Properties

Label 325.6.a.j.1.11
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 257 x^{9} + 1165 x^{8} + 22234 x^{7} - 90282 x^{6} - 751180 x^{5} + 2564400 x^{4} + \cdots + 44115200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-10.1023\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.1023 q^{2} +24.5176 q^{3} +70.0572 q^{4} +247.685 q^{6} +72.1186 q^{7} +384.466 q^{8} +358.110 q^{9} +127.428 q^{11} +1717.63 q^{12} -169.000 q^{13} +728.566 q^{14} +1642.18 q^{16} -2152.48 q^{17} +3617.75 q^{18} +2726.20 q^{19} +1768.17 q^{21} +1287.32 q^{22} -2658.77 q^{23} +9426.17 q^{24} -1707.29 q^{26} +2822.22 q^{27} +5052.43 q^{28} -5885.60 q^{29} +1366.14 q^{31} +4286.91 q^{32} +3124.23 q^{33} -21745.0 q^{34} +25088.2 q^{36} +481.670 q^{37} +27541.0 q^{38} -4143.47 q^{39} +7385.44 q^{41} +17862.7 q^{42} -10167.0 q^{43} +8927.26 q^{44} -26859.8 q^{46} +16361.7 q^{47} +40262.2 q^{48} -11605.9 q^{49} -52773.4 q^{51} -11839.7 q^{52} +9061.97 q^{53} +28511.0 q^{54} +27727.2 q^{56} +66839.8 q^{57} -59458.3 q^{58} +29585.4 q^{59} +16410.0 q^{61} +13801.2 q^{62} +25826.4 q^{63} -9241.89 q^{64} +31562.0 q^{66} +61557.7 q^{67} -150796. q^{68} -65186.5 q^{69} -5229.46 q^{71} +137681. q^{72} -67851.0 q^{73} +4865.99 q^{74} +190990. q^{76} +9189.95 q^{77} -41858.7 q^{78} -89505.0 q^{79} -17826.8 q^{81} +74610.2 q^{82} -78989.9 q^{83} +123873. q^{84} -102711. q^{86} -144300. q^{87} +48991.9 q^{88} +111252. q^{89} -12188.0 q^{91} -186266. q^{92} +33494.5 q^{93} +165292. q^{94} +105105. q^{96} +71553.7 q^{97} -117247. q^{98} +45633.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 5 q^{2} - 11 q^{3} + 187 q^{4} + 351 q^{6} - 208 q^{7} - 165 q^{8} + 1372 q^{9} + 1276 q^{11} - 1533 q^{12} - 1859 q^{13} + 578 q^{14} + 5707 q^{16} - 2218 q^{17} + 6776 q^{18} + 3520 q^{19} + 1706 q^{21}+ \cdots + 426698 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.1023 1.78586 0.892929 0.450198i \(-0.148647\pi\)
0.892929 + 0.450198i \(0.148647\pi\)
\(3\) 24.5176 1.57280 0.786401 0.617717i \(-0.211942\pi\)
0.786401 + 0.617717i \(0.211942\pi\)
\(4\) 70.0572 2.18929
\(5\) 0 0
\(6\) 247.685 2.80880
\(7\) 72.1186 0.556291 0.278146 0.960539i \(-0.410280\pi\)
0.278146 + 0.960539i \(0.410280\pi\)
\(8\) 384.466 2.12390
\(9\) 358.110 1.47370
\(10\) 0 0
\(11\) 127.428 0.317529 0.158765 0.987316i \(-0.449249\pi\)
0.158765 + 0.987316i \(0.449249\pi\)
\(12\) 1717.63 3.44331
\(13\) −169.000 −0.277350
\(14\) 728.566 0.993457
\(15\) 0 0
\(16\) 1642.18 1.60369
\(17\) −2152.48 −1.80641 −0.903204 0.429211i \(-0.858792\pi\)
−0.903204 + 0.429211i \(0.858792\pi\)
\(18\) 3617.75 2.63183
\(19\) 2726.20 1.73250 0.866252 0.499608i \(-0.166523\pi\)
0.866252 + 0.499608i \(0.166523\pi\)
\(20\) 0 0
\(21\) 1768.17 0.874936
\(22\) 1287.32 0.567062
\(23\) −2658.77 −1.04800 −0.524000 0.851719i \(-0.675561\pi\)
−0.524000 + 0.851719i \(0.675561\pi\)
\(24\) 9426.17 3.34047
\(25\) 0 0
\(26\) −1707.29 −0.495308
\(27\) 2822.22 0.745044
\(28\) 5052.43 1.21788
\(29\) −5885.60 −1.29956 −0.649779 0.760123i \(-0.725139\pi\)
−0.649779 + 0.760123i \(0.725139\pi\)
\(30\) 0 0
\(31\) 1366.14 0.255324 0.127662 0.991818i \(-0.459253\pi\)
0.127662 + 0.991818i \(0.459253\pi\)
\(32\) 4286.91 0.740064
\(33\) 3124.23 0.499411
\(34\) −21745.0 −3.22599
\(35\) 0 0
\(36\) 25088.2 3.22636
\(37\) 481.670 0.0578423 0.0289211 0.999582i \(-0.490793\pi\)
0.0289211 + 0.999582i \(0.490793\pi\)
\(38\) 27541.0 3.09400
\(39\) −4143.47 −0.436217
\(40\) 0 0
\(41\) 7385.44 0.686146 0.343073 0.939309i \(-0.388532\pi\)
0.343073 + 0.939309i \(0.388532\pi\)
\(42\) 17862.7 1.56251
\(43\) −10167.0 −0.838538 −0.419269 0.907862i \(-0.637714\pi\)
−0.419269 + 0.907862i \(0.637714\pi\)
\(44\) 8927.26 0.695163
\(45\) 0 0
\(46\) −26859.8 −1.87158
\(47\) 16361.7 1.08040 0.540200 0.841537i \(-0.318349\pi\)
0.540200 + 0.841537i \(0.318349\pi\)
\(48\) 40262.2 2.52229
\(49\) −11605.9 −0.690540
\(50\) 0 0
\(51\) −52773.4 −2.84112
\(52\) −11839.7 −0.607199
\(53\) 9061.97 0.443132 0.221566 0.975145i \(-0.428883\pi\)
0.221566 + 0.975145i \(0.428883\pi\)
\(54\) 28511.0 1.33054
\(55\) 0 0
\(56\) 27727.2 1.18151
\(57\) 66839.8 2.72488
\(58\) −59458.3 −2.32082
\(59\) 29585.4 1.10649 0.553245 0.833019i \(-0.313389\pi\)
0.553245 + 0.833019i \(0.313389\pi\)
\(60\) 0 0
\(61\) 16410.0 0.564656 0.282328 0.959318i \(-0.408893\pi\)
0.282328 + 0.959318i \(0.408893\pi\)
\(62\) 13801.2 0.455972
\(63\) 25826.4 0.819809
\(64\) −9241.89 −0.282040
\(65\) 0 0
\(66\) 31562.0 0.891876
\(67\) 61557.7 1.67531 0.837656 0.546198i \(-0.183926\pi\)
0.837656 + 0.546198i \(0.183926\pi\)
\(68\) −150796. −3.95475
\(69\) −65186.5 −1.64829
\(70\) 0 0
\(71\) −5229.46 −0.123115 −0.0615575 0.998104i \(-0.519607\pi\)
−0.0615575 + 0.998104i \(0.519607\pi\)
\(72\) 137681. 3.13000
\(73\) −67851.0 −1.49021 −0.745107 0.666944i \(-0.767602\pi\)
−0.745107 + 0.666944i \(0.767602\pi\)
\(74\) 4865.99 0.103298
\(75\) 0 0
\(76\) 190990. 3.79295
\(77\) 9189.95 0.176639
\(78\) −41858.7 −0.779021
\(79\) −89505.0 −1.61354 −0.806769 0.590867i \(-0.798786\pi\)
−0.806769 + 0.590867i \(0.798786\pi\)
\(80\) 0 0
\(81\) −17826.8 −0.301899
\(82\) 74610.2 1.22536
\(83\) −78989.9 −1.25857 −0.629283 0.777176i \(-0.716652\pi\)
−0.629283 + 0.777176i \(0.716652\pi\)
\(84\) 123873. 1.91549
\(85\) 0 0
\(86\) −102711. −1.49751
\(87\) −144300. −2.04395
\(88\) 48991.9 0.674399
\(89\) 111252. 1.48879 0.744394 0.667741i \(-0.232738\pi\)
0.744394 + 0.667741i \(0.232738\pi\)
\(90\) 0 0
\(91\) −12188.0 −0.154287
\(92\) −186266. −2.29437
\(93\) 33494.5 0.401574
\(94\) 165292. 1.92944
\(95\) 0 0
\(96\) 105105. 1.16397
\(97\) 71553.7 0.772151 0.386076 0.922467i \(-0.373830\pi\)
0.386076 + 0.922467i \(0.373830\pi\)
\(98\) −117247. −1.23321
\(99\) 45633.3 0.467945
\(100\) 0 0
\(101\) 150676. 1.46974 0.734868 0.678210i \(-0.237244\pi\)
0.734868 + 0.678210i \(0.237244\pi\)
\(102\) −533135. −5.07384
\(103\) −160191. −1.48781 −0.743903 0.668288i \(-0.767027\pi\)
−0.743903 + 0.668288i \(0.767027\pi\)
\(104\) −64974.8 −0.589063
\(105\) 0 0
\(106\) 91547.1 0.791371
\(107\) −78017.7 −0.658769 −0.329385 0.944196i \(-0.606841\pi\)
−0.329385 + 0.944196i \(0.606841\pi\)
\(108\) 197717. 1.63111
\(109\) −219872. −1.77257 −0.886284 0.463141i \(-0.846722\pi\)
−0.886284 + 0.463141i \(0.846722\pi\)
\(110\) 0 0
\(111\) 11809.4 0.0909745
\(112\) 118432. 0.892118
\(113\) 171300. 1.26201 0.631004 0.775780i \(-0.282643\pi\)
0.631004 + 0.775780i \(0.282643\pi\)
\(114\) 675238. 4.86625
\(115\) 0 0
\(116\) −412328. −2.84510
\(117\) −60520.6 −0.408732
\(118\) 298882. 1.97603
\(119\) −155234. −1.00489
\(120\) 0 0
\(121\) −144813. −0.899175
\(122\) 165779. 1.00839
\(123\) 181073. 1.07917
\(124\) 95708.0 0.558977
\(125\) 0 0
\(126\) 260907. 1.46406
\(127\) 98906.0 0.544143 0.272072 0.962277i \(-0.412291\pi\)
0.272072 + 0.962277i \(0.412291\pi\)
\(128\) −230546. −1.24375
\(129\) −249271. −1.31885
\(130\) 0 0
\(131\) 266465. 1.35663 0.678317 0.734769i \(-0.262710\pi\)
0.678317 + 0.734769i \(0.262710\pi\)
\(132\) 218875. 1.09335
\(133\) 196610. 0.963777
\(134\) 621877. 2.99187
\(135\) 0 0
\(136\) −827554. −3.83662
\(137\) −35452.7 −0.161379 −0.0806896 0.996739i \(-0.525712\pi\)
−0.0806896 + 0.996739i \(0.525712\pi\)
\(138\) −658536. −2.94362
\(139\) −63698.3 −0.279635 −0.139817 0.990177i \(-0.544652\pi\)
−0.139817 + 0.990177i \(0.544652\pi\)
\(140\) 0 0
\(141\) 401150. 1.69926
\(142\) −52829.7 −0.219866
\(143\) −21535.4 −0.0880668
\(144\) 588081. 2.36336
\(145\) 0 0
\(146\) −685453. −2.66131
\(147\) −284548. −1.08608
\(148\) 33744.5 0.126633
\(149\) −26631.1 −0.0982707 −0.0491353 0.998792i \(-0.515647\pi\)
−0.0491353 + 0.998792i \(0.515647\pi\)
\(150\) 0 0
\(151\) 448794. 1.60179 0.800893 0.598808i \(-0.204359\pi\)
0.800893 + 0.598808i \(0.204359\pi\)
\(152\) 1.04813e6 3.67966
\(153\) −770824. −2.66211
\(154\) 92839.9 0.315452
\(155\) 0 0
\(156\) −290280. −0.955003
\(157\) 16497.9 0.0534170 0.0267085 0.999643i \(-0.491497\pi\)
0.0267085 + 0.999643i \(0.491497\pi\)
\(158\) −904209. −2.88155
\(159\) 222177. 0.696959
\(160\) 0 0
\(161\) −191747. −0.582993
\(162\) −180093. −0.539149
\(163\) −83354.3 −0.245731 −0.122865 0.992423i \(-0.539208\pi\)
−0.122865 + 0.992423i \(0.539208\pi\)
\(164\) 517403. 1.50217
\(165\) 0 0
\(166\) −797982. −2.24762
\(167\) −215768. −0.598680 −0.299340 0.954146i \(-0.596767\pi\)
−0.299340 + 0.954146i \(0.596767\pi\)
\(168\) 679802. 1.85827
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 976281. 2.55320
\(172\) −712273. −1.83580
\(173\) −42375.0 −0.107645 −0.0538225 0.998551i \(-0.517141\pi\)
−0.0538225 + 0.998551i \(0.517141\pi\)
\(174\) −1.45777e6 −3.65020
\(175\) 0 0
\(176\) 209260. 0.509218
\(177\) 725362. 1.74029
\(178\) 1.12391e6 2.65876
\(179\) 147708. 0.344566 0.172283 0.985047i \(-0.444886\pi\)
0.172283 + 0.985047i \(0.444886\pi\)
\(180\) 0 0
\(181\) −742092. −1.68369 −0.841843 0.539722i \(-0.818529\pi\)
−0.841843 + 0.539722i \(0.818529\pi\)
\(182\) −123128. −0.275535
\(183\) 402333. 0.888092
\(184\) −1.02221e6 −2.22584
\(185\) 0 0
\(186\) 338372. 0.717154
\(187\) −274286. −0.573588
\(188\) 1.14626e6 2.36531
\(189\) 203535. 0.414461
\(190\) 0 0
\(191\) 698156. 1.38474 0.692372 0.721541i \(-0.256566\pi\)
0.692372 + 0.721541i \(0.256566\pi\)
\(192\) −226589. −0.443593
\(193\) −190607. −0.368338 −0.184169 0.982895i \(-0.558959\pi\)
−0.184169 + 0.982895i \(0.558959\pi\)
\(194\) 722859. 1.37895
\(195\) 0 0
\(196\) −813077. −1.51179
\(197\) 817552. 1.50089 0.750447 0.660931i \(-0.229838\pi\)
0.750447 + 0.660931i \(0.229838\pi\)
\(198\) 461003. 0.835682
\(199\) −288709. −0.516806 −0.258403 0.966037i \(-0.583196\pi\)
−0.258403 + 0.966037i \(0.583196\pi\)
\(200\) 0 0
\(201\) 1.50924e6 2.63493
\(202\) 1.52218e6 2.62474
\(203\) −424461. −0.722933
\(204\) −3.69716e6 −6.22003
\(205\) 0 0
\(206\) −1.61831e6 −2.65701
\(207\) −952132. −1.54444
\(208\) −277528. −0.444783
\(209\) 347395. 0.550121
\(210\) 0 0
\(211\) 134806. 0.208451 0.104225 0.994554i \(-0.466764\pi\)
0.104225 + 0.994554i \(0.466764\pi\)
\(212\) 634856. 0.970143
\(213\) −128213. −0.193635
\(214\) −788161. −1.17647
\(215\) 0 0
\(216\) 1.08505e6 1.58240
\(217\) 98524.3 0.142035
\(218\) −2.22122e6 −3.16556
\(219\) −1.66354e6 −2.34381
\(220\) 0 0
\(221\) 363768. 0.501007
\(222\) 119302. 0.162467
\(223\) 320971. 0.432218 0.216109 0.976369i \(-0.430663\pi\)
0.216109 + 0.976369i \(0.430663\pi\)
\(224\) 309166. 0.411691
\(225\) 0 0
\(226\) 1.73053e6 2.25377
\(227\) −28722.2 −0.0369958 −0.0184979 0.999829i \(-0.505888\pi\)
−0.0184979 + 0.999829i \(0.505888\pi\)
\(228\) 4.68261e6 5.96555
\(229\) 850808. 1.07212 0.536059 0.844180i \(-0.319912\pi\)
0.536059 + 0.844180i \(0.319912\pi\)
\(230\) 0 0
\(231\) 225315. 0.277818
\(232\) −2.26281e6 −2.76013
\(233\) 432423. 0.521818 0.260909 0.965363i \(-0.415978\pi\)
0.260909 + 0.965363i \(0.415978\pi\)
\(234\) −611400. −0.729937
\(235\) 0 0
\(236\) 2.07267e6 2.42242
\(237\) −2.19444e6 −2.53778
\(238\) −1.56822e6 −1.79459
\(239\) 530968. 0.601276 0.300638 0.953738i \(-0.402800\pi\)
0.300638 + 0.953738i \(0.402800\pi\)
\(240\) 0 0
\(241\) −741085. −0.821912 −0.410956 0.911655i \(-0.634805\pi\)
−0.410956 + 0.911655i \(0.634805\pi\)
\(242\) −1.46295e6 −1.60580
\(243\) −1.12287e6 −1.21987
\(244\) 1.14964e6 1.23619
\(245\) 0 0
\(246\) 1.82926e6 1.92725
\(247\) −460728. −0.480510
\(248\) 525236. 0.542282
\(249\) −1.93664e6 −1.97948
\(250\) 0 0
\(251\) 1.09761e6 1.09968 0.549839 0.835271i \(-0.314689\pi\)
0.549839 + 0.835271i \(0.314689\pi\)
\(252\) 1.80933e6 1.79480
\(253\) −338802. −0.332770
\(254\) 999182. 0.971762
\(255\) 0 0
\(256\) −2.03331e6 −1.93912
\(257\) 379916. 0.358802 0.179401 0.983776i \(-0.442584\pi\)
0.179401 + 0.983776i \(0.442584\pi\)
\(258\) −2.51822e6 −2.35529
\(259\) 34737.4 0.0321772
\(260\) 0 0
\(261\) −2.10769e6 −1.91516
\(262\) 2.69192e6 2.42275
\(263\) −261845. −0.233429 −0.116714 0.993166i \(-0.537236\pi\)
−0.116714 + 0.993166i \(0.537236\pi\)
\(264\) 1.20116e6 1.06070
\(265\) 0 0
\(266\) 1.98622e6 1.72117
\(267\) 2.72763e6 2.34157
\(268\) 4.31256e6 3.66774
\(269\) −892153. −0.751724 −0.375862 0.926676i \(-0.622653\pi\)
−0.375862 + 0.926676i \(0.622653\pi\)
\(270\) 0 0
\(271\) −1.54998e6 −1.28204 −0.641021 0.767524i \(-0.721489\pi\)
−0.641021 + 0.767524i \(0.721489\pi\)
\(272\) −3.53475e6 −2.89692
\(273\) −298821. −0.242664
\(274\) −358155. −0.288200
\(275\) 0 0
\(276\) −4.56678e6 −3.60859
\(277\) −797920. −0.624828 −0.312414 0.949946i \(-0.601138\pi\)
−0.312414 + 0.949946i \(0.601138\pi\)
\(278\) −643502. −0.499388
\(279\) 489229. 0.376272
\(280\) 0 0
\(281\) 1.16864e6 0.882907 0.441453 0.897284i \(-0.354463\pi\)
0.441453 + 0.897284i \(0.354463\pi\)
\(282\) 4.05255e6 3.03463
\(283\) −1.09370e6 −0.811771 −0.405886 0.913924i \(-0.633037\pi\)
−0.405886 + 0.913924i \(0.633037\pi\)
\(284\) −366361. −0.269534
\(285\) 0 0
\(286\) −217557. −0.157275
\(287\) 532628. 0.381697
\(288\) 1.53519e6 1.09064
\(289\) 3.21329e6 2.26311
\(290\) 0 0
\(291\) 1.75432e6 1.21444
\(292\) −4.75345e6 −3.26251
\(293\) −1.02050e6 −0.694451 −0.347226 0.937782i \(-0.612876\pi\)
−0.347226 + 0.937782i \(0.612876\pi\)
\(294\) −2.87460e6 −1.93959
\(295\) 0 0
\(296\) 185186. 0.122851
\(297\) 359631. 0.236573
\(298\) −269037. −0.175497
\(299\) 449332. 0.290663
\(300\) 0 0
\(301\) −733232. −0.466472
\(302\) 4.53386e6 2.86056
\(303\) 3.69420e6 2.31160
\(304\) 4.47691e6 2.77840
\(305\) 0 0
\(306\) −7.78712e6 −4.75415
\(307\) −3.21266e6 −1.94544 −0.972722 0.231975i \(-0.925481\pi\)
−0.972722 + 0.231975i \(0.925481\pi\)
\(308\) 643822. 0.386713
\(309\) −3.92750e6 −2.34002
\(310\) 0 0
\(311\) −2.57875e6 −1.51185 −0.755924 0.654659i \(-0.772812\pi\)
−0.755924 + 0.654659i \(0.772812\pi\)
\(312\) −1.59302e6 −0.926479
\(313\) 2.26878e6 1.30898 0.654488 0.756072i \(-0.272884\pi\)
0.654488 + 0.756072i \(0.272884\pi\)
\(314\) 166667. 0.0953952
\(315\) 0 0
\(316\) −6.27046e6 −3.53250
\(317\) 200774. 0.112217 0.0561086 0.998425i \(-0.482131\pi\)
0.0561086 + 0.998425i \(0.482131\pi\)
\(318\) 2.24451e6 1.24467
\(319\) −749991. −0.412648
\(320\) 0 0
\(321\) −1.91280e6 −1.03611
\(322\) −1.93709e6 −1.04114
\(323\) −5.86808e6 −3.12961
\(324\) −1.24890e6 −0.660943
\(325\) 0 0
\(326\) −842073. −0.438840
\(327\) −5.39072e6 −2.78790
\(328\) 2.83945e6 1.45730
\(329\) 1.17999e6 0.601017
\(330\) 0 0
\(331\) −1.31065e6 −0.657530 −0.328765 0.944412i \(-0.606632\pi\)
−0.328765 + 0.944412i \(0.606632\pi\)
\(332\) −5.53381e6 −2.75536
\(333\) 172491. 0.0852425
\(334\) −2.17976e6 −1.06916
\(335\) 0 0
\(336\) 2.90365e6 1.40313
\(337\) −1.35360e6 −0.649255 −0.324628 0.945842i \(-0.605239\pi\)
−0.324628 + 0.945842i \(0.605239\pi\)
\(338\) 288533. 0.137374
\(339\) 4.19986e6 1.98489
\(340\) 0 0
\(341\) 174085. 0.0810729
\(342\) 9.86272e6 4.55965
\(343\) −2.04910e6 −0.940433
\(344\) −3.90888e6 −1.78097
\(345\) 0 0
\(346\) −428086. −0.192239
\(347\) 231416. 0.103174 0.0515869 0.998669i \(-0.483572\pi\)
0.0515869 + 0.998669i \(0.483572\pi\)
\(348\) −1.01093e7 −4.47478
\(349\) 112062. 0.0492486 0.0246243 0.999697i \(-0.492161\pi\)
0.0246243 + 0.999697i \(0.492161\pi\)
\(350\) 0 0
\(351\) −476955. −0.206638
\(352\) 546273. 0.234992
\(353\) 1.64207e6 0.701383 0.350692 0.936491i \(-0.385947\pi\)
0.350692 + 0.936491i \(0.385947\pi\)
\(354\) 7.32785e6 3.10791
\(355\) 0 0
\(356\) 7.79400e6 3.25938
\(357\) −3.80595e6 −1.58049
\(358\) 1.49220e6 0.615346
\(359\) −1.14212e6 −0.467708 −0.233854 0.972272i \(-0.575134\pi\)
−0.233854 + 0.972272i \(0.575134\pi\)
\(360\) 0 0
\(361\) 4.95608e6 2.00157
\(362\) −7.49686e6 −3.00682
\(363\) −3.55046e6 −1.41422
\(364\) −853860. −0.337779
\(365\) 0 0
\(366\) 4.06450e6 1.58600
\(367\) 3.01075e6 1.16683 0.583417 0.812173i \(-0.301715\pi\)
0.583417 + 0.812173i \(0.301715\pi\)
\(368\) −4.36617e6 −1.68067
\(369\) 2.64480e6 1.01118
\(370\) 0 0
\(371\) 653537. 0.246510
\(372\) 2.34653e6 0.879161
\(373\) 2.87230e6 1.06895 0.534476 0.845183i \(-0.320509\pi\)
0.534476 + 0.845183i \(0.320509\pi\)
\(374\) −2.77093e6 −1.02435
\(375\) 0 0
\(376\) 6.29054e6 2.29466
\(377\) 994666. 0.360432
\(378\) 2.05618e6 0.740169
\(379\) 382184. 0.136670 0.0683352 0.997662i \(-0.478231\pi\)
0.0683352 + 0.997662i \(0.478231\pi\)
\(380\) 0 0
\(381\) 2.42493e6 0.855830
\(382\) 7.05301e6 2.47295
\(383\) 789967. 0.275177 0.137588 0.990489i \(-0.456065\pi\)
0.137588 + 0.990489i \(0.456065\pi\)
\(384\) −5.65242e6 −1.95617
\(385\) 0 0
\(386\) −1.92558e6 −0.657799
\(387\) −3.64092e6 −1.23576
\(388\) 5.01285e6 1.69046
\(389\) 4.32009e6 1.44750 0.723751 0.690061i \(-0.242416\pi\)
0.723751 + 0.690061i \(0.242416\pi\)
\(390\) 0 0
\(391\) 5.72293e6 1.89311
\(392\) −4.46208e6 −1.46664
\(393\) 6.53308e6 2.13372
\(394\) 8.25919e6 2.68038
\(395\) 0 0
\(396\) 3.19694e6 1.02446
\(397\) 3.54302e6 1.12823 0.564115 0.825696i \(-0.309217\pi\)
0.564115 + 0.825696i \(0.309217\pi\)
\(398\) −2.91664e6 −0.922943
\(399\) 4.82039e6 1.51583
\(400\) 0 0
\(401\) 3.78071e6 1.17412 0.587060 0.809543i \(-0.300285\pi\)
0.587060 + 0.809543i \(0.300285\pi\)
\(402\) 1.52469e7 4.70561
\(403\) −230878. −0.0708141
\(404\) 1.05559e7 3.21768
\(405\) 0 0
\(406\) −4.28805e6 −1.29105
\(407\) 61378.4 0.0183666
\(408\) −2.02896e7 −6.03425
\(409\) 5.36133e6 1.58476 0.792381 0.610026i \(-0.208841\pi\)
0.792381 + 0.610026i \(0.208841\pi\)
\(410\) 0 0
\(411\) −869212. −0.253817
\(412\) −1.12226e7 −3.25723
\(413\) 2.13366e6 0.615531
\(414\) −9.61876e6 −2.75815
\(415\) 0 0
\(416\) −724488. −0.205257
\(417\) −1.56173e6 −0.439810
\(418\) 3.50950e6 0.982437
\(419\) −4.19124e6 −1.16629 −0.583146 0.812368i \(-0.698178\pi\)
−0.583146 + 0.812368i \(0.698178\pi\)
\(420\) 0 0
\(421\) −1.98109e6 −0.544752 −0.272376 0.962191i \(-0.587809\pi\)
−0.272376 + 0.962191i \(0.587809\pi\)
\(422\) 1.36186e6 0.372264
\(423\) 5.85930e6 1.59219
\(424\) 3.48402e6 0.941166
\(425\) 0 0
\(426\) −1.29526e6 −0.345805
\(427\) 1.18347e6 0.314113
\(428\) −5.46570e6 −1.44224
\(429\) −527994. −0.138512
\(430\) 0 0
\(431\) 4.49072e6 1.16446 0.582228 0.813026i \(-0.302181\pi\)
0.582228 + 0.813026i \(0.302181\pi\)
\(432\) 4.63459e6 1.19482
\(433\) 1.75380e6 0.449531 0.224765 0.974413i \(-0.427838\pi\)
0.224765 + 0.974413i \(0.427838\pi\)
\(434\) 995325. 0.253653
\(435\) 0 0
\(436\) −1.54036e7 −3.88066
\(437\) −7.24834e6 −1.81566
\(438\) −1.68056e7 −4.18571
\(439\) −5.04733e6 −1.24997 −0.624987 0.780635i \(-0.714896\pi\)
−0.624987 + 0.780635i \(0.714896\pi\)
\(440\) 0 0
\(441\) −4.15619e6 −1.01765
\(442\) 3.67491e6 0.894728
\(443\) 3.47296e6 0.840795 0.420398 0.907340i \(-0.361891\pi\)
0.420398 + 0.907340i \(0.361891\pi\)
\(444\) 827331. 0.199169
\(445\) 0 0
\(446\) 3.24255e6 0.771880
\(447\) −652930. −0.154560
\(448\) −666513. −0.156897
\(449\) 298830. 0.0699533 0.0349767 0.999388i \(-0.488864\pi\)
0.0349767 + 0.999388i \(0.488864\pi\)
\(450\) 0 0
\(451\) 941114. 0.217872
\(452\) 1.20008e7 2.76290
\(453\) 1.10033e7 2.51929
\(454\) −290161. −0.0660693
\(455\) 0 0
\(456\) 2.56977e7 5.78737
\(457\) 4.62298e6 1.03546 0.517728 0.855545i \(-0.326778\pi\)
0.517728 + 0.855545i \(0.326778\pi\)
\(458\) 8.59515e6 1.91465
\(459\) −6.07476e6 −1.34585
\(460\) 0 0
\(461\) 1.73228e6 0.379634 0.189817 0.981820i \(-0.439211\pi\)
0.189817 + 0.981820i \(0.439211\pi\)
\(462\) 2.27621e6 0.496143
\(463\) −3.98725e6 −0.864412 −0.432206 0.901775i \(-0.642265\pi\)
−0.432206 + 0.901775i \(0.642265\pi\)
\(464\) −9.66520e6 −2.08409
\(465\) 0 0
\(466\) 4.36848e6 0.931892
\(467\) 4.73552e6 1.00479 0.502395 0.864638i \(-0.332452\pi\)
0.502395 + 0.864638i \(0.332452\pi\)
\(468\) −4.23990e6 −0.894832
\(469\) 4.43946e6 0.931961
\(470\) 0 0
\(471\) 404488. 0.0840144
\(472\) 1.13746e7 2.35007
\(473\) −1.29557e6 −0.266261
\(474\) −2.21690e7 −4.53211
\(475\) 0 0
\(476\) −1.08752e7 −2.19999
\(477\) 3.24519e6 0.653046
\(478\) 5.36402e6 1.07379
\(479\) 974320. 0.194027 0.0970137 0.995283i \(-0.469071\pi\)
0.0970137 + 0.995283i \(0.469071\pi\)
\(480\) 0 0
\(481\) −81402.3 −0.0160426
\(482\) −7.48669e6 −1.46782
\(483\) −4.70116e6 −0.916932
\(484\) −1.01452e7 −1.96855
\(485\) 0 0
\(486\) −1.13436e7 −2.17852
\(487\) −834741. −0.159489 −0.0797443 0.996815i \(-0.525410\pi\)
−0.0797443 + 0.996815i \(0.525410\pi\)
\(488\) 6.30909e6 1.19927
\(489\) −2.04364e6 −0.386485
\(490\) 0 0
\(491\) 829646. 0.155306 0.0776532 0.996980i \(-0.475257\pi\)
0.0776532 + 0.996980i \(0.475257\pi\)
\(492\) 1.26855e7 2.36262
\(493\) 1.26686e7 2.34753
\(494\) −4.65443e6 −0.858122
\(495\) 0 0
\(496\) 2.24345e6 0.409460
\(497\) −377141. −0.0684878
\(498\) −1.95646e7 −3.53506
\(499\) 8.32784e6 1.49720 0.748602 0.663019i \(-0.230725\pi\)
0.748602 + 0.663019i \(0.230725\pi\)
\(500\) 0 0
\(501\) −5.29009e6 −0.941605
\(502\) 1.10885e7 1.96387
\(503\) 6.37207e6 1.12295 0.561475 0.827493i \(-0.310234\pi\)
0.561475 + 0.827493i \(0.310234\pi\)
\(504\) 9.92939e6 1.74119
\(505\) 0 0
\(506\) −3.42269e6 −0.594281
\(507\) 700246. 0.120985
\(508\) 6.92907e6 1.19129
\(509\) 3.38691e6 0.579441 0.289721 0.957111i \(-0.406438\pi\)
0.289721 + 0.957111i \(0.406438\pi\)
\(510\) 0 0
\(511\) −4.89332e6 −0.828994
\(512\) −1.31637e7 −2.21924
\(513\) 7.69395e6 1.29079
\(514\) 3.83804e6 0.640769
\(515\) 0 0
\(516\) −1.74632e7 −2.88735
\(517\) 2.08495e6 0.343059
\(518\) 350929. 0.0574638
\(519\) −1.03893e6 −0.169304
\(520\) 0 0
\(521\) 8.84049e6 1.42686 0.713431 0.700725i \(-0.247140\pi\)
0.713431 + 0.700725i \(0.247140\pi\)
\(522\) −2.12926e7 −3.42021
\(523\) 975493. 0.155944 0.0779722 0.996956i \(-0.475155\pi\)
0.0779722 + 0.996956i \(0.475155\pi\)
\(524\) 1.86678e7 2.97006
\(525\) 0 0
\(526\) −2.64524e6 −0.416870
\(527\) −2.94059e6 −0.461219
\(528\) 5.13054e6 0.800900
\(529\) 632708. 0.0983024
\(530\) 0 0
\(531\) 1.05948e7 1.63064
\(532\) 1.37739e7 2.10998
\(533\) −1.24814e6 −0.190303
\(534\) 2.75554e7 4.18171
\(535\) 0 0
\(536\) 2.36669e7 3.55819
\(537\) 3.62145e6 0.541934
\(538\) −9.01283e6 −1.34247
\(539\) −1.47892e6 −0.219267
\(540\) 0 0
\(541\) −2.36388e6 −0.347242 −0.173621 0.984813i \(-0.555547\pi\)
−0.173621 + 0.984813i \(0.555547\pi\)
\(542\) −1.56584e7 −2.28954
\(543\) −1.81943e7 −2.64811
\(544\) −9.22747e6 −1.33686
\(545\) 0 0
\(546\) −3.01879e6 −0.433362
\(547\) 4.75103e6 0.678922 0.339461 0.940620i \(-0.389755\pi\)
0.339461 + 0.940620i \(0.389755\pi\)
\(548\) −2.48371e6 −0.353305
\(549\) 5.87659e6 0.832136
\(550\) 0 0
\(551\) −1.60453e7 −2.25149
\(552\) −2.50620e7 −3.50081
\(553\) −6.45497e6 −0.897597
\(554\) −8.06086e6 −1.11585
\(555\) 0 0
\(556\) −4.46252e6 −0.612200
\(557\) 8.56354e6 1.16954 0.584770 0.811199i \(-0.301185\pi\)
0.584770 + 0.811199i \(0.301185\pi\)
\(558\) 4.94236e6 0.671968
\(559\) 1.71823e6 0.232569
\(560\) 0 0
\(561\) −6.72482e6 −0.902139
\(562\) 1.18060e7 1.57675
\(563\) −3.06139e6 −0.407049 −0.203525 0.979070i \(-0.565240\pi\)
−0.203525 + 0.979070i \(0.565240\pi\)
\(564\) 2.81034e7 3.72016
\(565\) 0 0
\(566\) −1.10490e7 −1.44971
\(567\) −1.28565e6 −0.167944
\(568\) −2.01055e6 −0.261483
\(569\) 1.01121e6 0.130937 0.0654685 0.997855i \(-0.479146\pi\)
0.0654685 + 0.997855i \(0.479146\pi\)
\(570\) 0 0
\(571\) 4.63373e6 0.594759 0.297379 0.954759i \(-0.403887\pi\)
0.297379 + 0.954759i \(0.403887\pi\)
\(572\) −1.50871e6 −0.192803
\(573\) 1.71171e7 2.17793
\(574\) 5.38078e6 0.681657
\(575\) 0 0
\(576\) −3.30962e6 −0.415644
\(577\) 328589. 0.0410879 0.0205439 0.999789i \(-0.493460\pi\)
0.0205439 + 0.999789i \(0.493460\pi\)
\(578\) 3.24618e7 4.04159
\(579\) −4.67323e6 −0.579323
\(580\) 0 0
\(581\) −5.69664e6 −0.700130
\(582\) 1.77227e7 2.16882
\(583\) 1.15475e6 0.140707
\(584\) −2.60864e7 −3.16506
\(585\) 0 0
\(586\) −1.03094e7 −1.24019
\(587\) −1.02498e7 −1.22778 −0.613888 0.789393i \(-0.710395\pi\)
−0.613888 + 0.789393i \(0.710395\pi\)
\(588\) −1.99347e7 −2.37775
\(589\) 3.72438e6 0.442350
\(590\) 0 0
\(591\) 2.00444e7 2.36061
\(592\) 790988. 0.0927611
\(593\) −2.82390e6 −0.329771 −0.164886 0.986313i \(-0.552725\pi\)
−0.164886 + 0.986313i \(0.552725\pi\)
\(594\) 3.63311e6 0.422486
\(595\) 0 0
\(596\) −1.86570e6 −0.215143
\(597\) −7.07844e6 −0.812834
\(598\) 4.53930e6 0.519082
\(599\) −1.52502e7 −1.73664 −0.868318 0.496007i \(-0.834799\pi\)
−0.868318 + 0.496007i \(0.834799\pi\)
\(600\) 0 0
\(601\) −6.06769e6 −0.685231 −0.342616 0.939476i \(-0.611313\pi\)
−0.342616 + 0.939476i \(0.611313\pi\)
\(602\) −7.40735e6 −0.833052
\(603\) 2.20445e7 2.46891
\(604\) 3.14412e7 3.50677
\(605\) 0 0
\(606\) 3.73200e7 4.12820
\(607\) 2.77430e6 0.305620 0.152810 0.988256i \(-0.451168\pi\)
0.152810 + 0.988256i \(0.451168\pi\)
\(608\) 1.16870e7 1.28216
\(609\) −1.04067e7 −1.13703
\(610\) 0 0
\(611\) −2.76513e6 −0.299649
\(612\) −5.40017e7 −5.82813
\(613\) −694666. −0.0746664 −0.0373332 0.999303i \(-0.511886\pi\)
−0.0373332 + 0.999303i \(0.511886\pi\)
\(614\) −3.24554e7 −3.47428
\(615\) 0 0
\(616\) 3.53322e6 0.375163
\(617\) 6.78058e6 0.717057 0.358529 0.933519i \(-0.383279\pi\)
0.358529 + 0.933519i \(0.383279\pi\)
\(618\) −3.96769e7 −4.17895
\(619\) −2.60889e6 −0.273671 −0.136835 0.990594i \(-0.543693\pi\)
−0.136835 + 0.990594i \(0.543693\pi\)
\(620\) 0 0
\(621\) −7.50363e6 −0.780805
\(622\) −2.60514e7 −2.69994
\(623\) 8.02334e6 0.828200
\(624\) −6.80431e6 −0.699556
\(625\) 0 0
\(626\) 2.29200e7 2.33765
\(627\) 8.51728e6 0.865231
\(628\) 1.15580e6 0.116945
\(629\) −1.03678e6 −0.104487
\(630\) 0 0
\(631\) 1.81425e7 1.81395 0.906973 0.421190i \(-0.138387\pi\)
0.906973 + 0.421190i \(0.138387\pi\)
\(632\) −3.44116e7 −3.42699
\(633\) 3.30512e6 0.327852
\(634\) 2.02829e6 0.200404
\(635\) 0 0
\(636\) 1.55651e7 1.52584
\(637\) 1.96140e6 0.191521
\(638\) −7.57666e6 −0.736930
\(639\) −1.87272e6 −0.181435
\(640\) 0 0
\(641\) −2.04257e7 −1.96350 −0.981750 0.190174i \(-0.939095\pi\)
−0.981750 + 0.190174i \(0.939095\pi\)
\(642\) −1.93238e7 −1.85035
\(643\) −1.26717e7 −1.20867 −0.604335 0.796730i \(-0.706561\pi\)
−0.604335 + 0.796730i \(0.706561\pi\)
\(644\) −1.34332e7 −1.27634
\(645\) 0 0
\(646\) −5.92813e7 −5.58903
\(647\) 8.01621e6 0.752850 0.376425 0.926447i \(-0.377153\pi\)
0.376425 + 0.926447i \(0.377153\pi\)
\(648\) −6.85382e6 −0.641202
\(649\) 3.77002e6 0.351343
\(650\) 0 0
\(651\) 2.41557e6 0.223392
\(652\) −5.83957e6 −0.537975
\(653\) −1.98662e7 −1.82319 −0.911597 0.411086i \(-0.865150\pi\)
−0.911597 + 0.411086i \(0.865150\pi\)
\(654\) −5.44588e7 −4.97879
\(655\) 0 0
\(656\) 1.21282e7 1.10037
\(657\) −2.42981e7 −2.19614
\(658\) 1.19206e7 1.07333
\(659\) 1.33714e6 0.119940 0.0599699 0.998200i \(-0.480900\pi\)
0.0599699 + 0.998200i \(0.480900\pi\)
\(660\) 0 0
\(661\) −9.97249e6 −0.887769 −0.443884 0.896084i \(-0.646400\pi\)
−0.443884 + 0.896084i \(0.646400\pi\)
\(662\) −1.32406e7 −1.17426
\(663\) 8.91871e6 0.787985
\(664\) −3.03690e7 −2.67307
\(665\) 0 0
\(666\) 1.74256e6 0.152231
\(667\) 1.56484e7 1.36194
\(668\) −1.51161e7 −1.31068
\(669\) 7.86941e6 0.679793
\(670\) 0 0
\(671\) 2.09110e6 0.179295
\(672\) 7.57999e6 0.647509
\(673\) −1.31355e7 −1.11792 −0.558958 0.829196i \(-0.688799\pi\)
−0.558958 + 0.829196i \(0.688799\pi\)
\(674\) −1.36745e7 −1.15948
\(675\) 0 0
\(676\) 2.00090e6 0.168407
\(677\) 1.58935e7 1.33275 0.666376 0.745616i \(-0.267845\pi\)
0.666376 + 0.745616i \(0.267845\pi\)
\(678\) 4.24284e7 3.54473
\(679\) 5.16035e6 0.429541
\(680\) 0 0
\(681\) −704198. −0.0581871
\(682\) 1.75867e6 0.144785
\(683\) −1.90939e7 −1.56618 −0.783092 0.621905i \(-0.786359\pi\)
−0.783092 + 0.621905i \(0.786359\pi\)
\(684\) 6.83955e7 5.58968
\(685\) 0 0
\(686\) −2.07007e7 −1.67948
\(687\) 2.08597e7 1.68623
\(688\) −1.66961e7 −1.34475
\(689\) −1.53147e6 −0.122903
\(690\) 0 0
\(691\) 2.12588e7 1.69373 0.846863 0.531810i \(-0.178488\pi\)
0.846863 + 0.531810i \(0.178488\pi\)
\(692\) −2.96867e6 −0.235666
\(693\) 3.29101e6 0.260313
\(694\) 2.33784e6 0.184254
\(695\) 0 0
\(696\) −5.54787e7 −4.34113
\(697\) −1.58970e7 −1.23946
\(698\) 1.13209e6 0.0879510
\(699\) 1.06020e7 0.820716
\(700\) 0 0
\(701\) 9.34437e6 0.718216 0.359108 0.933296i \(-0.383081\pi\)
0.359108 + 0.933296i \(0.383081\pi\)
\(702\) −4.81836e6 −0.369026
\(703\) 1.31313e6 0.100212
\(704\) −1.17768e6 −0.0895560
\(705\) 0 0
\(706\) 1.65888e7 1.25257
\(707\) 1.08665e7 0.817602
\(708\) 5.08168e7 3.80999
\(709\) 2.84238e6 0.212357 0.106178 0.994347i \(-0.466139\pi\)
0.106178 + 0.994347i \(0.466139\pi\)
\(710\) 0 0
\(711\) −3.20526e7 −2.37788
\(712\) 4.27727e7 3.16203
\(713\) −3.63226e6 −0.267579
\(714\) −3.84489e7 −2.82253
\(715\) 0 0
\(716\) 1.03480e7 0.754354
\(717\) 1.30180e7 0.945687
\(718\) −1.15381e7 −0.835260
\(719\) 1.63490e6 0.117942 0.0589712 0.998260i \(-0.481218\pi\)
0.0589712 + 0.998260i \(0.481218\pi\)
\(720\) 0 0
\(721\) −1.15528e7 −0.827653
\(722\) 5.00680e7 3.57451
\(723\) −1.81696e7 −1.29270
\(724\) −5.19889e7 −3.68607
\(725\) 0 0
\(726\) −3.58679e7 −2.52560
\(727\) −1.60243e7 −1.12446 −0.562230 0.826981i \(-0.690057\pi\)
−0.562230 + 0.826981i \(0.690057\pi\)
\(728\) −4.68589e6 −0.327691
\(729\) −2.31981e7 −1.61672
\(730\) 0 0
\(731\) 2.18843e7 1.51474
\(732\) 2.81863e7 1.94429
\(733\) 1.85018e7 1.27190 0.635951 0.771730i \(-0.280608\pi\)
0.635951 + 0.771730i \(0.280608\pi\)
\(734\) 3.04156e7 2.08380
\(735\) 0 0
\(736\) −1.13979e7 −0.775587
\(737\) 7.84419e6 0.531961
\(738\) 2.67187e7 1.80582
\(739\) 8.93389e6 0.601769 0.300884 0.953661i \(-0.402718\pi\)
0.300884 + 0.953661i \(0.402718\pi\)
\(740\) 0 0
\(741\) −1.12959e7 −0.755747
\(742\) 6.60225e6 0.440233
\(743\) −1.81525e7 −1.20633 −0.603164 0.797617i \(-0.706093\pi\)
−0.603164 + 0.797617i \(0.706093\pi\)
\(744\) 1.28775e7 0.852901
\(745\) 0 0
\(746\) 2.90170e7 1.90900
\(747\) −2.82871e7 −1.85476
\(748\) −1.92157e7 −1.25575
\(749\) −5.62653e6 −0.366468
\(750\) 0 0
\(751\) −4.74200e6 −0.306805 −0.153402 0.988164i \(-0.549023\pi\)
−0.153402 + 0.988164i \(0.549023\pi\)
\(752\) 2.68689e7 1.73263
\(753\) 2.69108e7 1.72958
\(754\) 1.00484e7 0.643681
\(755\) 0 0
\(756\) 1.42591e7 0.907375
\(757\) −1.70743e6 −0.108294 −0.0541469 0.998533i \(-0.517244\pi\)
−0.0541469 + 0.998533i \(0.517244\pi\)
\(758\) 3.86095e6 0.244074
\(759\) −8.30660e6 −0.523382
\(760\) 0 0
\(761\) 1.53942e7 0.963596 0.481798 0.876282i \(-0.339984\pi\)
0.481798 + 0.876282i \(0.339984\pi\)
\(762\) 2.44975e7 1.52839
\(763\) −1.58568e7 −0.986065
\(764\) 4.89109e7 3.03160
\(765\) 0 0
\(766\) 7.98051e6 0.491427
\(767\) −4.99993e6 −0.306885
\(768\) −4.98518e7 −3.04984
\(769\) 2.79442e7 1.70402 0.852012 0.523522i \(-0.175382\pi\)
0.852012 + 0.523522i \(0.175382\pi\)
\(770\) 0 0
\(771\) 9.31461e6 0.564325
\(772\) −1.33534e7 −0.806398
\(773\) −2.09934e6 −0.126367 −0.0631834 0.998002i \(-0.520125\pi\)
−0.0631834 + 0.998002i \(0.520125\pi\)
\(774\) −3.67818e7 −2.20689
\(775\) 0 0
\(776\) 2.75100e7 1.63997
\(777\) 851676. 0.0506083
\(778\) 4.36430e7 2.58503
\(779\) 2.01342e7 1.18875
\(780\) 0 0
\(781\) −666380. −0.0390926
\(782\) 5.78150e7 3.38083
\(783\) −1.66105e7 −0.968227
\(784\) −1.90590e7 −1.10741
\(785\) 0 0
\(786\) 6.59994e7 3.81051
\(787\) −2.97406e7 −1.71164 −0.855820 0.517274i \(-0.826947\pi\)
−0.855820 + 0.517274i \(0.826947\pi\)
\(788\) 5.72754e7 3.28589
\(789\) −6.41979e6 −0.367137
\(790\) 0 0
\(791\) 1.23539e7 0.702044
\(792\) 1.75445e7 0.993866
\(793\) −2.77329e6 −0.156607
\(794\) 3.57928e7 2.01486
\(795\) 0 0
\(796\) −2.02261e7 −1.13144
\(797\) −1.67730e7 −0.935329 −0.467664 0.883906i \(-0.654904\pi\)
−0.467664 + 0.883906i \(0.654904\pi\)
\(798\) 4.86972e7 2.70705
\(799\) −3.52182e7 −1.95164
\(800\) 0 0
\(801\) 3.98405e7 2.19403
\(802\) 3.81940e7 2.09681
\(803\) −8.64613e6 −0.473187
\(804\) 1.05733e8 5.76862
\(805\) 0 0
\(806\) −2.33241e6 −0.126464
\(807\) −2.18734e7 −1.18231
\(808\) 5.79297e7 3.12157
\(809\) −2.01463e7 −1.08224 −0.541120 0.840945i \(-0.682000\pi\)
−0.541120 + 0.840945i \(0.682000\pi\)
\(810\) 0 0
\(811\) 3.28200e6 0.175221 0.0876105 0.996155i \(-0.472077\pi\)
0.0876105 + 0.996155i \(0.472077\pi\)
\(812\) −2.97365e7 −1.58271
\(813\) −3.80016e7 −2.01640
\(814\) 620065. 0.0328002
\(815\) 0 0
\(816\) −8.66634e7 −4.55628
\(817\) −2.77174e7 −1.45277
\(818\) 5.41619e7 2.83016
\(819\) −4.36466e6 −0.227374
\(820\) 0 0
\(821\) 698069. 0.0361444 0.0180722 0.999837i \(-0.494247\pi\)
0.0180722 + 0.999837i \(0.494247\pi\)
\(822\) −8.78107e6 −0.453282
\(823\) −2.24014e7 −1.15286 −0.576428 0.817148i \(-0.695554\pi\)
−0.576428 + 0.817148i \(0.695554\pi\)
\(824\) −6.15882e7 −3.15994
\(825\) 0 0
\(826\) 2.15549e7 1.09925
\(827\) −1.30401e7 −0.663005 −0.331503 0.943454i \(-0.607556\pi\)
−0.331503 + 0.943454i \(0.607556\pi\)
\(828\) −6.67037e7 −3.38123
\(829\) −3.65981e7 −1.84958 −0.924788 0.380483i \(-0.875758\pi\)
−0.924788 + 0.380483i \(0.875758\pi\)
\(830\) 0 0
\(831\) −1.95631e7 −0.982730
\(832\) 1.56188e6 0.0782239
\(833\) 2.49814e7 1.24740
\(834\) −1.57771e7 −0.785438
\(835\) 0 0
\(836\) 2.43375e7 1.20437
\(837\) 3.85556e6 0.190228
\(838\) −4.23413e7 −2.08283
\(839\) 2.56393e7 1.25748 0.628740 0.777616i \(-0.283571\pi\)
0.628740 + 0.777616i \(0.283571\pi\)
\(840\) 0 0
\(841\) 1.41291e7 0.688850
\(842\) −2.00136e7 −0.972849
\(843\) 2.86522e7 1.38864
\(844\) 9.44414e6 0.456359
\(845\) 0 0
\(846\) 5.91927e7 2.84343
\(847\) −1.04437e7 −0.500203
\(848\) 1.48814e7 0.710646
\(849\) −2.68149e7 −1.27675
\(850\) 0 0
\(851\) −1.28065e6 −0.0606187
\(852\) −8.98227e6 −0.423923
\(853\) −1.27542e7 −0.600178 −0.300089 0.953911i \(-0.597016\pi\)
−0.300089 + 0.953911i \(0.597016\pi\)
\(854\) 1.19558e7 0.560961
\(855\) 0 0
\(856\) −2.99952e7 −1.39916
\(857\) 3.05245e7 1.41970 0.709850 0.704353i \(-0.248763\pi\)
0.709850 + 0.704353i \(0.248763\pi\)
\(858\) −5.33398e6 −0.247362
\(859\) 3.68731e7 1.70501 0.852504 0.522721i \(-0.175083\pi\)
0.852504 + 0.522721i \(0.175083\pi\)
\(860\) 0 0
\(861\) 1.30587e7 0.600334
\(862\) 4.53668e7 2.07955
\(863\) 2.27261e7 1.03872 0.519360 0.854555i \(-0.326170\pi\)
0.519360 + 0.854555i \(0.326170\pi\)
\(864\) 1.20986e7 0.551380
\(865\) 0 0
\(866\) 1.77174e7 0.802798
\(867\) 7.87821e7 3.55942
\(868\) 6.90233e6 0.310954
\(869\) −1.14055e7 −0.512346
\(870\) 0 0
\(871\) −1.04033e7 −0.464648
\(872\) −8.45333e7 −3.76475
\(873\) 2.56241e7 1.13792
\(874\) −7.32252e7 −3.24251
\(875\) 0 0
\(876\) −1.16543e8 −5.13128
\(877\) 471311. 0.0206923 0.0103461 0.999946i \(-0.496707\pi\)
0.0103461 + 0.999946i \(0.496707\pi\)
\(878\) −5.09899e7 −2.23227
\(879\) −2.50200e7 −1.09223
\(880\) 0 0
\(881\) 3.32241e7 1.44216 0.721080 0.692852i \(-0.243646\pi\)
0.721080 + 0.692852i \(0.243646\pi\)
\(882\) −4.19873e7 −1.81738
\(883\) −1.34686e6 −0.0581328 −0.0290664 0.999577i \(-0.509253\pi\)
−0.0290664 + 0.999577i \(0.509253\pi\)
\(884\) 2.54846e7 1.09685
\(885\) 0 0
\(886\) 3.50850e7 1.50154
\(887\) −4.53882e7 −1.93702 −0.968509 0.248980i \(-0.919905\pi\)
−0.968509 + 0.248980i \(0.919905\pi\)
\(888\) 4.54031e6 0.193220
\(889\) 7.13296e6 0.302702
\(890\) 0 0
\(891\) −2.27164e6 −0.0958618
\(892\) 2.24863e7 0.946249
\(893\) 4.46054e7 1.87180
\(894\) −6.59612e6 −0.276023
\(895\) 0 0
\(896\) −1.66266e7 −0.691886
\(897\) 1.10165e7 0.457155
\(898\) 3.01888e6 0.124927
\(899\) −8.04056e6 −0.331808
\(900\) 0 0
\(901\) −1.95057e7 −0.800477
\(902\) 9.50744e6 0.389088
\(903\) −1.79771e7 −0.733667
\(904\) 6.58592e7 2.68037
\(905\) 0 0
\(906\) 1.11159e8 4.49909
\(907\) −5.01481e6 −0.202412 −0.101206 0.994865i \(-0.532270\pi\)
−0.101206 + 0.994865i \(0.532270\pi\)
\(908\) −2.01219e6 −0.0809945
\(909\) 5.39585e7 2.16596
\(910\) 0 0
\(911\) 2.48880e7 0.993560 0.496780 0.867877i \(-0.334516\pi\)
0.496780 + 0.867877i \(0.334516\pi\)
\(912\) 1.09763e8 4.36987
\(913\) −1.00655e7 −0.399632
\(914\) 4.67029e7 1.84918
\(915\) 0 0
\(916\) 5.96052e7 2.34717
\(917\) 1.92171e7 0.754684
\(918\) −6.13693e7 −2.40350
\(919\) −3.35944e7 −1.31213 −0.656067 0.754703i \(-0.727781\pi\)
−0.656067 + 0.754703i \(0.727781\pi\)
\(920\) 0 0
\(921\) −7.87665e7 −3.05980
\(922\) 1.75000e7 0.677972
\(923\) 883778. 0.0341459
\(924\) 1.57849e7 0.608223
\(925\) 0 0
\(926\) −4.02805e7 −1.54372
\(927\) −5.73662e7 −2.19259
\(928\) −2.52310e7 −0.961756
\(929\) 2.73986e7 1.04157 0.520785 0.853688i \(-0.325639\pi\)
0.520785 + 0.853688i \(0.325639\pi\)
\(930\) 0 0
\(931\) −3.16400e7 −1.19636
\(932\) 3.02943e7 1.14241
\(933\) −6.32246e7 −2.37784
\(934\) 4.78398e7 1.79441
\(935\) 0 0
\(936\) −2.32681e7 −0.868105
\(937\) −4.73279e7 −1.76104 −0.880519 0.474011i \(-0.842806\pi\)
−0.880519 + 0.474011i \(0.842806\pi\)
\(938\) 4.48489e7 1.66435
\(939\) 5.56250e7 2.05876
\(940\) 0 0
\(941\) −2.81830e7 −1.03756 −0.518780 0.854908i \(-0.673614\pi\)
−0.518780 + 0.854908i \(0.673614\pi\)
\(942\) 4.08628e6 0.150038
\(943\) −1.96362e7 −0.719081
\(944\) 4.85845e7 1.77447
\(945\) 0 0
\(946\) −1.30882e7 −0.475503
\(947\) 1.35455e7 0.490817 0.245409 0.969420i \(-0.421078\pi\)
0.245409 + 0.969420i \(0.421078\pi\)
\(948\) −1.53736e8 −5.55592
\(949\) 1.14668e7 0.413311
\(950\) 0 0
\(951\) 4.92249e6 0.176495
\(952\) −5.96821e7 −2.13428
\(953\) −2.85179e7 −1.01715 −0.508576 0.861017i \(-0.669828\pi\)
−0.508576 + 0.861017i \(0.669828\pi\)
\(954\) 3.27840e7 1.16625
\(955\) 0 0
\(956\) 3.71981e7 1.31637
\(957\) −1.83879e7 −0.649013
\(958\) 9.84291e6 0.346505
\(959\) −2.55680e6 −0.0897738
\(960\) 0 0
\(961\) −2.67628e7 −0.934810
\(962\) −822353. −0.0286497
\(963\) −2.79389e7 −0.970832
\(964\) −5.19183e7 −1.79940
\(965\) 0 0
\(966\) −4.74927e7 −1.63751
\(967\) 2.08677e7 0.717644 0.358822 0.933406i \(-0.383179\pi\)
0.358822 + 0.933406i \(0.383179\pi\)
\(968\) −5.56757e7 −1.90975
\(969\) −1.43871e8 −4.92225
\(970\) 0 0
\(971\) −3.67948e7 −1.25239 −0.626194 0.779667i \(-0.715388\pi\)
−0.626194 + 0.779667i \(0.715388\pi\)
\(972\) −7.86651e7 −2.67065
\(973\) −4.59383e6 −0.155558
\(974\) −8.43284e6 −0.284824
\(975\) 0 0
\(976\) 2.69481e7 0.905533
\(977\) 1.31397e7 0.440403 0.220202 0.975454i \(-0.429328\pi\)
0.220202 + 0.975454i \(0.429328\pi\)
\(978\) −2.06456e7 −0.690208
\(979\) 1.41766e7 0.472734
\(980\) 0 0
\(981\) −7.87383e7 −2.61224
\(982\) 8.38137e6 0.277355
\(983\) −2.66889e7 −0.880941 −0.440470 0.897767i \(-0.645188\pi\)
−0.440470 + 0.897767i \(0.645188\pi\)
\(984\) 6.96164e7 2.29205
\(985\) 0 0
\(986\) 1.27982e8 4.19236
\(987\) 2.89304e7 0.945281
\(988\) −3.22773e7 −1.05197
\(989\) 2.70318e7 0.878787
\(990\) 0 0
\(991\) −2.39103e7 −0.773394 −0.386697 0.922207i \(-0.626384\pi\)
−0.386697 + 0.922207i \(0.626384\pi\)
\(992\) 5.85653e6 0.188956
\(993\) −3.21339e7 −1.03416
\(994\) −3.81001e6 −0.122309
\(995\) 0 0
\(996\) −1.35675e8 −4.33364
\(997\) −3.32793e7 −1.06032 −0.530160 0.847898i \(-0.677868\pi\)
−0.530160 + 0.847898i \(0.677868\pi\)
\(998\) 8.41307e7 2.67379
\(999\) 1.35938e6 0.0430950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.j.1.11 11
5.2 odd 4 325.6.b.i.274.21 22
5.3 odd 4 325.6.b.i.274.2 22
5.4 even 2 325.6.a.k.1.1 yes 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.11 11 1.1 even 1 trivial
325.6.a.k.1.1 yes 11 5.4 even 2
325.6.b.i.274.2 22 5.3 odd 4
325.6.b.i.274.21 22 5.2 odd 4