Properties

Label 325.6.b.d.274.3
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 85x^{4} + 1668x^{2} + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.3
Root \(-1.22183i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.d.274.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22183i q^{2} -16.8416i q^{3} +27.0635 q^{4} -37.4193 q^{6} -177.501i q^{7} -131.229i q^{8} -40.6407 q^{9} -353.532 q^{11} -455.793i q^{12} -169.000i q^{13} -394.376 q^{14} +574.462 q^{16} -1545.40i q^{17} +90.2967i q^{18} +132.374 q^{19} -2989.40 q^{21} +785.489i q^{22} +3897.96i q^{23} -2210.11 q^{24} -375.489 q^{26} -3408.06i q^{27} -4803.78i q^{28} -825.458 q^{29} -5360.62 q^{31} -5475.69i q^{32} +5954.06i q^{33} -3433.62 q^{34} -1099.88 q^{36} +5251.49i q^{37} -294.112i q^{38} -2846.24 q^{39} +17324.0 q^{41} +6641.94i q^{42} -11155.8i q^{43} -9567.80 q^{44} +8660.61 q^{46} +5169.48i q^{47} -9674.88i q^{48} -14699.4 q^{49} -26027.1 q^{51} -4573.73i q^{52} -37052.1i q^{53} -7572.14 q^{54} -23293.2 q^{56} -2229.39i q^{57} +1834.03i q^{58} +22894.2 q^{59} -56415.9 q^{61} +11910.4i q^{62} +7213.74i q^{63} +6216.74 q^{64} +13228.9 q^{66} +33700.6i q^{67} -41823.9i q^{68} +65648.0 q^{69} +19320.2 q^{71} +5333.24i q^{72} +47632.1i q^{73} +11667.9 q^{74} +3582.49 q^{76} +62752.1i q^{77} +6323.86i q^{78} -20458.1 q^{79} -67273.0 q^{81} -38491.0i q^{82} -16270.2i q^{83} -80903.5 q^{84} -24786.3 q^{86} +13902.1i q^{87} +46393.7i q^{88} +73643.6 q^{89} -29997.6 q^{91} +105492. i q^{92} +90281.5i q^{93} +11485.7 q^{94} -92219.5 q^{96} +140209. i q^{97} +32659.7i q^{98} +14367.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 20 q^{4} + 44 q^{6} - 286 q^{9} - 1232 q^{11} + 2568 q^{14} - 3740 q^{16} + 6720 q^{19} - 7584 q^{21} - 1044 q^{24} - 676 q^{26} - 4612 q^{29} - 12760 q^{31} + 5720 q^{34} - 1372 q^{36} + 5408 q^{39}+ \cdots + 138896 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.22183i − 0.392768i −0.980527 0.196384i \(-0.937080\pi\)
0.980527 0.196384i \(-0.0629199\pi\)
\(3\) − 16.8416i − 1.08039i −0.841539 0.540196i \(-0.818350\pi\)
0.841539 0.540196i \(-0.181650\pi\)
\(4\) 27.0635 0.845733
\(5\) 0 0
\(6\) −37.4193 −0.424343
\(7\) − 177.501i − 1.36916i −0.728937 0.684580i \(-0.759985\pi\)
0.728937 0.684580i \(-0.240015\pi\)
\(8\) − 131.229i − 0.724945i
\(9\) −40.6407 −0.167246
\(10\) 0 0
\(11\) −353.532 −0.880942 −0.440471 0.897767i \(-0.645188\pi\)
−0.440471 + 0.897767i \(0.645188\pi\)
\(12\) − 455.793i − 0.913723i
\(13\) − 169.000i − 0.277350i
\(14\) −394.376 −0.537763
\(15\) 0 0
\(16\) 574.462 0.560998
\(17\) − 1545.40i − 1.29694i −0.761242 0.648468i \(-0.775410\pi\)
0.761242 0.648468i \(-0.224590\pi\)
\(18\) 90.2967i 0.0656887i
\(19\) 132.374 0.0841236 0.0420618 0.999115i \(-0.486607\pi\)
0.0420618 + 0.999115i \(0.486607\pi\)
\(20\) 0 0
\(21\) −2989.40 −1.47923
\(22\) 785.489i 0.346006i
\(23\) 3897.96i 1.53645i 0.640181 + 0.768224i \(0.278859\pi\)
−0.640181 + 0.768224i \(0.721141\pi\)
\(24\) −2210.11 −0.783224
\(25\) 0 0
\(26\) −375.489 −0.108934
\(27\) − 3408.06i − 0.899701i
\(28\) − 4803.78i − 1.15795i
\(29\) −825.458 −0.182264 −0.0911318 0.995839i \(-0.529048\pi\)
−0.0911318 + 0.995839i \(0.529048\pi\)
\(30\) 0 0
\(31\) −5360.62 −1.00187 −0.500934 0.865485i \(-0.667010\pi\)
−0.500934 + 0.865485i \(0.667010\pi\)
\(32\) − 5475.69i − 0.945287i
\(33\) 5954.06i 0.951762i
\(34\) −3433.62 −0.509395
\(35\) 0 0
\(36\) −1099.88 −0.141445
\(37\) 5251.49i 0.630636i 0.948986 + 0.315318i \(0.102111\pi\)
−0.948986 + 0.315318i \(0.897889\pi\)
\(38\) − 294.112i − 0.0330411i
\(39\) −2846.24 −0.299647
\(40\) 0 0
\(41\) 17324.0 1.60949 0.804745 0.593620i \(-0.202302\pi\)
0.804745 + 0.593620i \(0.202302\pi\)
\(42\) 6641.94i 0.580994i
\(43\) − 11155.8i − 0.920089i −0.887896 0.460044i \(-0.847833\pi\)
0.887896 0.460044i \(-0.152167\pi\)
\(44\) −9567.80 −0.745042
\(45\) 0 0
\(46\) 8660.61 0.603467
\(47\) 5169.48i 0.341352i 0.985327 + 0.170676i \(0.0545951\pi\)
−0.985327 + 0.170676i \(0.945405\pi\)
\(48\) − 9674.88i − 0.606098i
\(49\) −14699.4 −0.874602
\(50\) 0 0
\(51\) −26027.1 −1.40120
\(52\) − 4573.73i − 0.234564i
\(53\) − 37052.1i − 1.81186i −0.423432 0.905928i \(-0.639175\pi\)
0.423432 0.905928i \(-0.360825\pi\)
\(54\) −7572.14 −0.353374
\(55\) 0 0
\(56\) −23293.2 −0.992566
\(57\) − 2229.39i − 0.0908864i
\(58\) 1834.03i 0.0715873i
\(59\) 22894.2 0.856240 0.428120 0.903722i \(-0.359176\pi\)
0.428120 + 0.903722i \(0.359176\pi\)
\(60\) 0 0
\(61\) −56415.9 −1.94123 −0.970615 0.240639i \(-0.922643\pi\)
−0.970615 + 0.240639i \(0.922643\pi\)
\(62\) 11910.4i 0.393502i
\(63\) 7213.74i 0.228986i
\(64\) 6216.74 0.189720
\(65\) 0 0
\(66\) 13228.9 0.373822
\(67\) 33700.6i 0.917173i 0.888650 + 0.458586i \(0.151644\pi\)
−0.888650 + 0.458586i \(0.848356\pi\)
\(68\) − 41823.9i − 1.09686i
\(69\) 65648.0 1.65996
\(70\) 0 0
\(71\) 19320.2 0.454848 0.227424 0.973796i \(-0.426970\pi\)
0.227424 + 0.973796i \(0.426970\pi\)
\(72\) 5333.24i 0.121244i
\(73\) 47632.1i 1.04615i 0.852287 + 0.523074i \(0.175215\pi\)
−0.852287 + 0.523074i \(0.824785\pi\)
\(74\) 11667.9 0.247693
\(75\) 0 0
\(76\) 3582.49 0.0711461
\(77\) 62752.1i 1.20615i
\(78\) 6323.86i 0.117692i
\(79\) −20458.1 −0.368805 −0.184403 0.982851i \(-0.559035\pi\)
−0.184403 + 0.982851i \(0.559035\pi\)
\(80\) 0 0
\(81\) −67273.0 −1.13927
\(82\) − 38491.0i − 0.632156i
\(83\) − 16270.2i − 0.259237i −0.991564 0.129619i \(-0.958625\pi\)
0.991564 0.129619i \(-0.0413753\pi\)
\(84\) −80903.5 −1.25103
\(85\) 0 0
\(86\) −24786.3 −0.361381
\(87\) 13902.1i 0.196916i
\(88\) 46393.7i 0.638634i
\(89\) 73643.6 0.985508 0.492754 0.870169i \(-0.335990\pi\)
0.492754 + 0.870169i \(0.335990\pi\)
\(90\) 0 0
\(91\) −29997.6 −0.379737
\(92\) 105492.i 1.29942i
\(93\) 90281.5i 1.08241i
\(94\) 11485.7 0.134072
\(95\) 0 0
\(96\) −92219.5 −1.02128
\(97\) 140209.i 1.51303i 0.653976 + 0.756516i \(0.273100\pi\)
−0.653976 + 0.756516i \(0.726900\pi\)
\(98\) 32659.7i 0.343516i
\(99\) 14367.8 0.147334
\(100\) 0 0
\(101\) −45049.4 −0.439426 −0.219713 0.975565i \(-0.570512\pi\)
−0.219713 + 0.975565i \(0.570512\pi\)
\(102\) 57827.7i 0.550346i
\(103\) 125731.i 1.16774i 0.811845 + 0.583872i \(0.198463\pi\)
−0.811845 + 0.583872i \(0.801537\pi\)
\(104\) −22177.7 −0.201064
\(105\) 0 0
\(106\) −82323.6 −0.711639
\(107\) 9971.50i 0.0841979i 0.999113 + 0.0420989i \(0.0134045\pi\)
−0.999113 + 0.0420989i \(0.986596\pi\)
\(108\) − 92234.0i − 0.760907i
\(109\) −121034. −0.975756 −0.487878 0.872912i \(-0.662229\pi\)
−0.487878 + 0.872912i \(0.662229\pi\)
\(110\) 0 0
\(111\) 88443.7 0.681333
\(112\) − 101967.i − 0.768097i
\(113\) 130644.i 0.962480i 0.876589 + 0.481240i \(0.159813\pi\)
−0.876589 + 0.481240i \(0.840187\pi\)
\(114\) −4953.33 −0.0356973
\(115\) 0 0
\(116\) −22339.8 −0.154146
\(117\) 6868.27i 0.0463856i
\(118\) − 50867.1i − 0.336304i
\(119\) −274309. −1.77571
\(120\) 0 0
\(121\) −36066.0 −0.223942
\(122\) 125347.i 0.762453i
\(123\) − 291764.i − 1.73888i
\(124\) −145077. −0.847313
\(125\) 0 0
\(126\) 16027.7 0.0899384
\(127\) − 157630.i − 0.867220i −0.901101 0.433610i \(-0.857240\pi\)
0.901101 0.433610i \(-0.142760\pi\)
\(128\) − 189035.i − 1.01980i
\(129\) −187882. −0.994056
\(130\) 0 0
\(131\) −176730. −0.899774 −0.449887 0.893086i \(-0.648536\pi\)
−0.449887 + 0.893086i \(0.648536\pi\)
\(132\) 161137.i 0.804937i
\(133\) − 23496.4i − 0.115179i
\(134\) 74877.2 0.360236
\(135\) 0 0
\(136\) −202801. −0.940207
\(137\) − 85660.1i − 0.389921i −0.980811 0.194961i \(-0.937542\pi\)
0.980811 0.194961i \(-0.0624579\pi\)
\(138\) − 145859.i − 0.651981i
\(139\) 221477. 0.972281 0.486141 0.873881i \(-0.338404\pi\)
0.486141 + 0.873881i \(0.338404\pi\)
\(140\) 0 0
\(141\) 87062.4 0.368793
\(142\) − 42926.3i − 0.178650i
\(143\) 59746.9i 0.244329i
\(144\) −23346.5 −0.0938245
\(145\) 0 0
\(146\) 105831. 0.410893
\(147\) 247562.i 0.944912i
\(148\) 142124.i 0.533350i
\(149\) 121702. 0.449089 0.224545 0.974464i \(-0.427911\pi\)
0.224545 + 0.974464i \(0.427911\pi\)
\(150\) 0 0
\(151\) 144774. 0.516710 0.258355 0.966050i \(-0.416820\pi\)
0.258355 + 0.966050i \(0.416820\pi\)
\(152\) − 17371.3i − 0.0609850i
\(153\) 62806.1i 0.216907i
\(154\) 139425. 0.473737
\(155\) 0 0
\(156\) −77029.0 −0.253421
\(157\) − 548818.i − 1.77697i −0.458910 0.888483i \(-0.651760\pi\)
0.458910 0.888483i \(-0.348240\pi\)
\(158\) 45454.4i 0.144855i
\(159\) −624019. −1.95751
\(160\) 0 0
\(161\) 691890. 2.10364
\(162\) 149469.i 0.447471i
\(163\) − 1504.59i − 0.00443557i −0.999998 0.00221779i \(-0.999294\pi\)
0.999998 0.00221779i \(-0.000705944\pi\)
\(164\) 468847. 1.36120
\(165\) 0 0
\(166\) −36149.6 −0.101820
\(167\) 437343.i 1.21348i 0.794902 + 0.606738i \(0.207522\pi\)
−0.794902 + 0.606738i \(0.792478\pi\)
\(168\) 392296.i 1.07236i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −5379.76 −0.0140693
\(172\) − 301915.i − 0.778150i
\(173\) − 511893.i − 1.30036i −0.759779 0.650181i \(-0.774693\pi\)
0.759779 0.650181i \(-0.225307\pi\)
\(174\) 30888.0 0.0773423
\(175\) 0 0
\(176\) −203091. −0.494207
\(177\) − 385576.i − 0.925074i
\(178\) − 163624.i − 0.387076i
\(179\) 424470. 0.990180 0.495090 0.868842i \(-0.335135\pi\)
0.495090 + 0.868842i \(0.335135\pi\)
\(180\) 0 0
\(181\) −374185. −0.848965 −0.424482 0.905436i \(-0.639544\pi\)
−0.424482 + 0.905436i \(0.639544\pi\)
\(182\) 66649.6i 0.149149i
\(183\) 950136.i 2.09729i
\(184\) 511526. 1.11384
\(185\) 0 0
\(186\) 200590. 0.425136
\(187\) 546348.i 1.14252i
\(188\) 139904.i 0.288692i
\(189\) −604933. −1.23184
\(190\) 0 0
\(191\) −358814. −0.711683 −0.355841 0.934546i \(-0.615806\pi\)
−0.355841 + 0.934546i \(0.615806\pi\)
\(192\) − 104700.i − 0.204972i
\(193\) − 841799.i − 1.62673i −0.581755 0.813364i \(-0.697634\pi\)
0.581755 0.813364i \(-0.302366\pi\)
\(194\) 311522. 0.594270
\(195\) 0 0
\(196\) −397818. −0.739680
\(197\) − 694841.i − 1.27561i −0.770196 0.637807i \(-0.779842\pi\)
0.770196 0.637807i \(-0.220158\pi\)
\(198\) − 31922.8i − 0.0578679i
\(199\) 552511. 0.989027 0.494513 0.869170i \(-0.335346\pi\)
0.494513 + 0.869170i \(0.335346\pi\)
\(200\) 0 0
\(201\) 567574. 0.990906
\(202\) 100092.i 0.172592i
\(203\) 146519.i 0.249548i
\(204\) −704382. −1.18504
\(205\) 0 0
\(206\) 279352. 0.458653
\(207\) − 158416.i − 0.256964i
\(208\) − 97084.1i − 0.155593i
\(209\) −46798.4 −0.0741080
\(210\) 0 0
\(211\) −117103. −0.181076 −0.0905380 0.995893i \(-0.528859\pi\)
−0.0905380 + 0.995893i \(0.528859\pi\)
\(212\) − 1.00276e6i − 1.53235i
\(213\) − 325384.i − 0.491414i
\(214\) 22155.0 0.0330702
\(215\) 0 0
\(216\) −447237. −0.652233
\(217\) 951512.i 1.37172i
\(218\) 268917.i 0.383246i
\(219\) 802203. 1.13025
\(220\) 0 0
\(221\) −261173. −0.359705
\(222\) − 196507.i − 0.267606i
\(223\) 885756.i 1.19276i 0.802703 + 0.596379i \(0.203394\pi\)
−0.802703 + 0.596379i \(0.796606\pi\)
\(224\) −971937. −1.29425
\(225\) 0 0
\(226\) 290268. 0.378031
\(227\) − 114582.i − 0.147588i −0.997273 0.0737941i \(-0.976489\pi\)
0.997273 0.0737941i \(-0.0235108\pi\)
\(228\) − 60335.0i − 0.0768657i
\(229\) 1.37389e6 1.73126 0.865630 0.500683i \(-0.166918\pi\)
0.865630 + 0.500683i \(0.166918\pi\)
\(230\) 0 0
\(231\) 1.05685e6 1.30312
\(232\) 108324.i 0.132131i
\(233\) − 1.28998e6i − 1.55666i −0.627857 0.778329i \(-0.716068\pi\)
0.627857 0.778329i \(-0.283932\pi\)
\(234\) 15260.1 0.0182188
\(235\) 0 0
\(236\) 619597. 0.724151
\(237\) 344547.i 0.398454i
\(238\) 609469.i 0.697444i
\(239\) 626246. 0.709170 0.354585 0.935024i \(-0.384622\pi\)
0.354585 + 0.935024i \(0.384622\pi\)
\(240\) 0 0
\(241\) 876030. 0.971575 0.485788 0.874077i \(-0.338533\pi\)
0.485788 + 0.874077i \(0.338533\pi\)
\(242\) 80132.6i 0.0879571i
\(243\) 304829.i 0.331162i
\(244\) −1.52681e6 −1.64176
\(245\) 0 0
\(246\) −648251. −0.682976
\(247\) − 22371.2i − 0.0233317i
\(248\) 703469.i 0.726299i
\(249\) −274016. −0.280078
\(250\) 0 0
\(251\) 1.69324e6 1.69642 0.848209 0.529661i \(-0.177681\pi\)
0.848209 + 0.529661i \(0.177681\pi\)
\(252\) 195229.i 0.193661i
\(253\) − 1.37805e6i − 1.35352i
\(254\) −350227. −0.340616
\(255\) 0 0
\(256\) −221067. −0.210826
\(257\) 775274.i 0.732188i 0.930578 + 0.366094i \(0.119305\pi\)
−0.930578 + 0.366094i \(0.880695\pi\)
\(258\) 417442.i 0.390433i
\(259\) 932143. 0.863442
\(260\) 0 0
\(261\) 33547.2 0.0304828
\(262\) 392665.i 0.353402i
\(263\) − 1.64046e6i − 1.46244i −0.682143 0.731218i \(-0.738952\pi\)
0.682143 0.731218i \(-0.261048\pi\)
\(264\) 781346. 0.689975
\(265\) 0 0
\(266\) −52205.0 −0.0452385
\(267\) − 1.24028e6i − 1.06473i
\(268\) 912056.i 0.775684i
\(269\) −1.00150e6 −0.843860 −0.421930 0.906629i \(-0.638647\pi\)
−0.421930 + 0.906629i \(0.638647\pi\)
\(270\) 0 0
\(271\) −1.29197e6 −1.06864 −0.534318 0.845284i \(-0.679431\pi\)
−0.534318 + 0.845284i \(0.679431\pi\)
\(272\) − 887774.i − 0.727579i
\(273\) 505208.i 0.410265i
\(274\) −190322. −0.153149
\(275\) 0 0
\(276\) 1.77666e6 1.40389
\(277\) − 2.50509e6i − 1.96166i −0.194873 0.980829i \(-0.562429\pi\)
0.194873 0.980829i \(-0.437571\pi\)
\(278\) − 492085.i − 0.381881i
\(279\) 217859. 0.167558
\(280\) 0 0
\(281\) 965963. 0.729785 0.364892 0.931050i \(-0.381106\pi\)
0.364892 + 0.931050i \(0.381106\pi\)
\(282\) − 193438.i − 0.144850i
\(283\) 1.70072e6i 1.26231i 0.775657 + 0.631155i \(0.217419\pi\)
−0.775657 + 0.631155i \(0.782581\pi\)
\(284\) 522873. 0.384680
\(285\) 0 0
\(286\) 132748. 0.0959647
\(287\) − 3.07502e6i − 2.20365i
\(288\) 222536.i 0.158095i
\(289\) −968403. −0.682042
\(290\) 0 0
\(291\) 2.36136e6 1.63467
\(292\) 1.28909e6i 0.884762i
\(293\) − 507714.i − 0.345502i −0.984966 0.172751i \(-0.944734\pi\)
0.984966 0.172751i \(-0.0552656\pi\)
\(294\) 550042. 0.371131
\(295\) 0 0
\(296\) 689148. 0.457176
\(297\) 1.20486e6i 0.792584i
\(298\) − 270402.i − 0.176388i
\(299\) 658755. 0.426134
\(300\) 0 0
\(301\) −1.98016e6 −1.25975
\(302\) − 321662.i − 0.202947i
\(303\) 758706.i 0.474752i
\(304\) 76043.7 0.0471932
\(305\) 0 0
\(306\) 139545. 0.0851940
\(307\) − 529122.i − 0.320413i −0.987084 0.160206i \(-0.948784\pi\)
0.987084 0.160206i \(-0.0512160\pi\)
\(308\) 1.69829e6i 1.02008i
\(309\) 2.11751e6 1.26162
\(310\) 0 0
\(311\) −524988. −0.307785 −0.153893 0.988088i \(-0.549181\pi\)
−0.153893 + 0.988088i \(0.549181\pi\)
\(312\) 373509.i 0.217227i
\(313\) − 2.13481e6i − 1.23168i −0.787870 0.615842i \(-0.788816\pi\)
0.787870 0.615842i \(-0.211184\pi\)
\(314\) −1.21938e6 −0.697935
\(315\) 0 0
\(316\) −553667. −0.311911
\(317\) − 1.52498e6i − 0.852348i −0.904641 0.426174i \(-0.859861\pi\)
0.904641 0.426174i \(-0.140139\pi\)
\(318\) 1.38646e6i 0.768849i
\(319\) 291826. 0.160564
\(320\) 0 0
\(321\) 167936. 0.0909667
\(322\) − 1.53726e6i − 0.826244i
\(323\) − 204570.i − 0.109103i
\(324\) −1.82064e6 −0.963522
\(325\) 0 0
\(326\) −3342.95 −0.00174215
\(327\) 2.03841e6i 1.05420i
\(328\) − 2.27341e6i − 1.16679i
\(329\) 917585. 0.467365
\(330\) 0 0
\(331\) −835573. −0.419194 −0.209597 0.977788i \(-0.567215\pi\)
−0.209597 + 0.977788i \(0.567215\pi\)
\(332\) − 440327.i − 0.219245i
\(333\) − 213424.i − 0.105471i
\(334\) 971703. 0.476615
\(335\) 0 0
\(336\) −1.71730e6 −0.829845
\(337\) − 1.15640e6i − 0.554670i −0.960773 0.277335i \(-0.910549\pi\)
0.960773 0.277335i \(-0.0894512\pi\)
\(338\) 63457.7i 0.0302129i
\(339\) 2.20025e6 1.03986
\(340\) 0 0
\(341\) 1.89515e6 0.882587
\(342\) 11952.9i 0.00552597i
\(343\) − 374094.i − 0.171690i
\(344\) −1.46397e6 −0.667014
\(345\) 0 0
\(346\) −1.13734e6 −0.510740
\(347\) − 229963.i − 0.102526i −0.998685 0.0512630i \(-0.983675\pi\)
0.998685 0.0512630i \(-0.0163247\pi\)
\(348\) 376238.i 0.166538i
\(349\) −4.06529e6 −1.78660 −0.893301 0.449460i \(-0.851616\pi\)
−0.893301 + 0.449460i \(0.851616\pi\)
\(350\) 0 0
\(351\) −575962. −0.249532
\(352\) 1.93583e6i 0.832743i
\(353\) − 2.23732e6i − 0.955634i −0.878459 0.477817i \(-0.841428\pi\)
0.878459 0.477817i \(-0.158572\pi\)
\(354\) −856684. −0.363340
\(355\) 0 0
\(356\) 1.99305e6 0.833477
\(357\) 4.61982e6i 1.91847i
\(358\) − 943100.i − 0.388911i
\(359\) −1.05065e6 −0.430250 −0.215125 0.976587i \(-0.569016\pi\)
−0.215125 + 0.976587i \(0.569016\pi\)
\(360\) 0 0
\(361\) −2.45858e6 −0.992923
\(362\) 831376.i 0.333446i
\(363\) 607411.i 0.241945i
\(364\) −811839. −0.321156
\(365\) 0 0
\(366\) 2.11104e6 0.823747
\(367\) 481650.i 0.186666i 0.995635 + 0.0933332i \(0.0297522\pi\)
−0.995635 + 0.0933332i \(0.970248\pi\)
\(368\) 2.23923e6i 0.861944i
\(369\) −704059. −0.269180
\(370\) 0 0
\(371\) −6.57677e6 −2.48072
\(372\) 2.44333e6i 0.915430i
\(373\) 519900.i 0.193485i 0.995309 + 0.0967426i \(0.0308424\pi\)
−0.995309 + 0.0967426i \(0.969158\pi\)
\(374\) 1.21389e6 0.448747
\(375\) 0 0
\(376\) 678386. 0.247461
\(377\) 139502.i 0.0505508i
\(378\) 1.34406e6i 0.483825i
\(379\) 5.03926e6 1.80206 0.901029 0.433759i \(-0.142813\pi\)
0.901029 + 0.433759i \(0.142813\pi\)
\(380\) 0 0
\(381\) −2.65475e6 −0.936937
\(382\) 797225.i 0.279526i
\(383\) − 2.06181e6i − 0.718212i −0.933297 0.359106i \(-0.883082\pi\)
0.933297 0.359106i \(-0.116918\pi\)
\(384\) −3.18365e6 −1.10179
\(385\) 0 0
\(386\) −1.87034e6 −0.638927
\(387\) 453379.i 0.153881i
\(388\) 3.79455e6i 1.27962i
\(389\) 3.43440e6 1.15074 0.575370 0.817893i \(-0.304858\pi\)
0.575370 + 0.817893i \(0.304858\pi\)
\(390\) 0 0
\(391\) 6.02390e6 1.99267
\(392\) 1.92899e6i 0.634038i
\(393\) 2.97643e6i 0.972108i
\(394\) −1.54382e6 −0.501021
\(395\) 0 0
\(396\) 388842. 0.124605
\(397\) 1.81167e6i 0.576903i 0.957494 + 0.288452i \(0.0931404\pi\)
−0.957494 + 0.288452i \(0.906860\pi\)
\(398\) − 1.22759e6i − 0.388458i
\(399\) −395718. −0.124438
\(400\) 0 0
\(401\) 546555. 0.169736 0.0848678 0.996392i \(-0.472953\pi\)
0.0848678 + 0.996392i \(0.472953\pi\)
\(402\) − 1.26105e6i − 0.389196i
\(403\) 905944.i 0.277868i
\(404\) −1.21919e6 −0.371637
\(405\) 0 0
\(406\) 325541. 0.0980145
\(407\) − 1.85657e6i − 0.555553i
\(408\) 3.41551e6i 1.01579i
\(409\) −4.17249e6 −1.23335 −0.616676 0.787217i \(-0.711521\pi\)
−0.616676 + 0.787217i \(0.711521\pi\)
\(410\) 0 0
\(411\) −1.44266e6 −0.421268
\(412\) 3.40271e6i 0.987601i
\(413\) − 4.06373e6i − 1.17233i
\(414\) −351973. −0.100927
\(415\) 0 0
\(416\) −925391. −0.262175
\(417\) − 3.73004e6i − 1.05044i
\(418\) 103978.i 0.0291072i
\(419\) 2.08208e6 0.579379 0.289689 0.957121i \(-0.406448\pi\)
0.289689 + 0.957121i \(0.406448\pi\)
\(420\) 0 0
\(421\) 5.16730e6 1.42088 0.710442 0.703756i \(-0.248495\pi\)
0.710442 + 0.703756i \(0.248495\pi\)
\(422\) 260183.i 0.0711209i
\(423\) − 210091.i − 0.0570895i
\(424\) −4.86232e6 −1.31350
\(425\) 0 0
\(426\) −722949. −0.193012
\(427\) 1.00139e7i 2.65786i
\(428\) 269863.i 0.0712090i
\(429\) 1.00624e6 0.263971
\(430\) 0 0
\(431\) −5.84842e6 −1.51651 −0.758256 0.651957i \(-0.773948\pi\)
−0.758256 + 0.651957i \(0.773948\pi\)
\(432\) − 1.95780e6i − 0.504730i
\(433\) − 1.57061e6i − 0.402577i −0.979532 0.201289i \(-0.935487\pi\)
0.979532 0.201289i \(-0.0645129\pi\)
\(434\) 2.11410e6 0.538767
\(435\) 0 0
\(436\) −3.27560e6 −0.825229
\(437\) 515987.i 0.129251i
\(438\) − 1.78236e6i − 0.443925i
\(439\) 4.17392e6 1.03367 0.516837 0.856084i \(-0.327109\pi\)
0.516837 + 0.856084i \(0.327109\pi\)
\(440\) 0 0
\(441\) 597395. 0.146273
\(442\) 580281.i 0.141281i
\(443\) − 3.07291e6i − 0.743944i −0.928244 0.371972i \(-0.878682\pi\)
0.928244 0.371972i \(-0.121318\pi\)
\(444\) 2.39359e6 0.576226
\(445\) 0 0
\(446\) 1.96800e6 0.468477
\(447\) − 2.04966e6i − 0.485192i
\(448\) − 1.10347e6i − 0.259757i
\(449\) −5.77522e6 −1.35192 −0.675962 0.736936i \(-0.736272\pi\)
−0.675962 + 0.736936i \(0.736272\pi\)
\(450\) 0 0
\(451\) −6.12459e6 −1.41787
\(452\) 3.53567e6i 0.814001i
\(453\) − 2.43822e6i − 0.558249i
\(454\) −254582. −0.0579679
\(455\) 0 0
\(456\) −292561. −0.0658876
\(457\) 190877.i 0.0427526i 0.999772 + 0.0213763i \(0.00680481\pi\)
−0.999772 + 0.0213763i \(0.993195\pi\)
\(458\) − 3.05255e6i − 0.679984i
\(459\) −5.26682e6 −1.16685
\(460\) 0 0
\(461\) −7.30776e6 −1.60152 −0.800760 0.598986i \(-0.795571\pi\)
−0.800760 + 0.598986i \(0.795571\pi\)
\(462\) − 2.34814e6i − 0.511822i
\(463\) 4.81629e6i 1.04414i 0.852902 + 0.522072i \(0.174841\pi\)
−0.852902 + 0.522072i \(0.825159\pi\)
\(464\) −474194. −0.102250
\(465\) 0 0
\(466\) −2.86612e6 −0.611405
\(467\) 6.73997e6i 1.43010i 0.699075 + 0.715049i \(0.253595\pi\)
−0.699075 + 0.715049i \(0.746405\pi\)
\(468\) 185879.i 0.0392298i
\(469\) 5.98188e6 1.25576
\(470\) 0 0
\(471\) −9.24299e6 −1.91982
\(472\) − 3.00438e6i − 0.620727i
\(473\) 3.94394e6i 0.810545i
\(474\) 765526. 0.156500
\(475\) 0 0
\(476\) −7.42376e6 −1.50178
\(477\) 1.50582e6i 0.303025i
\(478\) − 1.39141e6i − 0.278539i
\(479\) 7.26335e6 1.44643 0.723217 0.690621i \(-0.242663\pi\)
0.723217 + 0.690621i \(0.242663\pi\)
\(480\) 0 0
\(481\) 887502. 0.174907
\(482\) − 1.94639e6i − 0.381604i
\(483\) − 1.16526e7i − 2.27276i
\(484\) −976072. −0.189395
\(485\) 0 0
\(486\) 677278. 0.130070
\(487\) 453817.i 0.0867079i 0.999060 + 0.0433539i \(0.0138043\pi\)
−0.999060 + 0.0433539i \(0.986196\pi\)
\(488\) 7.40340e6i 1.40728i
\(489\) −25339.8 −0.00479215
\(490\) 0 0
\(491\) 7.33509e6 1.37310 0.686550 0.727083i \(-0.259124\pi\)
0.686550 + 0.727083i \(0.259124\pi\)
\(492\) − 7.89616e6i − 1.47063i
\(493\) 1.27566e6i 0.236384i
\(494\) −49704.9 −0.00916394
\(495\) 0 0
\(496\) −3.07947e6 −0.562046
\(497\) − 3.42935e6i − 0.622761i
\(498\) 608818.i 0.110005i
\(499\) 2.82351e6 0.507620 0.253810 0.967254i \(-0.418316\pi\)
0.253810 + 0.967254i \(0.418316\pi\)
\(500\) 0 0
\(501\) 7.36558e6 1.31103
\(502\) − 3.76208e6i − 0.666299i
\(503\) − 5.55958e6i − 0.979765i −0.871789 0.489882i \(-0.837040\pi\)
0.871789 0.489882i \(-0.162960\pi\)
\(504\) 946652. 0.166002
\(505\) 0 0
\(506\) −3.06180e6 −0.531620
\(507\) 481014.i 0.0831070i
\(508\) − 4.26601e6i − 0.733437i
\(509\) 6.75257e6 1.15525 0.577623 0.816304i \(-0.303980\pi\)
0.577623 + 0.816304i \(0.303980\pi\)
\(510\) 0 0
\(511\) 8.45473e6 1.43234
\(512\) − 5.55793e6i − 0.936997i
\(513\) − 451138.i − 0.0756861i
\(514\) 1.72253e6 0.287580
\(515\) 0 0
\(516\) −5.08474e6 −0.840706
\(517\) − 1.82758e6i − 0.300711i
\(518\) − 2.07106e6i − 0.339132i
\(519\) −8.62112e6 −1.40490
\(520\) 0 0
\(521\) 6.06655e6 0.979146 0.489573 0.871962i \(-0.337153\pi\)
0.489573 + 0.871962i \(0.337153\pi\)
\(522\) − 74536.1i − 0.0119727i
\(523\) − 2.28846e6i − 0.365838i −0.983128 0.182919i \(-0.941445\pi\)
0.983128 0.182919i \(-0.0585547\pi\)
\(524\) −4.78294e6 −0.760968
\(525\) 0 0
\(526\) −3.64483e6 −0.574398
\(527\) 8.28429e6i 1.29936i
\(528\) 3.42038e6i 0.533937i
\(529\) −8.75775e6 −1.36067
\(530\) 0 0
\(531\) −930436. −0.143202
\(532\) − 635894.i − 0.0974105i
\(533\) − 2.92776e6i − 0.446392i
\(534\) −2.75569e6 −0.418194
\(535\) 0 0
\(536\) 4.42250e6 0.664900
\(537\) − 7.14877e6i − 1.06978i
\(538\) 2.22516e6i 0.331441i
\(539\) 5.19672e6 0.770473
\(540\) 0 0
\(541\) 1.01976e7 1.49797 0.748986 0.662586i \(-0.230541\pi\)
0.748986 + 0.662586i \(0.230541\pi\)
\(542\) 2.87054e6i 0.419726i
\(543\) 6.30188e6i 0.917214i
\(544\) −8.46212e6 −1.22598
\(545\) 0 0
\(546\) 1.12249e6 0.161139
\(547\) 9.57008e6i 1.36756i 0.729687 + 0.683781i \(0.239666\pi\)
−0.729687 + 0.683781i \(0.760334\pi\)
\(548\) − 2.31826e6i − 0.329770i
\(549\) 2.29278e6 0.324662
\(550\) 0 0
\(551\) −109269. −0.0153327
\(552\) − 8.61493e6i − 1.20338i
\(553\) 3.63132e6i 0.504954i
\(554\) −5.56588e6 −0.770476
\(555\) 0 0
\(556\) 5.99394e6 0.822291
\(557\) 3.80767e6i 0.520021i 0.965606 + 0.260010i \(0.0837260\pi\)
−0.965606 + 0.260010i \(0.916274\pi\)
\(558\) − 484046.i − 0.0658114i
\(559\) −1.88533e6 −0.255187
\(560\) 0 0
\(561\) 9.20140e6 1.23437
\(562\) − 2.14621e6i − 0.286636i
\(563\) 2.91611e6i 0.387733i 0.981028 + 0.193866i \(0.0621028\pi\)
−0.981028 + 0.193866i \(0.937897\pi\)
\(564\) 2.35621e6 0.311901
\(565\) 0 0
\(566\) 3.77871e6 0.495795
\(567\) 1.19410e7i 1.55985i
\(568\) − 2.53538e6i − 0.329740i
\(569\) 1.01859e6 0.131892 0.0659459 0.997823i \(-0.478994\pi\)
0.0659459 + 0.997823i \(0.478994\pi\)
\(570\) 0 0
\(571\) 5.49132e6 0.704833 0.352417 0.935843i \(-0.385360\pi\)
0.352417 + 0.935843i \(0.385360\pi\)
\(572\) 1.61696e6i 0.206637i
\(573\) 6.04302e6i 0.768896i
\(574\) −6.83217e6 −0.865524
\(575\) 0 0
\(576\) −252652. −0.0317298
\(577\) − 6.62872e6i − 0.828877i −0.910077 0.414439i \(-0.863978\pi\)
0.910077 0.414439i \(-0.136022\pi\)
\(578\) 2.15163e6i 0.267884i
\(579\) −1.41773e7 −1.75750
\(580\) 0 0
\(581\) −2.88797e6 −0.354937
\(582\) − 5.24653e6i − 0.642044i
\(583\) 1.30991e7i 1.59614i
\(584\) 6.25072e6 0.758399
\(585\) 0 0
\(586\) −1.12806e6 −0.135702
\(587\) − 9.21203e6i − 1.10347i −0.834020 0.551734i \(-0.813966\pi\)
0.834020 0.551734i \(-0.186034\pi\)
\(588\) 6.69990e6i 0.799144i
\(589\) −709605. −0.0842807
\(590\) 0 0
\(591\) −1.17023e7 −1.37816
\(592\) 3.01678e6i 0.353785i
\(593\) − 1.40550e6i − 0.164133i −0.996627 0.0820664i \(-0.973848\pi\)
0.996627 0.0820664i \(-0.0261520\pi\)
\(594\) 2.67699e6 0.311302
\(595\) 0 0
\(596\) 3.29368e6 0.379810
\(597\) − 9.30518e6i − 1.06854i
\(598\) − 1.46364e6i − 0.167372i
\(599\) 9.54275e6 1.08669 0.543346 0.839509i \(-0.317157\pi\)
0.543346 + 0.839509i \(0.317157\pi\)
\(600\) 0 0
\(601\) −1.61935e6 −0.182875 −0.0914377 0.995811i \(-0.529146\pi\)
−0.0914377 + 0.995811i \(0.529146\pi\)
\(602\) 4.39958e6i 0.494789i
\(603\) − 1.36962e6i − 0.153393i
\(604\) 3.91807e6 0.436999
\(605\) 0 0
\(606\) 1.68572e6 0.186467
\(607\) − 1.02926e7i − 1.13385i −0.823770 0.566924i \(-0.808133\pi\)
0.823770 0.566924i \(-0.191867\pi\)
\(608\) − 724837.i − 0.0795209i
\(609\) 2.46762e6 0.269610
\(610\) 0 0
\(611\) 873642. 0.0946739
\(612\) 1.69975e6i 0.183445i
\(613\) − 2.64065e6i − 0.283831i −0.989879 0.141916i \(-0.954674\pi\)
0.989879 0.141916i \(-0.0453262\pi\)
\(614\) −1.17562e6 −0.125848
\(615\) 0 0
\(616\) 8.23490e6 0.874393
\(617\) 1.18557e7i 1.25376i 0.779114 + 0.626882i \(0.215669\pi\)
−0.779114 + 0.626882i \(0.784331\pi\)
\(618\) − 4.70475e6i − 0.495524i
\(619\) 1.38298e7 1.45074 0.725370 0.688359i \(-0.241669\pi\)
0.725370 + 0.688359i \(0.241669\pi\)
\(620\) 0 0
\(621\) 1.32845e7 1.38234
\(622\) 1.16643e6i 0.120888i
\(623\) − 1.30718e7i − 1.34932i
\(624\) −1.63506e6 −0.168101
\(625\) 0 0
\(626\) −4.74320e6 −0.483766
\(627\) 788161.i 0.0800656i
\(628\) − 1.48529e7i − 1.50284i
\(629\) 8.11565e6 0.817894
\(630\) 0 0
\(631\) −621762. −0.0621657 −0.0310829 0.999517i \(-0.509896\pi\)
−0.0310829 + 0.999517i \(0.509896\pi\)
\(632\) 2.68469e6i 0.267363i
\(633\) 1.97220e6i 0.195633i
\(634\) −3.38825e6 −0.334775
\(635\) 0 0
\(636\) −1.68881e7 −1.65553
\(637\) 2.48420e6i 0.242571i
\(638\) − 648388.i − 0.0630642i
\(639\) −785188. −0.0760714
\(640\) 0 0
\(641\) −4.56137e6 −0.438481 −0.219240 0.975671i \(-0.570358\pi\)
−0.219240 + 0.975671i \(0.570358\pi\)
\(642\) − 373126.i − 0.0357288i
\(643\) 1.30425e7i 1.24404i 0.783003 + 0.622018i \(0.213687\pi\)
−0.783003 + 0.622018i \(0.786313\pi\)
\(644\) 1.87249e7 1.77912
\(645\) 0 0
\(646\) −454521. −0.0428521
\(647\) − 2.42397e6i − 0.227649i −0.993501 0.113825i \(-0.963690\pi\)
0.993501 0.113825i \(-0.0363102\pi\)
\(648\) 8.82817e6i 0.825911i
\(649\) −8.09384e6 −0.754298
\(650\) 0 0
\(651\) 1.60250e7 1.48199
\(652\) − 40719.5i − 0.00375131i
\(653\) 1.21724e7i 1.11711i 0.829469 + 0.558553i \(0.188643\pi\)
−0.829469 + 0.558553i \(0.811357\pi\)
\(654\) 4.52900e6 0.414055
\(655\) 0 0
\(656\) 9.95198e6 0.902921
\(657\) − 1.93580e6i − 0.174964i
\(658\) − 2.03872e6i − 0.183566i
\(659\) 2.00313e6 0.179678 0.0898392 0.995956i \(-0.471365\pi\)
0.0898392 + 0.995956i \(0.471365\pi\)
\(660\) 0 0
\(661\) −1.32025e7 −1.17531 −0.587657 0.809110i \(-0.699950\pi\)
−0.587657 + 0.809110i \(0.699950\pi\)
\(662\) 1.85650e6i 0.164646i
\(663\) 4.39857e6i 0.388622i
\(664\) −2.13512e6 −0.187933
\(665\) 0 0
\(666\) −474193. −0.0414256
\(667\) − 3.21760e6i − 0.280038i
\(668\) 1.18360e7i 1.02628i
\(669\) 1.49176e7 1.28865
\(670\) 0 0
\(671\) 1.99448e7 1.71011
\(672\) 1.63690e7i 1.39830i
\(673\) 1.25393e7i 1.06718i 0.845744 + 0.533590i \(0.179157\pi\)
−0.845744 + 0.533590i \(0.820843\pi\)
\(674\) −2.56933e6 −0.217857
\(675\) 0 0
\(676\) −772960. −0.0650564
\(677\) 2.58077e6i 0.216410i 0.994129 + 0.108205i \(0.0345103\pi\)
−0.994129 + 0.108205i \(0.965490\pi\)
\(678\) − 4.88858e6i − 0.408422i
\(679\) 2.48872e7 2.07158
\(680\) 0 0
\(681\) −1.92975e6 −0.159453
\(682\) − 4.21070e6i − 0.346652i
\(683\) 2.33466e6i 0.191502i 0.995405 + 0.0957509i \(0.0305252\pi\)
−0.995405 + 0.0957509i \(0.969475\pi\)
\(684\) −145595. −0.0118989
\(685\) 0 0
\(686\) −831175. −0.0674345
\(687\) − 2.31385e7i − 1.87044i
\(688\) − 6.40859e6i − 0.516168i
\(689\) −6.26181e6 −0.502518
\(690\) 0 0
\(691\) −9.56099e6 −0.761742 −0.380871 0.924628i \(-0.624376\pi\)
−0.380871 + 0.924628i \(0.624376\pi\)
\(692\) − 1.38536e7i − 1.09976i
\(693\) − 2.55029e6i − 0.201723i
\(694\) −510938. −0.0402689
\(695\) 0 0
\(696\) 1.82435e6 0.142753
\(697\) − 2.67725e7i − 2.08741i
\(698\) 9.03238e6i 0.701720i
\(699\) −2.17254e7 −1.68180
\(700\) 0 0
\(701\) 1.75263e7 1.34708 0.673542 0.739149i \(-0.264772\pi\)
0.673542 + 0.739149i \(0.264772\pi\)
\(702\) 1.27969e6i 0.0980082i
\(703\) 695160.i 0.0530513i
\(704\) −2.19782e6 −0.167132
\(705\) 0 0
\(706\) −4.97095e6 −0.375342
\(707\) 7.99629e6i 0.601645i
\(708\) − 1.04350e7i − 0.782366i
\(709\) 1.04230e7 0.778714 0.389357 0.921087i \(-0.372697\pi\)
0.389357 + 0.921087i \(0.372697\pi\)
\(710\) 0 0
\(711\) 831430. 0.0616811
\(712\) − 9.66418e6i − 0.714439i
\(713\) − 2.08955e7i − 1.53932i
\(714\) 1.02645e7 0.753512
\(715\) 0 0
\(716\) 1.14876e7 0.837428
\(717\) − 1.05470e7i − 0.766181i
\(718\) 2.33436e6i 0.168988i
\(719\) 1.40272e7 1.01193 0.505964 0.862554i \(-0.331137\pi\)
0.505964 + 0.862554i \(0.331137\pi\)
\(720\) 0 0
\(721\) 2.23172e7 1.59883
\(722\) 5.46254e6i 0.389988i
\(723\) − 1.47538e7i − 1.04968i
\(724\) −1.01267e7 −0.717998
\(725\) 0 0
\(726\) 1.34956e6 0.0950281
\(727\) 1.43818e7i 1.00920i 0.863354 + 0.504599i \(0.168360\pi\)
−0.863354 + 0.504599i \(0.831640\pi\)
\(728\) 3.93655e6i 0.275288i
\(729\) −1.12135e7 −0.781490
\(730\) 0 0
\(731\) −1.72402e7 −1.19330
\(732\) 2.57140e7i 1.77375i
\(733\) 1.55999e7i 1.07241i 0.844087 + 0.536207i \(0.180143\pi\)
−0.844087 + 0.536207i \(0.819857\pi\)
\(734\) 1.07014e6 0.0733166
\(735\) 0 0
\(736\) 2.13440e7 1.45238
\(737\) − 1.19143e7i − 0.807976i
\(738\) 1.56430e6i 0.105725i
\(739\) −1.09689e7 −0.738840 −0.369420 0.929263i \(-0.620444\pi\)
−0.369420 + 0.929263i \(0.620444\pi\)
\(740\) 0 0
\(741\) −376767. −0.0252074
\(742\) 1.46125e7i 0.974348i
\(743\) − 2.14327e7i − 1.42431i −0.702021 0.712156i \(-0.747719\pi\)
0.702021 0.712156i \(-0.252281\pi\)
\(744\) 1.18476e7 0.784687
\(745\) 0 0
\(746\) 1.15513e6 0.0759948
\(747\) 661231.i 0.0433563i
\(748\) 1.47861e7i 0.966271i
\(749\) 1.76995e6 0.115280
\(750\) 0 0
\(751\) −2.79453e7 −1.80804 −0.904022 0.427486i \(-0.859399\pi\)
−0.904022 + 0.427486i \(0.859399\pi\)
\(752\) 2.96967e6i 0.191498i
\(753\) − 2.85169e7i − 1.83280i
\(754\) 309951. 0.0198547
\(755\) 0 0
\(756\) −1.63716e7 −1.04180
\(757\) 9.90774e6i 0.628398i 0.949357 + 0.314199i \(0.101736\pi\)
−0.949357 + 0.314199i \(0.898264\pi\)
\(758\) − 1.11964e7i − 0.707790i
\(759\) −2.32087e7 −1.46233
\(760\) 0 0
\(761\) −7.18134e6 −0.449515 −0.224757 0.974415i \(-0.572159\pi\)
−0.224757 + 0.974415i \(0.572159\pi\)
\(762\) 5.89840e6i 0.367999i
\(763\) 2.14836e7i 1.33597i
\(764\) −9.71076e6 −0.601894
\(765\) 0 0
\(766\) −4.58100e6 −0.282091
\(767\) − 3.86912e6i − 0.237478i
\(768\) 3.72313e6i 0.227775i
\(769\) −4.84119e6 −0.295213 −0.147607 0.989046i \(-0.547157\pi\)
−0.147607 + 0.989046i \(0.547157\pi\)
\(770\) 0 0
\(771\) 1.30569e7 0.791050
\(772\) − 2.27820e7i − 1.37578i
\(773\) − 1.57169e7i − 0.946059i −0.881046 0.473030i \(-0.843160\pi\)
0.881046 0.473030i \(-0.156840\pi\)
\(774\) 1.00733e6 0.0604394
\(775\) 0 0
\(776\) 1.83995e7 1.09686
\(777\) − 1.56988e7i − 0.932855i
\(778\) − 7.63066e6i − 0.451974i
\(779\) 2.29324e6 0.135396
\(780\) 0 0
\(781\) −6.83033e6 −0.400695
\(782\) − 1.33841e7i − 0.782658i
\(783\) 2.81321e6i 0.163983i
\(784\) −8.44427e6 −0.490650
\(785\) 0 0
\(786\) 6.61313e6 0.381813
\(787\) − 1.32624e6i − 0.0763281i −0.999271 0.0381640i \(-0.987849\pi\)
0.999271 0.0381640i \(-0.0121509\pi\)
\(788\) − 1.88048e7i − 1.07883i
\(789\) −2.76281e7 −1.58000
\(790\) 0 0
\(791\) 2.31893e7 1.31779
\(792\) − 1.88547e6i − 0.106809i
\(793\) 9.53429e6i 0.538400i
\(794\) 4.02523e6 0.226589
\(795\) 0 0
\(796\) 1.49529e7 0.836453
\(797\) − 2.03514e7i − 1.13488i −0.823416 0.567438i \(-0.807935\pi\)
0.823416 0.567438i \(-0.192065\pi\)
\(798\) 879218.i 0.0488753i
\(799\) 7.98891e6 0.442711
\(800\) 0 0
\(801\) −2.99293e6 −0.164822
\(802\) − 1.21435e6i − 0.0666667i
\(803\) − 1.68395e7i − 0.921595i
\(804\) 1.53605e7 0.838042
\(805\) 0 0
\(806\) 2.01285e6 0.109138
\(807\) 1.68669e7i 0.911699i
\(808\) 5.91179e6i 0.318560i
\(809\) −2.72733e7 −1.46510 −0.732548 0.680716i \(-0.761669\pi\)
−0.732548 + 0.680716i \(0.761669\pi\)
\(810\) 0 0
\(811\) −2.97325e7 −1.58738 −0.793688 0.608325i \(-0.791842\pi\)
−0.793688 + 0.608325i \(0.791842\pi\)
\(812\) 3.96532e6i 0.211051i
\(813\) 2.17589e7i 1.15454i
\(814\) −4.12499e6 −0.218203
\(815\) 0 0
\(816\) −1.49516e7 −0.786070
\(817\) − 1.47674e6i − 0.0774012i
\(818\) 9.27058e6i 0.484422i
\(819\) 1.21912e6 0.0635093
\(820\) 0 0
\(821\) 4.79065e6 0.248048 0.124024 0.992279i \(-0.460420\pi\)
0.124024 + 0.992279i \(0.460420\pi\)
\(822\) 3.20534e6i 0.165460i
\(823\) − 9.06060e6i − 0.466291i −0.972442 0.233146i \(-0.925098\pi\)
0.972442 0.233146i \(-0.0749019\pi\)
\(824\) 1.64995e7 0.846551
\(825\) 0 0
\(826\) −9.02893e6 −0.460454
\(827\) 3.26848e7i 1.66181i 0.556414 + 0.830906i \(0.312177\pi\)
−0.556414 + 0.830906i \(0.687823\pi\)
\(828\) − 4.28728e6i − 0.217323i
\(829\) −1.08535e6 −0.0548506 −0.0274253 0.999624i \(-0.508731\pi\)
−0.0274253 + 0.999624i \(0.508731\pi\)
\(830\) 0 0
\(831\) −4.21897e7 −2.11936
\(832\) − 1.05063e6i − 0.0526188i
\(833\) 2.27165e7i 1.13430i
\(834\) −8.28751e6 −0.412581
\(835\) 0 0
\(836\) −1.26653e6 −0.0626756
\(837\) 1.82693e7i 0.901381i
\(838\) − 4.62603e6i − 0.227561i
\(839\) −1.30918e7 −0.642089 −0.321045 0.947064i \(-0.604034\pi\)
−0.321045 + 0.947064i \(0.604034\pi\)
\(840\) 0 0
\(841\) −1.98298e7 −0.966780
\(842\) − 1.14809e7i − 0.558078i
\(843\) − 1.62684e7i − 0.788453i
\(844\) −3.16921e6 −0.153142
\(845\) 0 0
\(846\) −466787. −0.0224229
\(847\) 6.40174e6i 0.306612i
\(848\) − 2.12851e7i − 1.01645i
\(849\) 2.86429e7 1.36379
\(850\) 0 0
\(851\) −2.04701e7 −0.968938
\(852\) − 8.80603e6i − 0.415605i
\(853\) 2.08437e7i 0.980848i 0.871484 + 0.490424i \(0.163158\pi\)
−0.871484 + 0.490424i \(0.836842\pi\)
\(854\) 2.22491e7 1.04392
\(855\) 0 0
\(856\) 1.30855e6 0.0610388
\(857\) − 2.39931e7i − 1.11592i −0.829866 0.557962i \(-0.811583\pi\)
0.829866 0.557962i \(-0.188417\pi\)
\(858\) − 2.23569e6i − 0.103679i
\(859\) −3.57929e7 −1.65506 −0.827531 0.561419i \(-0.810255\pi\)
−0.827531 + 0.561419i \(0.810255\pi\)
\(860\) 0 0
\(861\) −5.17883e7 −2.38081
\(862\) 1.29942e7i 0.595637i
\(863\) − 3.10281e6i − 0.141817i −0.997483 0.0709086i \(-0.977410\pi\)
0.997483 0.0709086i \(-0.0225899\pi\)
\(864\) −1.86615e7 −0.850475
\(865\) 0 0
\(866\) −3.48963e6 −0.158119
\(867\) 1.63095e7i 0.736873i
\(868\) 2.57512e7i 1.16011i
\(869\) 7.23259e6 0.324896
\(870\) 0 0
\(871\) 5.69541e6 0.254378
\(872\) 1.58832e7i 0.707369i
\(873\) − 5.69821e6i − 0.253048i
\(874\) 1.14644e6 0.0507658
\(875\) 0 0
\(876\) 2.17104e7 0.955889
\(877\) − 3.29223e7i − 1.44541i −0.691155 0.722706i \(-0.742898\pi\)
0.691155 0.722706i \(-0.257102\pi\)
\(878\) − 9.27376e6i − 0.405994i
\(879\) −8.55074e6 −0.373277
\(880\) 0 0
\(881\) 7.18368e6 0.311822 0.155911 0.987771i \(-0.450169\pi\)
0.155911 + 0.987771i \(0.450169\pi\)
\(882\) − 1.32731e6i − 0.0574515i
\(883\) − 1.55599e7i − 0.671593i −0.941935 0.335797i \(-0.890995\pi\)
0.941935 0.335797i \(-0.109005\pi\)
\(884\) −7.06823e6 −0.304215
\(885\) 0 0
\(886\) −6.82749e6 −0.292198
\(887\) 1.70664e7i 0.728336i 0.931333 + 0.364168i \(0.118647\pi\)
−0.931333 + 0.364168i \(0.881353\pi\)
\(888\) − 1.16064e7i − 0.493929i
\(889\) −2.79794e7 −1.18736
\(890\) 0 0
\(891\) 2.37832e7 1.00363
\(892\) 2.39716e7i 1.00875i
\(893\) 684303.i 0.0287157i
\(894\) −4.55401e6 −0.190568
\(895\) 0 0
\(896\) −3.35537e7 −1.39627
\(897\) − 1.10945e7i − 0.460391i
\(898\) 1.28316e7i 0.530993i
\(899\) 4.42496e6 0.182604
\(900\) 0 0
\(901\) −5.72604e7 −2.34986
\(902\) 1.36078e7i 0.556893i
\(903\) 3.33491e7i 1.36102i
\(904\) 1.71442e7 0.697745
\(905\) 0 0
\(906\) −5.41732e6 −0.219262
\(907\) 2.26122e7i 0.912691i 0.889803 + 0.456345i \(0.150842\pi\)
−0.889803 + 0.456345i \(0.849158\pi\)
\(908\) − 3.10099e6i − 0.124820i
\(909\) 1.83084e6 0.0734920
\(910\) 0 0
\(911\) 2.42960e7 0.969927 0.484963 0.874534i \(-0.338833\pi\)
0.484963 + 0.874534i \(0.338833\pi\)
\(912\) − 1.28070e6i − 0.0509871i
\(913\) 5.75203e6i 0.228373i
\(914\) 424096. 0.0167919
\(915\) 0 0
\(916\) 3.71822e7 1.46419
\(917\) 3.13698e7i 1.23193i
\(918\) 1.17020e7i 0.458303i
\(919\) 2.72862e7 1.06575 0.532873 0.846195i \(-0.321112\pi\)
0.532873 + 0.846195i \(0.321112\pi\)
\(920\) 0 0
\(921\) −8.91128e6 −0.346171
\(922\) 1.62366e7i 0.629026i
\(923\) − 3.26512e6i − 0.126152i
\(924\) 2.86020e7 1.10209
\(925\) 0 0
\(926\) 1.07010e7 0.410106
\(927\) − 5.10978e6i − 0.195300i
\(928\) 4.51995e6i 0.172291i
\(929\) 2.89100e7 1.09903 0.549515 0.835484i \(-0.314813\pi\)
0.549515 + 0.835484i \(0.314813\pi\)
\(930\) 0 0
\(931\) −1.94582e6 −0.0735746
\(932\) − 3.49113e7i − 1.31652i
\(933\) 8.84165e6i 0.332529i
\(934\) 1.49751e7 0.561696
\(935\) 0 0
\(936\) 901317. 0.0336270
\(937\) 1.09147e7i 0.406127i 0.979166 + 0.203063i \(0.0650897\pi\)
−0.979166 + 0.203063i \(0.934910\pi\)
\(938\) − 1.32907e7i − 0.493221i
\(939\) −3.59538e7 −1.33070
\(940\) 0 0
\(941\) 4.12025e7 1.51687 0.758437 0.651746i \(-0.225963\pi\)
0.758437 + 0.651746i \(0.225963\pi\)
\(942\) 2.05364e7i 0.754043i
\(943\) 6.75282e7i 2.47290i
\(944\) 1.31519e7 0.480349
\(945\) 0 0
\(946\) 8.76276e6 0.318356
\(947\) 1.50182e6i 0.0544180i 0.999630 + 0.0272090i \(0.00866197\pi\)
−0.999630 + 0.0272090i \(0.991338\pi\)
\(948\) 9.32465e6i 0.336986i
\(949\) 8.04983e6 0.290149
\(950\) 0 0
\(951\) −2.56832e7 −0.920869
\(952\) 3.59973e7i 1.28729i
\(953\) − 2.96005e6i − 0.105576i −0.998606 0.0527882i \(-0.983189\pi\)
0.998606 0.0527882i \(-0.0168108\pi\)
\(954\) 3.34569e6 0.119018
\(955\) 0 0
\(956\) 1.69484e7 0.599768
\(957\) − 4.91483e6i − 0.173472i
\(958\) − 1.61379e7i − 0.568113i
\(959\) −1.52047e7 −0.533865
\(960\) 0 0
\(961\) 107057. 0.00373946
\(962\) − 1.97188e6i − 0.0686978i
\(963\) − 405249.i − 0.0140817i
\(964\) 2.37084e7 0.821693
\(965\) 0 0
\(966\) −2.58900e7 −0.892667
\(967\) 4.68047e7i 1.60962i 0.593532 + 0.804810i \(0.297733\pi\)
−0.593532 + 0.804810i \(0.702267\pi\)
\(968\) 4.73291e6i 0.162345i
\(969\) −3.44530e6 −0.117874
\(970\) 0 0
\(971\) 3.91779e7 1.33350 0.666750 0.745281i \(-0.267685\pi\)
0.666750 + 0.745281i \(0.267685\pi\)
\(972\) 8.24972e6i 0.280074i
\(973\) − 3.93123e7i − 1.33121i
\(974\) 1.00831e6 0.0340561
\(975\) 0 0
\(976\) −3.24088e7 −1.08903
\(977\) 3.27316e6i 0.109706i 0.998494 + 0.0548530i \(0.0174690\pi\)
−0.998494 + 0.0548530i \(0.982531\pi\)
\(978\) 56300.7i 0.00188220i
\(979\) −2.60354e7 −0.868175
\(980\) 0 0
\(981\) 4.91890e6 0.163191
\(982\) − 1.62973e7i − 0.539309i
\(983\) 2.58761e7i 0.854111i 0.904225 + 0.427055i \(0.140449\pi\)
−0.904225 + 0.427055i \(0.859551\pi\)
\(984\) −3.82880e7 −1.26059
\(985\) 0 0
\(986\) 2.83431e6 0.0928441
\(987\) − 1.54536e7i − 0.504937i
\(988\) − 605441.i − 0.0197324i
\(989\) 4.34849e7 1.41367
\(990\) 0 0
\(991\) −4.94262e6 −0.159872 −0.0799362 0.996800i \(-0.525472\pi\)
−0.0799362 + 0.996800i \(0.525472\pi\)
\(992\) 2.93531e7i 0.947053i
\(993\) 1.40724e7i 0.452893i
\(994\) −7.61944e6 −0.244600
\(995\) 0 0
\(996\) −7.41583e6 −0.236871
\(997\) − 2.01815e6i − 0.0643007i −0.999483 0.0321503i \(-0.989764\pi\)
0.999483 0.0321503i \(-0.0102355\pi\)
\(998\) − 6.27337e6i − 0.199377i
\(999\) 1.78974e7 0.567383
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.d.274.3 6
5.2 odd 4 325.6.a.d.1.2 3
5.3 odd 4 65.6.a.b.1.2 3
5.4 even 2 inner 325.6.b.d.274.4 6
15.8 even 4 585.6.a.c.1.2 3
20.3 even 4 1040.6.a.k.1.1 3
65.38 odd 4 845.6.a.c.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.b.1.2 3 5.3 odd 4
325.6.a.d.1.2 3 5.2 odd 4
325.6.b.d.274.3 6 1.1 even 1 trivial
325.6.b.d.274.4 6 5.4 even 2 inner
585.6.a.c.1.2 3 15.8 even 4
845.6.a.c.1.2 3 65.38 odd 4
1040.6.a.k.1.1 3 20.3 even 4