\) −8698.30 −0.276110
\(64\) −15738.9 −0.480314
\(65\) 0 0
\(66\) −64241.3 −1.81533
\(67\) 15239.3 0.414742 0.207371 0.978262i \(-0.433509\pi\)
0.207371 + 0.978262i \(0.433509\pi\)
\(68\) 44469.1 1.16624
\(69\) −63527.7 −1.60635
\(70\) 0 0
\(71\) 69104.1 1.62689 0.813444 0.581643i \(-0.197590\pi\)
0.813444 + 0.581643i \(0.197590\pi\)
\(72\) −3331.30 −0.0757325
\(73\) −4134.60 −0.0908085 −0.0454043 0.998969i \(-0.514458\pi\)
−0.0454043 + 0.998969i \(0.514458\pi\)
\(74\) −47285.7 −1.00381
\(75\) 0 0
\(76\) 10336.6 0.205278
\(77\) 73679.8 1.41619
\(78\) −22022.4 −0.409853
\(79\) −16065.3 −0.289615 −0.144808 0.989460i \(-0.546256\pi\)
−0.144808 + 0.989460i \(0.546256\pi\)
\(80\) 0 0
\(81\) −69804.4 −1.18214
\(82\) 32274.0 0.530052
\(83\) −115739. −1.84409 −0.922047 0.387079i \(-0.873484\pi\)
−0.922047 + 0.387079i \(0.873484\pi\)
\(84\) −63228.7 −0.977724
\(85\) 0 0
\(86\) 43715.0 0.637360
\(87\) −142203. −2.01424
\(88\) 28218.1 0.388438
\(89\) −35250.6 −0.471728 −0.235864 0.971786i \(-0.575792\pi\)
−0.235864 + 0.971786i \(0.575792\pi\)
\(90\) 0 0
\(91\) 25258.0 0.319738
\(92\) −89230.1 −1.09911
\(93\) 140806. 1.68816
\(94\) −63842.1 −0.745225
\(95\) 0 0
\(96\) −125864. −1.39388
\(97\) 32169.5 0.347148 0.173574 0.984821i \(-0.444468\pi\)
0.173574 + 0.984821i \(0.444468\pi\)
\(98\) 41520.9 0.436719
\(99\) −28691.9 −0.294220
\(100\) 0 0
\(101\) −38266.9 −0.373267 −0.186634 0.982430i \(-0.559758\pi\)
−0.186634 + 0.982430i \(0.559758\pi\)
\(102\) 237717. 2.26235
\(103\) 52058.1 0.483499 0.241750 0.970339i \(-0.422279\pi\)
0.241750 + 0.970339i \(0.422279\pi\)
\(104\) 9673.37 0.0876989
\(105\) 0 0
\(106\) 52932.6 0.457571
\(107\) 121233. 1.02367 0.511836 0.859083i \(-0.328966\pi\)
0.511836 + 0.859083i \(0.328966\pi\)
\(108\) −78181.7 −0.644979
\(109\) 140412. 1.13198 0.565989 0.824413i \(-0.308494\pi\)
0.565989 + 0.824413i \(0.308494\pi\)
\(110\) 0 0
\(111\) −109297. −0.841977
\(112\) 180816. 1.36204
\(113\) 8725.69 0.0642841 0.0321421 0.999483i \(-0.489767\pi\)
0.0321421 + 0.999483i \(0.489767\pi\)
\(114\) 55255.9 0.398214
\(115\) 0 0
\(116\) −199737. −1.37820
\(117\) −9835.80 −0.0664270
\(118\) −161500. −1.06775
\(119\) −272643. −1.76493
\(120\) 0 0
\(121\) 81986.8 0.509074
\(122\) 268375. 1.63246
\(123\) 74598.6 0.444598
\(124\) 197774. 1.15509
\(125\) 0 0
\(126\) −65310.7 −0.366486
\(127\) −125413. −0.689974 −0.344987 0.938607i \(-0.612117\pi\)
−0.344987 + 0.938607i \(0.612117\pi\)
\(128\) 113899. 0.614461
\(129\) 101044. 0.534606
\(130\) 0 0
\(131\) −392187. −1.99671 −0.998354 0.0573546i \(-0.981733\pi\)
−0.998354 + 0.0573546i \(0.981733\pi\)
\(132\) −208564. −1.04185
\(133\) −63374.3 −0.310659
\(134\) 114423. 0.550494
\(135\) 0 0
\(136\) −104418. −0.484091
\(137\) 10040.7 0.0457051 0.0228525 0.999739i \(-0.492725\pi\)
0.0228525 + 0.999739i \(0.492725\pi\)
\(138\) −476994. −2.13214
\(139\) −413226. −1.81406 −0.907028 0.421071i \(-0.861654\pi\)
−0.907028 + 0.421071i \(0.861654\pi\)
\(140\) 0 0
\(141\) −147565. −0.625081
\(142\) 518864. 2.15940
\(143\) 83315.1 0.340709
\(144\) −70412.1 −0.282970
\(145\) 0 0
\(146\) −31044.4 −0.120532
\(147\) 95972.0 0.366312
\(148\) −153517. −0.576105
\(149\) 111303. 0.410716 0.205358 0.978687i \(-0.434164\pi\)
0.205358 + 0.978687i \(0.434164\pi\)
\(150\) 0 0
\(151\) 329006. 1.17425 0.587127 0.809495i \(-0.300259\pi\)
0.587127 + 0.809495i \(0.300259\pi\)
\(152\) −24271.3 −0.0852086
\(153\) 106171. 0.366672
\(154\) 553221. 1.87973
\(155\) 0 0
\(156\) −71497.3 −0.235222
\(157\) 324164. 1.04958 0.524790 0.851232i \(-0.324144\pi\)
0.524790 + 0.851232i \(0.324144\pi\)
\(158\) −120626. −0.384412
\(159\) 122349. 0.383803
\(160\) 0 0
\(161\) 547076. 1.66335
\(162\) −524122. −1.56908
\(163\) −471803. −1.39089 −0.695443 0.718581i \(-0.744792\pi\)
−0.695443 + 0.718581i \(0.744792\pi\)
\(164\) 104780. 0.304207
\(165\) 0 0
\(166\) −869017. −2.44770
\(167\) 318786. 0.884522 0.442261 0.896886i \(-0.354177\pi\)
0.442261 + 0.896886i \(0.354177\pi\)
\(168\) 148467. 0.405842
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 24678.8 0.0645407
\(172\) 141924. 0.365793
\(173\) −340132. −0.864036 −0.432018 0.901865i \(-0.642198\pi\)
−0.432018 + 0.901865i \(0.642198\pi\)
\(174\) −1.06773e6 −2.67354
\(175\) 0 0
\(176\) 596433. 1.45138
\(177\) −373294. −0.895608
\(178\) −264677. −0.626134
\(179\) −749176. −1.74764 −0.873819 0.486251i \(-0.838364\pi\)
−0.873819 + 0.486251i \(0.838364\pi\)
\(180\) 0 0
\(181\) −496170. −1.12573 −0.562865 0.826549i \(-0.690301\pi\)
−0.562865 + 0.826549i \(0.690301\pi\)
\(182\) 189648. 0.424394
\(183\) 620326. 1.36928
\(184\) 209521. 0.456228
\(185\) 0 0
\(186\) 1.05724e6 2.24073
\(187\) −899332. −1.88068
\(188\) −207268. −0.427699
\(189\) 479337. 0.976082
\(190\) 0 0
\(191\) 784516. 1.55603 0.778015 0.628245i \(-0.216227\pi\)
0.778015 + 0.628245i \(0.216227\pi\)
\(192\) −273151. −0.534748
\(193\) 394155. 0.761683 0.380842 0.924640i \(-0.375634\pi\)
0.380842 + 0.924640i \(0.375634\pi\)
\(194\) 241543. 0.460776
\(195\) 0 0
\(196\) 134801. 0.250641
\(197\) −913374. −1.67681 −0.838403 0.545051i \(-0.816510\pi\)
−0.838403 + 0.545051i \(0.816510\pi\)
\(198\) −215432. −0.390523
\(199\) −340138. −0.608866 −0.304433 0.952534i \(-0.598467\pi\)
−0.304433 + 0.952534i \(0.598467\pi\)
\(200\) 0 0
\(201\) 264480. 0.461745
\(202\) −287325. −0.495444
\(203\) 1.22460e6 2.08571
\(204\) 771767. 1.29841
\(205\) 0 0
\(206\) 390876. 0.641757
\(207\) −213039. −0.345567
\(208\) 204461. 0.327682
\(209\) −209044. −0.331034
\(210\) 0 0
\(211\) −582499. −0.900719 −0.450360 0.892847i \(-0.648704\pi\)
−0.450360 + 0.892847i \(0.648704\pi\)
\(212\) 171850. 0.262609
\(213\) 1.19931e6 1.81127
\(214\) 910269. 1.35874
\(215\) 0 0
\(216\) 183578. 0.267723
\(217\) −1.21257e6 −1.74806
\(218\) 1.05428e6 1.50249
\(219\) −71756.5 −0.101100
\(220\) 0 0
\(221\) −308297. −0.424609
\(222\) −820649. −1.11757
\(223\) 580068. 0.781119 0.390559 0.920578i \(-0.372282\pi\)
0.390559 + 0.920578i \(0.372282\pi\)
\(224\) 1.08389e6 1.44333
\(225\) 0 0
\(226\) 65516.4 0.0853255
\(227\) 833624. 1.07376 0.536878 0.843660i \(-0.319604\pi\)
0.536878 + 0.843660i \(0.319604\pi\)
\(228\) 179393. 0.228543
\(229\) −10222.2 −0.0128811 −0.00644057 0.999979i \(-0.502050\pi\)
−0.00644057 + 0.999979i \(0.502050\pi\)
\(230\) 0 0
\(231\) 1.27872e6 1.57669
\(232\) 469000. 0.572075
\(233\) −932235. −1.12496 −0.562478 0.826812i \(-0.690152\pi\)
−0.562478 + 0.826812i \(0.690152\pi\)
\(234\) −73851.5 −0.0881698
\(235\) 0 0
\(236\) −524324. −0.612801
\(237\) −278815. −0.322438
\(238\) −2.04713e6 −2.34262
\(239\) −1.35733e6 −1.53706 −0.768530 0.639814i \(-0.779012\pi\)
−0.768530 + 0.639814i \(0.779012\pi\)
\(240\) 0 0
\(241\) 59546.1 0.0660406 0.0330203 0.999455i \(-0.489487\pi\)
0.0330203 + 0.999455i \(0.489487\pi\)
\(242\) 615594. 0.675703
\(243\) −432107. −0.469435
\(244\) 871301. 0.936901
\(245\) 0 0
\(246\) 560119. 0.590123
\(247\) −71661.9 −0.0747387
\(248\) −464392. −0.479464
\(249\) −2.00866e6 −2.05309
\(250\) 0 0
\(251\) −1.20903e6 −1.21130 −0.605651 0.795731i \(-0.707087\pi\)
−0.605651 + 0.795731i \(0.707087\pi\)
\(252\) −212036. −0.210333
\(253\) 1.80457e6 1.77244
\(254\) −941656. −0.915815
\(255\) 0 0
\(256\) 1.35885e6 1.29590
\(257\) 1.91933e6 1.81266 0.906329 0.422573i \(-0.138873\pi\)
0.906329 + 0.422573i \(0.138873\pi\)
\(258\) 758679. 0.709593
\(259\) 941221. 0.871851
\(260\) 0 0
\(261\) −476875. −0.433315
\(262\) −2.94471e6 −2.65027
\(263\) 637187. 0.568038 0.284019 0.958819i \(-0.408332\pi\)
0.284019 + 0.958819i \(0.408332\pi\)
\(264\) 489728. 0.432460
\(265\) 0 0
\(266\) −475842. −0.412343
\(267\) −611779. −0.525190
\(268\) 371484. 0.315939
\(269\) 250073. 0.210711 0.105355 0.994435i \(-0.466402\pi\)
0.105355 + 0.994435i \(0.466402\pi\)
\(270\) 0 0
\(271\) 994132. 0.822282 0.411141 0.911572i \(-0.365130\pi\)
0.411141 + 0.911572i \(0.365130\pi\)
\(272\) −2.20703e6 −1.80878
\(273\) 438355. 0.355975
\(274\) 75390.4 0.0606652
\(275\) 0 0
\(276\) −1.54860e6 −1.22368
\(277\) 1.80516e6 1.41356 0.706782 0.707432i \(-0.250146\pi\)
0.706782 + 0.707432i \(0.250146\pi\)
\(278\) −3.10268e6 −2.40783
\(279\) 472190. 0.363167
\(280\) 0 0
\(281\) −349545. −0.264081 −0.132040 0.991244i \(-0.542153\pi\)
−0.132040 + 0.991244i \(0.542153\pi\)
\(282\) −1.10799e6 −0.829682
\(283\) −204139. −0.151516 −0.0757582 0.997126i \(-0.524138\pi\)
−0.0757582 + 0.997126i \(0.524138\pi\)
\(284\) 1.68453e6 1.23932
\(285\) 0 0
\(286\) 625567. 0.452229
\(287\) −642413. −0.460373
\(288\) −422084. −0.299859
\(289\) 1.90801e6 1.34381
\(290\) 0 0
\(291\) 558305. 0.386491
\(292\) −100788. −0.0691755
\(293\) 78795.6 0.0536207 0.0268104 0.999641i \(-0.491465\pi\)
0.0268104 + 0.999641i \(0.491465\pi\)
\(294\) 720600. 0.486212
\(295\) 0 0
\(296\) 360471. 0.239134
\(297\) 1.58113e6 1.04010
\(298\) 835713. 0.545150
\(299\) 618618. 0.400170
\(300\) 0 0
\(301\) −870146. −0.553575
\(302\) 2.47033e6 1.55861
\(303\) −664126. −0.415570
\(304\) −513010. −0.318377
\(305\) 0 0
\(306\) 797179. 0.486690
\(307\) −2.05653e6 −1.24534 −0.622672 0.782483i \(-0.713953\pi\)
−0.622672 + 0.782483i \(0.713953\pi\)
\(308\) 1.79607e6 1.07882
\(309\) 903475. 0.538295
\(310\) 0 0
\(311\) −3119.84 −0.00182908 −0.000914538 1.00000i \(-0.500291\pi\)
−0.000914538 1.00000i \(0.500291\pi\)
\(312\) 167882. 0.0976379
\(313\) −984315. −0.567902 −0.283951 0.958839i \(-0.591645\pi\)
−0.283951 + 0.958839i \(0.591645\pi\)
\(314\) 2.43397e6 1.39313
\(315\) 0 0
\(316\) −391620. −0.220621
\(317\) 1.90110e6 1.06257 0.531283 0.847194i \(-0.321710\pi\)
0.531283 + 0.847194i \(0.321710\pi\)
\(318\) 918651. 0.509428
\(319\) 4.03942e6 2.22250
\(320\) 0 0
\(321\) 2.10401e6 1.13969
\(322\) 4.10769e6 2.20779
\(323\) 773543. 0.412552
\(324\) −1.70160e6 −0.900525
\(325\) 0 0
\(326\) −3.54251e6 −1.84615
\(327\) 2.43687e6 1.26027
\(328\) −246033. −0.126273
\(329\) 1.27077e6 0.647260
\(330\) 0 0
\(331\) −1.74888e6 −0.877386 −0.438693 0.898637i \(-0.644558\pi\)
−0.438693 + 0.898637i \(0.644558\pi\)
\(332\) −2.82133e6 −1.40478
\(333\) −366524. −0.181131
\(334\) 2.39359e6 1.17404
\(335\) 0 0
\(336\) 3.13808e6 1.51640
\(337\) 1.09525e6 0.525338 0.262669 0.964886i \(-0.415397\pi\)
0.262669 + 0.964886i \(0.415397\pi\)
\(338\) 214449. 0.102101
\(339\) 151435. 0.0715695
\(340\) 0 0
\(341\) −3.99973e6 −1.86271
\(342\) 185300. 0.0856661
\(343\) 1.68542e6 0.773524
\(344\) −333251. −0.151836
\(345\) 0 0
\(346\) −2.55386e6 −1.14685
\(347\) 1.99055e6 0.887461 0.443730 0.896160i \(-0.353655\pi\)
0.443730 + 0.896160i \(0.353655\pi\)
\(348\) −3.46645e6 −1.53439
\(349\) −846086. −0.371835 −0.185918 0.982565i \(-0.559526\pi\)
−0.185918 + 0.982565i \(0.559526\pi\)
\(350\) 0 0
\(351\) 542021. 0.234827
\(352\) 3.57530e6 1.53800
\(353\) 2.61806e6 1.11826 0.559131 0.829079i \(-0.311135\pi\)
0.559131 + 0.829079i \(0.311135\pi\)
\(354\) −2.80286e6 −1.18876
\(355\) 0 0
\(356\) −859296. −0.359350
\(357\) −4.73175e6 −1.96495
\(358\) −5.62515e6 −2.31967
\(359\) −1.63224e6 −0.668418 −0.334209 0.942499i \(-0.608469\pi\)
−0.334209 + 0.942499i \(0.608469\pi\)
\(360\) 0 0
\(361\) −2.29629e6 −0.927384
\(362\) −3.72546e6 −1.49420
\(363\) 1.42289e6 0.566768
\(364\) 615706. 0.243568
\(365\) 0 0
\(366\) 4.65768e6 1.81747
\(367\) −3.09644e6 −1.20005 −0.600023 0.799983i \(-0.704842\pi\)
−0.600023 + 0.799983i \(0.704842\pi\)
\(368\) 4.42854e6 1.70467
\(369\) 250165. 0.0956445
\(370\) 0 0
\(371\) −1.05362e6 −0.397420
\(372\) 3.43239e6 1.28600
\(373\) −2.44663e6 −0.910533 −0.455266 0.890355i \(-0.650456\pi\)
−0.455266 + 0.890355i \(0.650456\pi\)
\(374\) −6.75258e6 −2.49627
\(375\) 0 0
\(376\) 486685. 0.177533
\(377\) 1.38474e6 0.501782
\(378\) 3.59907e6 1.29557
\(379\) −4.31307e6 −1.54237 −0.771184 0.636612i \(-0.780335\pi\)
−0.771184 + 0.636612i \(0.780335\pi\)
\(380\) 0 0
\(381\) −2.17656e6 −0.768170
\(382\) 5.89049e6 2.06535
\(383\) 4.18340e6 1.45724 0.728622 0.684916i \(-0.240161\pi\)
0.728622 + 0.684916i \(0.240161\pi\)
\(384\) 1.97673e6 0.684098
\(385\) 0 0
\(386\) 2.95949e6 1.01100
\(387\) 338847. 0.115008
\(388\) 784187. 0.264448
\(389\) −3.01512e6 −1.01025 −0.505126 0.863045i \(-0.668554\pi\)
−0.505126 + 0.863045i \(0.668554\pi\)
\(390\) 0 0
\(391\) −6.67758e6 −2.20891
\(392\) −316525. −0.104038
\(393\) −6.80644e6 −2.22300
\(394\) −6.85801e6 −2.22566
\(395\) 0 0
\(396\) −699416. −0.224129
\(397\) −183544. −0.0584471 −0.0292236 0.999573i \(-0.509303\pi\)
−0.0292236 + 0.999573i \(0.509303\pi\)
\(398\) −2.55390e6 −0.808159
\(399\) −1.09987e6 −0.345866
\(400\) 0 0
\(401\) −3.10417e6 −0.964015 −0.482008 0.876167i \(-0.660092\pi\)
−0.482008 + 0.876167i \(0.660092\pi\)
\(402\) 1.98583e6 0.612882
\(403\) −1.37114e6 −0.420551
\(404\) −932822. −0.284345
\(405\) 0 0
\(406\) 9.19483e6 2.76840
\(407\) 3.10468e6 0.929033
\(408\) −1.81218e6 −0.538953
\(409\) 2.45114e6 0.724535 0.362268 0.932074i \(-0.382003\pi\)
0.362268 + 0.932074i \(0.382003\pi\)
\(410\) 0 0
\(411\) 174258. 0.0508849
\(412\) 1.26901e6 0.368317
\(413\) 3.21466e6 0.927385
\(414\) −1.59959e6 −0.458678
\(415\) 0 0
\(416\) 1.22564e6 0.347240
\(417\) −7.17158e6 −2.01964
\(418\) −1.56960e6 −0.439387
\(419\) −1.38177e6 −0.384503 −0.192251 0.981346i \(-0.561579\pi\)
−0.192251 + 0.981346i \(0.561579\pi\)
\(420\) 0 0
\(421\) −4.38636e6 −1.20614 −0.603071 0.797687i \(-0.706057\pi\)
−0.603071 + 0.797687i \(0.706057\pi\)
\(422\) −4.37366e6 −1.19554
\(423\) −494857. −0.134471
\(424\) −403519. −0.109006
\(425\) 0 0
\(426\) 9.00495e6 2.40413
\(427\) −5.34200e6 −1.41786
\(428\) 2.95526e6 0.779805
\(429\) 1.44594e6 0.379322
\(430\) 0 0
\(431\) 1.36275e6 0.353365 0.176682 0.984268i \(-0.443463\pi\)
0.176682 + 0.984268i \(0.443463\pi\)
\(432\) 3.88020e6 1.00033
\(433\) −5.59344e6 −1.43370 −0.716851 0.697226i \(-0.754417\pi\)
−0.716851 + 0.697226i \(0.754417\pi\)
\(434\) −9.10449e6 −2.32023
\(435\) 0 0
\(436\) 3.42279e6 0.862310
\(437\) −1.55216e6 −0.388807
\(438\) −538780. −0.134192
\(439\) −4.86469e6 −1.20474 −0.602371 0.798216i \(-0.705777\pi\)
−0.602371 + 0.798216i \(0.705777\pi\)
\(440\) 0 0
\(441\) 321840. 0.0788031
\(442\) −2.31483e6 −0.563591
\(443\) −4.59200e6 −1.11171 −0.555857 0.831278i \(-0.687610\pi\)
−0.555857 + 0.831278i \(0.687610\pi\)
\(444\) −2.66430e6 −0.641395
\(445\) 0 0
\(446\) 4.35541e6 1.03679
\(447\) 1.93168e6 0.457263
\(448\) 2.35227e6 0.553722
\(449\) −351998. −0.0823994 −0.0411997 0.999151i \(-0.513118\pi\)
−0.0411997 + 0.999151i \(0.513118\pi\)
\(450\) 0 0
\(451\) −2.11904e6 −0.490567
\(452\) 212704. 0.0489699
\(453\) 5.70994e6 1.30733
\(454\) 6.25922e6 1.42521
\(455\) 0 0
\(456\) −421231. −0.0948654
\(457\) 546819. 0.122477 0.0612383 0.998123i \(-0.480495\pi\)
0.0612383 + 0.998123i \(0.480495\pi\)
\(458\) −76752.6 −0.0170974
\(459\) −5.85076e6 −1.29623
\(460\) 0 0
\(461\) −6.35474e6 −1.39266 −0.696331 0.717721i \(-0.745185\pi\)
−0.696331 + 0.717721i \(0.745185\pi\)
\(462\) 9.60121e6 2.09277
\(463\) 2.90818e6 0.630476 0.315238 0.949013i \(-0.397916\pi\)
0.315238 + 0.949013i \(0.397916\pi\)
\(464\) 9.91303e6 2.13753
\(465\) 0 0
\(466\) −6.99963e6 −1.49317
\(467\) −3.33677e6 −0.708002 −0.354001 0.935245i \(-0.615179\pi\)
−0.354001 + 0.935245i \(0.615179\pi\)
\(468\) −239765. −0.0506023
\(469\) −2.27759e6 −0.478128
\(470\) 0 0
\(471\) 5.62590e6 1.16853
\(472\) 1.23116e6 0.254366
\(473\) −2.87024e6 −0.589882
\(474\) −2.09347e6 −0.427978
\(475\) 0 0
\(476\) −6.64615e6 −1.34447
\(477\) 410295. 0.0825658
\(478\) −1.01914e7 −2.04017
\(479\) 1.93937e6 0.386208 0.193104 0.981178i \(-0.438144\pi\)
0.193104 + 0.981178i \(0.438144\pi\)
\(480\) 0 0
\(481\) 1.06431e6 0.209751
\(482\) 447099. 0.0876568
\(483\) 9.49456e6 1.85185
\(484\) 1.99857e6 0.387799
\(485\) 0 0
\(486\) −3.24445e6 −0.623089
\(487\) −5.88271e6 −1.12397 −0.561985 0.827147i \(-0.689962\pi\)
−0.561985 + 0.827147i \(0.689962\pi\)
\(488\) −2.04590e6 −0.388896
\(489\) −8.18820e6 −1.54852
\(490\) 0 0
\(491\) 8.39552e6 1.57161 0.785804 0.618476i \(-0.212250\pi\)
0.785804 + 0.618476i \(0.212250\pi\)
\(492\) 1.81847e6 0.338683
\(493\) −1.49474e7 −2.76980
\(494\) −538069. −0.0992021
\(495\) 0 0
\(496\) −9.81564e6 −1.79149
\(497\) −1.03280e7 −1.87553
\(498\) −1.50819e7 −2.72510
\(499\) 8.24513e6 1.48234 0.741168 0.671320i \(-0.234272\pi\)
0.741168 + 0.671320i \(0.234272\pi\)
\(500\) 0 0
\(501\) 5.53257e6 0.984766
\(502\) −9.07792e6 −1.60778
\(503\) 8.99706e6 1.58555 0.792776 0.609513i \(-0.208635\pi\)
0.792776 + 0.609513i \(0.208635\pi\)
\(504\) 497880. 0.0873069
\(505\) 0 0
\(506\) 1.35495e7 2.35259
\(507\) 495679. 0.0856409
\(508\) −3.05716e6 −0.525604
\(509\) 6.27444e6 1.07345 0.536723 0.843758i \(-0.319662\pi\)
0.536723 + 0.843758i \(0.319662\pi\)
\(510\) 0 0
\(511\) 617938. 0.104687
\(512\) 6.55808e6 1.10561
\(513\) −1.35998e6 −0.228159
\(514\) 1.44111e7 2.40597
\(515\) 0 0
\(516\) 2.46311e6 0.407249
\(517\) 4.19174e6 0.689712
\(518\) 7.06710e6 1.15722
\(519\) −5.90302e6 −0.961958
\(520\) 0 0
\(521\) −8.31964e6 −1.34280 −0.671398 0.741097i \(-0.734306\pi\)
−0.671398 + 0.741097i \(0.734306\pi\)
\(522\) −3.58059e6 −0.575147
\(523\) −8.50917e6 −1.36029 −0.680147 0.733076i \(-0.738084\pi\)
−0.680147 + 0.733076i \(0.738084\pi\)
\(524\) −9.56023e6 −1.52104
\(525\) 0 0
\(526\) 4.78428e6 0.753967
\(527\) 1.48005e7 2.32140
\(528\) 1.03512e7 1.61586
\(529\) 6.96264e6 1.08177
\(530\) 0 0
\(531\) −1.25183e6 −0.192668
\(532\) −1.54486e6 −0.236652
\(533\) −726423. −0.110757
\(534\) −4.59351e6 −0.697094
\(535\) 0 0
\(536\) −872280. −0.131143
\(537\) −1.30020e7 −1.94570
\(538\) 1.87766e6 0.279680
\(539\) −2.72618e6 −0.404187
\(540\) 0 0
\(541\) −1.15207e6 −0.169233 −0.0846164 0.996414i \(-0.526966\pi\)
−0.0846164 + 0.996414i \(0.526966\pi\)
\(542\) 7.46438e6 1.09143
\(543\) −8.61109e6 −1.25331
\(544\) −1.32300e7 −1.91673
\(545\) 0 0
\(546\) 3.29136e6 0.472491
\(547\) −943671. −0.134850 −0.0674252 0.997724i \(-0.521478\pi\)
−0.0674252 + 0.997724i \(0.521478\pi\)
\(548\) 244761. 0.0348169
\(549\) 2.08025e6 0.294567
\(550\) 0 0
\(551\) −3.47443e6 −0.487534
\(552\) 3.63625e6 0.507933
\(553\) 2.40105e6 0.333878
\(554\) 1.35539e7 1.87625
\(555\) 0 0
\(556\) −1.00731e7 −1.38190
\(557\) −1.19731e7 −1.63519 −0.817597 0.575791i \(-0.804694\pi\)
−0.817597 + 0.575791i \(0.804694\pi\)
\(558\) 3.54541e6 0.482038
\(559\) −983938. −0.133180
\(560\) 0 0
\(561\) −1.56080e7 −2.09382
\(562\) −2.62454e6 −0.350519
\(563\) −3.19566e6 −0.424903 −0.212452 0.977172i \(-0.568145\pi\)
−0.212452 + 0.977172i \(0.568145\pi\)
\(564\) −3.59716e6 −0.476170
\(565\) 0 0
\(566\) −1.53276e6 −0.201110
\(567\) 1.04326e7 1.36281
\(568\) −3.95544e6 −0.514427
\(569\) 3.18417e6 0.412303 0.206151 0.978520i \(-0.433906\pi\)
0.206151 + 0.978520i \(0.433906\pi\)
\(570\) 0 0
\(571\) −6.71439e6 −0.861820 −0.430910 0.902395i \(-0.641807\pi\)
−0.430910 + 0.902395i \(0.641807\pi\)
\(572\) 2.03095e6 0.259543
\(573\) 1.36154e7 1.73238
\(574\) −4.82352e6 −0.611061
\(575\) 0 0
\(576\) −916005. −0.115038
\(577\) 4.75161e6 0.594157 0.297078 0.954853i \(-0.403988\pi\)
0.297078 + 0.954853i \(0.403988\pi\)
\(578\) 1.43262e7 1.78366
\(579\) 6.84061e6 0.848005
\(580\) 0 0
\(581\) 1.72977e7 2.12593
\(582\) 4.19200e6 0.512996
\(583\) −3.47544e6 −0.423486
\(584\) 236660. 0.0287139
\(585\) 0 0
\(586\) 591632. 0.0711718
\(587\) −639190. −0.0765658 −0.0382829 0.999267i \(-0.512189\pi\)
−0.0382829 + 0.999267i \(0.512189\pi\)
\(588\) 2.33948e6 0.279047
\(589\) 3.44030e6 0.408609
\(590\) 0 0
\(591\) −1.58517e7 −1.86684
\(592\) 7.61911e6 0.893512
\(593\) 1.37403e6 0.160458 0.0802288 0.996776i \(-0.474435\pi\)
0.0802288 + 0.996776i \(0.474435\pi\)
\(594\) 1.18718e7 1.38054
\(595\) 0 0
\(596\) 2.71320e6 0.312872
\(597\) −5.90313e6 −0.677870
\(598\) 4.64486e6 0.531153
\(599\) −1.28982e7 −1.46880 −0.734401 0.678716i \(-0.762537\pi\)
−0.734401 + 0.678716i \(0.762537\pi\)
\(600\) 0 0
\(601\) 6.50916e6 0.735087 0.367543 0.930006i \(-0.380199\pi\)
0.367543 + 0.930006i \(0.380199\pi\)
\(602\) −6.53345e6 −0.734769
\(603\) 886926. 0.0993332
\(604\) 8.02010e6 0.894515
\(605\) 0 0
\(606\) −4.98655e6 −0.551593
\(607\) 6.58784e6 0.725724 0.362862 0.931843i \(-0.381800\pi\)
0.362862 + 0.931843i \(0.381800\pi\)
\(608\) −3.07523e6 −0.337379
\(609\) 2.12530e7 2.32208
\(610\) 0 0
\(611\) 1.43696e6 0.155719
\(612\) 2.58810e6 0.279321
\(613\) −6.83056e6 −0.734184 −0.367092 0.930185i \(-0.619647\pi\)
−0.367092 + 0.930185i \(0.619647\pi\)
\(614\) −1.54413e7 −1.65297
\(615\) 0 0
\(616\) −4.21735e6 −0.447803
\(617\) −5.07265e6 −0.536441 −0.268221 0.963357i \(-0.586436\pi\)
−0.268221 + 0.963357i \(0.586436\pi\)
\(618\) 6.78369e6 0.714488
\(619\) 2.32710e6 0.244112 0.122056 0.992523i \(-0.461051\pi\)
0.122056 + 0.992523i \(0.461051\pi\)
\(620\) 0 0
\(621\) 1.17399e7 1.22162
\(622\) −23425.2 −0.00242776
\(623\) 5.26840e6 0.543824
\(624\) 3.54845e6 0.364819
\(625\) 0 0
\(626\) −7.39067e6 −0.753786
\(627\) −3.62799e6 −0.368551
\(628\) 7.90206e6 0.799542
\(629\) −1.14885e7 −1.15781
\(630\) 0 0
\(631\) 1.62914e7 1.62886 0.814432 0.580259i \(-0.197049\pi\)
0.814432 + 0.580259i \(0.197049\pi\)
\(632\) 919560. 0.0915772
\(633\) −1.01093e7 −1.00280
\(634\) 1.42743e7 1.41036
\(635\) 0 0
\(636\) 2.98247e6 0.292370
\(637\) −934552. −0.0912547
\(638\) 3.03298e7 2.94997
\(639\) 4.02186e6 0.389650
\(640\) 0 0
\(641\) 9.20916e6 0.885268 0.442634 0.896702i \(-0.354044\pi\)
0.442634 + 0.896702i \(0.354044\pi\)
\(642\) 1.57978e7 1.51272
\(643\) 1.30502e7 1.24477 0.622387 0.782710i \(-0.286163\pi\)
0.622387 + 0.782710i \(0.286163\pi\)
\(644\) 1.33359e7 1.26709
\(645\) 0 0
\(646\) 5.80811e6 0.547587
\(647\) −4.14869e6 −0.389628 −0.194814 0.980840i \(-0.562410\pi\)
−0.194814 + 0.980840i \(0.562410\pi\)
\(648\) 3.99552e6 0.373797
\(649\) 1.06038e7 0.988210
\(650\) 0 0
\(651\) −2.10442e7 −1.94617
\(652\) −1.15010e7 −1.05954
\(653\) 1.41931e7 1.30255 0.651273 0.758844i \(-0.274235\pi\)
0.651273 + 0.758844i \(0.274235\pi\)
\(654\) 1.82971e7 1.67277
\(655\) 0 0
\(656\) −5.20029e6 −0.471811
\(657\) −240634. −0.0217492
\(658\) 9.54154e6 0.859120
\(659\) 7.37184e6 0.661245 0.330622 0.943763i \(-0.392741\pi\)
0.330622 + 0.943763i \(0.392741\pi\)
\(660\) 0 0
\(661\) 1.77538e7 1.58047 0.790235 0.612803i \(-0.209958\pi\)
0.790235 + 0.612803i \(0.209958\pi\)
\(662\) −1.31314e7 −1.16457
\(663\) −5.35054e6 −0.472730
\(664\) 6.62474e6 0.583108
\(665\) 0 0
\(666\) −2.75203e6 −0.240418
\(667\) 2.99929e7 2.61038
\(668\) 7.77097e6 0.673805
\(669\) 1.00672e7 0.869644
\(670\) 0 0
\(671\) −1.76210e7 −1.51086
\(672\) 1.88111e7 1.60691
\(673\) −274222. −0.0233381 −0.0116690 0.999932i \(-0.503714\pi\)
−0.0116690 + 0.999932i \(0.503714\pi\)
\(674\) 8.22363e6 0.697290
\(675\) 0 0
\(676\) 696224. 0.0585979
\(677\) −3.03927e6 −0.254857 −0.127429 0.991848i \(-0.540672\pi\)
−0.127429 + 0.991848i \(0.540672\pi\)
\(678\) 1.13704e6 0.0949955
\(679\) −4.80790e6 −0.400204
\(680\) 0 0
\(681\) 1.44676e7 1.19545
\(682\) −3.00318e7 −2.47241
\(683\) 1.26346e7 1.03636 0.518178 0.855273i \(-0.326610\pi\)
0.518178 + 0.855273i \(0.326610\pi\)
\(684\) 601589. 0.0491654
\(685\) 0 0
\(686\) 1.26549e7 1.02671
\(687\) −177407. −0.0143410
\(688\) −7.04377e6 −0.567328
\(689\) −1.19141e6 −0.0956119
\(690\) 0 0
\(691\) 1.53558e7 1.22343 0.611713 0.791080i \(-0.290481\pi\)
0.611713 + 0.791080i \(0.290481\pi\)
\(692\) −8.29130e6 −0.658199
\(693\) 4.28816e6 0.339186
\(694\) 1.49459e7 1.17794
\(695\) 0 0
\(696\) 8.13955e6 0.636909
\(697\) 7.84127e6 0.611370
\(698\) −6.35279e6 −0.493544
\(699\) −1.61790e7 −1.25245
\(700\) 0 0
\(701\) −2.13816e7 −1.64341 −0.821703 0.569916i \(-0.806976\pi\)
−0.821703 + 0.569916i \(0.806976\pi\)
\(702\) 4.06974e6 0.311690
\(703\) −2.67043e6 −0.203795
\(704\) 7.75911e6 0.590038
\(705\) 0 0
\(706\) 1.96576e7 1.48429
\(707\) 5.71919e6 0.430315
\(708\) −9.09970e6 −0.682250
\(709\) −2.39380e7 −1.78843 −0.894214 0.447639i \(-0.852265\pi\)
−0.894214 + 0.447639i \(0.852265\pi\)
\(710\) 0 0
\(711\) −935001. −0.0693646
\(712\) 2.01771e6 0.149162
\(713\) −2.96982e7 −2.18779
\(714\) −3.55281e7 −2.60811
\(715\) 0 0
\(716\) −1.82625e7 −1.33130
\(717\) −2.35566e7 −1.71126
\(718\) −1.22556e7 −0.887203
\(719\) −2.50209e6 −0.180501 −0.0902507 0.995919i \(-0.528767\pi\)
−0.0902507 + 0.995919i \(0.528767\pi\)
\(720\) 0 0
\(721\) −7.78037e6 −0.557394
\(722\) −1.72416e7 −1.23093
\(723\) 1.03343e6 0.0735250
\(724\) −1.20950e7 −0.857550
\(725\) 0 0
\(726\) 1.06837e7 0.752281
\(727\) −2.78011e7 −1.95086 −0.975429 0.220315i \(-0.929291\pi\)
−0.975429 + 0.220315i \(0.929291\pi\)
\(728\) −1.44574e6 −0.101102
\(729\) 9.46320e6 0.659506
\(730\) 0 0
\(731\) 1.06210e7 0.735141
\(732\) 1.51215e7 1.04308
\(733\) −4.46741e6 −0.307111 −0.153556 0.988140i \(-0.549072\pi\)
−0.153556 + 0.988140i \(0.549072\pi\)
\(734\) −2.32495e7 −1.59284
\(735\) 0 0
\(736\) 2.65468e7 1.80641
\(737\) −7.51280e6 −0.509487
\(738\) 1.87835e6 0.126951
\(739\) −1.23320e7 −0.830656 −0.415328 0.909672i \(-0.636333\pi\)
−0.415328 + 0.909672i \(0.636333\pi\)
\(740\) 0 0
\(741\) −1.24370e6 −0.0832090
\(742\) −7.91106e6 −0.527503
\(743\) 9.81721e6 0.652403 0.326202 0.945300i \(-0.394231\pi\)
0.326202 + 0.945300i \(0.394231\pi\)
\(744\) −8.05958e6 −0.533802
\(745\) 0 0
\(746\) −1.83704e7 −1.20857
\(747\) −6.73598e6 −0.441672
\(748\) −2.19228e7 −1.43265
\(749\) −1.81189e7 −1.18012
\(750\) 0 0
\(751\) 4.20655e6 0.272161 0.136081 0.990698i \(-0.456549\pi\)
0.136081 + 0.990698i \(0.456549\pi\)
\(752\) 1.02868e7 0.663341
\(753\) −2.09828e7 −1.34858
\(754\) 1.03973e7 0.666025
\(755\) 0 0
\(756\) 1.16847e7 0.743553
\(757\) 2.89772e7 1.83788 0.918939 0.394400i \(-0.129048\pi\)
0.918939 + 0.394400i \(0.129048\pi\)
\(758\) −3.23844e7 −2.04721
\(759\) 3.13185e7 1.97331
\(760\) 0 0
\(761\) −1.57354e6 −0.0984957 −0.0492478 0.998787i \(-0.515682\pi\)
−0.0492478 + 0.998787i \(0.515682\pi\)
\(762\) −1.63425e7 −1.01961
\(763\) −2.09853e7 −1.30498
\(764\) 1.91239e7 1.18534
\(765\) 0 0
\(766\) 3.14108e7 1.93423
\(767\) 3.63505e6 0.223112
\(768\) 2.35830e7 1.44276
\(769\) −1.98322e7 −1.20936 −0.604680 0.796468i \(-0.706699\pi\)
−0.604680 + 0.796468i \(0.706699\pi\)
\(770\) 0 0
\(771\) 3.33101e7 2.01809
\(772\) 9.60822e6 0.580230
\(773\) 2.42031e7 1.45687 0.728437 0.685112i \(-0.240247\pi\)
0.728437 + 0.685112i \(0.240247\pi\)
\(774\) 2.54421e6 0.152652
\(775\) 0 0
\(776\) −1.84134e6 −0.109769
\(777\) 1.63350e7 0.970658
\(778\) −2.26388e7 −1.34093
\(779\) 1.82266e6 0.107612
\(780\) 0 0
\(781\) −3.40675e7 −1.99854
\(782\) −5.01382e7 −2.93192
\(783\) 2.62792e7 1.53182
\(784\) −6.69024e6 −0.388733
\(785\) 0 0
\(786\) −5.11058e7 −2.95062
\(787\) 1.03509e6 0.0595721 0.0297860 0.999556i \(-0.490517\pi\)
0.0297860 + 0.999556i \(0.490517\pi\)
\(788\) −2.22651e7 −1.27735
\(789\) 1.10584e7 0.632414
\(790\) 0 0
\(791\) −1.30410e6 −0.0741089
\(792\) 1.64229e6 0.0930331
\(793\) −6.04059e6 −0.341111
\(794\) −1.37813e6 −0.0775779
\(795\) 0 0
\(796\) −8.29144e6 −0.463818
\(797\) −2.57309e7 −1.43486 −0.717429 0.696632i \(-0.754681\pi\)
−0.717429 + 0.696632i \(0.754681\pi\)
\(798\) −8.25829e6 −0.459074
\(799\) −1.55110e7 −0.859554
\(800\) 0 0
\(801\) −2.05159e6 −0.112982
\(802\) −2.33075e7 −1.27955
\(803\) 2.03831e6 0.111553
\(804\) 6.44715e6 0.351745
\(805\) 0 0
\(806\) −1.02951e7 −0.558204
\(807\) 4.34005e6 0.234591
\(808\) 2.19035e6 0.118028
\(809\) 3.62907e7 1.94950 0.974751 0.223297i \(-0.0716819\pi\)
0.974751 + 0.223297i \(0.0716819\pi\)
\(810\) 0 0
\(811\) −2.80415e7 −1.49709 −0.748546 0.663083i \(-0.769248\pi\)
−0.748546 + 0.663083i \(0.769248\pi\)
\(812\) 2.98517e7 1.58884
\(813\) 1.72533e7 0.915472
\(814\) 2.33113e7 1.23312
\(815\) 0 0
\(816\) −3.83032e7 −2.01377
\(817\) 2.46878e6 0.129398
\(818\) 1.84042e7 0.961688
\(819\) 1.47001e6 0.0765793
\(820\) 0 0
\(821\) −1.73781e7 −0.899795 −0.449897 0.893080i \(-0.648539\pi\)
−0.449897 + 0.893080i \(0.648539\pi\)
\(822\) 1.30841e6 0.0675404
\(823\) 8.26775e6 0.425488 0.212744 0.977108i \(-0.431760\pi\)
0.212744 + 0.977108i \(0.431760\pi\)
\(824\) −2.97975e6 −0.152884
\(825\) 0 0
\(826\) 2.41371e7 1.23094
\(827\) −9.80834e6 −0.498691 −0.249346 0.968415i \(-0.580216\pi\)
−0.249346 + 0.968415i \(0.580216\pi\)
\(828\) −5.19319e6 −0.263244
\(829\) 2.34318e7 1.18419 0.592093 0.805870i \(-0.298302\pi\)
0.592093 + 0.805870i \(0.298302\pi\)
\(830\) 0 0
\(831\) 3.13287e7 1.57376
\(832\) 2.65988e6 0.133215
\(833\) 1.00879e7 0.503718
\(834\) −5.38474e7 −2.68071
\(835\) 0 0
\(836\) −5.09582e6 −0.252173
\(837\) −2.60210e7 −1.28384
\(838\) −1.03749e7 −0.510357
\(839\) −1.14704e7 −0.562568 −0.281284 0.959625i \(-0.590760\pi\)
−0.281284 + 0.959625i \(0.590760\pi\)
\(840\) 0 0
\(841\) 4.66262e7 2.27321
\(842\) −3.29347e7 −1.60093
\(843\) −6.06639e6 −0.294010
\(844\) −1.41994e7 −0.686144
\(845\) 0 0
\(846\) −3.71561e6 −0.178486
\(847\) −1.22534e7 −0.586877
\(848\) −8.52899e6 −0.407294
\(849\) −3.54285e6 −0.168688
\(850\) 0 0
\(851\) 2.30524e7 1.09117
\(852\) 2.92352e7 1.37977
\(853\) 2.31885e7 1.09119 0.545594 0.838049i \(-0.316304\pi\)
0.545594 + 0.838049i \(0.316304\pi\)
\(854\) −4.01101e7 −1.88196
\(855\) 0 0
\(856\) −6.93922e6 −0.323688
\(857\) 3.35616e7 1.56096 0.780478 0.625184i \(-0.214976\pi\)
0.780478 + 0.625184i \(0.214976\pi\)
\(858\) 1.08568e7 0.503481
\(859\) −2.84860e7 −1.31719 −0.658594 0.752498i \(-0.728849\pi\)
−0.658594 + 0.752498i \(0.728849\pi\)
\(860\) 0 0
\(861\) −1.11492e7 −0.512547
\(862\) 1.02321e7 0.469028
\(863\) −3.40787e7 −1.55760 −0.778799 0.627273i \(-0.784171\pi\)
−0.778799 + 0.627273i \(0.784171\pi\)
\(864\) 2.32598e7 1.06004
\(865\) 0 0
\(866\) −4.19980e7 −1.90298
\(867\) 3.31138e7 1.49610
\(868\) −2.95584e7 −1.33162
\(869\) 7.92002e6 0.355776
\(870\) 0 0
\(871\) −2.57544e6 −0.115029
\(872\) −8.03702e6 −0.357935
\(873\) 1.87226e6 0.0831441
\(874\) −1.16543e7 −0.516070
\(875\) 0 0
\(876\) −1.74919e6 −0.0770152
\(877\) 1.29489e7 0.568505 0.284252 0.958750i \(-0.408255\pi\)
0.284252 + 0.958750i \(0.408255\pi\)
\(878\) −3.65263e7 −1.59908
\(879\) 1.36751e6 0.0596976
\(880\) 0 0
\(881\) 8.39894e6 0.364573 0.182287 0.983245i \(-0.441650\pi\)
0.182287 + 0.983245i \(0.441650\pi\)
\(882\) 2.41652e6 0.104597
\(883\) 2.38721e7 1.03036 0.515179 0.857083i \(-0.327725\pi\)
0.515179 + 0.857083i \(0.327725\pi\)
\(884\) −7.51528e6 −0.323456
\(885\) 0 0
\(886\) −3.44788e7 −1.47560
\(887\) −8.56803e6 −0.365655 −0.182828 0.983145i \(-0.558525\pi\)
−0.182828 + 0.983145i \(0.558525\pi\)
\(888\) 6.25602e6 0.266236
\(889\) 1.87436e7 0.795425
\(890\) 0 0
\(891\) 3.44128e7 1.45220
\(892\) 1.41402e7 0.595035
\(893\) −3.60544e6 −0.151297
\(894\) 1.45039e7 0.606933
\(895\) 0 0
\(896\) −1.70228e7 −0.708370
\(897\) 1.07362e7 0.445522
\(898\) −2.64295e6 −0.109370
\(899\) −6.64777e7 −2.74332
\(900\) 0 0
\(901\) 1.28605e7 0.527769
\(902\) −1.59107e7 −0.651139
\(903\) −1.51015e7 −0.616312
\(904\) −499449. −0.0203268
\(905\) 0 0
\(906\) 4.28728e7 1.73525
\(907\) 2.84173e7 1.14700 0.573502 0.819204i \(-0.305584\pi\)
0.573502 + 0.819204i \(0.305584\pi\)
\(908\) 2.03210e7 0.817958
\(909\) −2.22713e6 −0.0893997
\(910\) 0 0
\(911\) −1.90880e7 −0.762015 −0.381008 0.924572i \(-0.624423\pi\)
−0.381008 + 0.924572i \(0.624423\pi\)
\(912\) −8.90335e6 −0.354459
\(913\) 5.70578e7 2.26536
\(914\) 4.10576e6 0.162565
\(915\) 0 0
\(916\) −249183. −0.00981251
\(917\) 5.86144e7 2.30187
\(918\) −4.39301e7 −1.72050
\(919\) −1.95252e7 −0.762619 −0.381310 0.924447i \(-0.624527\pi\)
−0.381310 + 0.924447i \(0.624527\pi\)
\(920\) 0 0
\(921\) −3.56913e7 −1.38648
\(922\) −4.77142e7 −1.84850
\(923\) −1.16786e7 −0.451218
\(924\) 3.11710e7 1.20108
\(925\) 0 0
\(926\) 2.18359e7 0.836843
\(927\) 3.02978e6 0.115801
\(928\) 5.94235e7 2.26510
\(929\) −1.62698e7 −0.618504 −0.309252 0.950980i \(-0.600079\pi\)
−0.309252 + 0.950980i \(0.600079\pi\)
\(930\) 0 0
\(931\) 2.34487e6 0.0886634
\(932\) −2.27248e7 −0.856961
\(933\) −54145.2 −0.00203637
\(934\) −2.50540e7 −0.939744
\(935\) 0 0
\(936\) 562990. 0.0210044
\(937\) 3.49494e7 1.30044 0.650221 0.759745i \(-0.274676\pi\)
0.650221 + 0.759745i \(0.274676\pi\)
\(938\) −1.71012e7 −0.634628
\(939\) −1.70829e7 −0.632263
\(940\) 0 0
\(941\) 2.04858e7 0.754187 0.377094 0.926175i \(-0.376923\pi\)
0.377094 + 0.926175i \(0.376923\pi\)
\(942\) 4.22418e7 1.55101
\(943\) −1.57340e7 −0.576182
\(944\) 2.60225e7 0.950426
\(945\) 0 0
\(946\) −2.15510e7 −0.782961
\(947\) 3.59599e7 1.30300 0.651498 0.758650i \(-0.274141\pi\)
0.651498 + 0.758650i \(0.274141\pi\)
\(948\) −6.79661e6 −0.245624
\(949\) 698748. 0.0251858
\(950\) 0 0
\(951\) 3.29938e7 1.18299
\(952\) 1.56058e7 0.558076
\(953\) −2.09887e7 −0.748606 −0.374303 0.927306i \(-0.622118\pi\)
−0.374303 + 0.927306i \(0.622118\pi\)
\(954\) 3.08068e6 0.109591
\(955\) 0 0
\(956\) −3.30873e7 −1.17089
\(957\) 7.01046e7 2.47438
\(958\) 1.45616e7 0.512621
\(959\) −1.50064e6 −0.0526903
\(960\) 0 0
\(961\) 3.71955e7 1.29922
\(962\) 7.99129e6 0.278406
\(963\) 7.05574e6 0.245176
\(964\) 1.45154e6 0.0503079
\(965\) 0 0
\(966\) 7.12894e7 2.45800
\(967\) 5.30179e6 0.182329 0.0911646 0.995836i \(-0.470941\pi\)
0.0911646 + 0.995836i \(0.470941\pi\)
\(968\) −4.69283e6 −0.160971
\(969\) 1.34249e7 0.459306
\(970\) 0 0
\(971\) −5.19084e7 −1.76681 −0.883405 0.468611i \(-0.844755\pi\)
−0.883405 + 0.468611i \(0.844755\pi\)
\(972\) −1.05334e7 −0.357603
\(973\) 6.17588e7 2.09130
\(974\) −4.41700e7 −1.49187
\(975\) 0 0
\(976\) −4.32431e7 −1.45309
\(977\) −5.09506e7 −1.70771 −0.853853 0.520515i \(-0.825740\pi\)
−0.853853 + 0.520515i \(0.825740\pi\)
\(978\) −6.14806e7 −2.05537
\(979\) 1.73782e7 0.579492
\(980\) 0 0
\(981\) 8.17198e6 0.271116
\(982\) 6.30373e7 2.08602
\(983\) 4.03520e7 1.33193 0.665964 0.745984i \(-0.268020\pi\)
0.665964 + 0.745984i \(0.268020\pi\)
\(984\) −4.26994e6 −0.140583
\(985\) 0 0
\(986\) −1.12232e8 −3.67640
\(987\) 2.20544e7 0.720614
\(988\) −1.74688e6 −0.0569340
\(989\) −2.13116e7 −0.692829
\(990\) 0 0
\(991\) −2.26833e7 −0.733705 −0.366852 0.930279i \(-0.619565\pi\)
−0.366852 + 0.930279i \(0.619565\pi\)
\(992\) −5.88396e7 −1.89841
\(993\) −3.03521e7 −0.976821
\(994\) −7.75470e7 −2.48943
\(995\) 0 0
\(996\) −4.89645e7 −1.56399
\(997\) 840910. 0.0267924 0.0133962 0.999910i \(-0.495736\pi\)
0.0133962 + 0.999910i \(0.495736\pi\)
\(998\) 6.19081e7 1.96753
\(999\) 2.01981e7 0.640318
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.i.1.7 yes 9
5.2 odd 4 325.6.b.h.274.15 18
5.3 odd 4 325.6.b.h.274.4 18
5.4 even 2 325.6.a.h.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.3 9 5.4 even 2
325.6.a.i.1.7 yes 9 1.1 even 1 trivial
325.6.b.h.274.4 18 5.3 odd 4
325.6.b.h.274.15 18 5.2 odd 4