Properties

Label 325.6.b.d.274.5
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 85x^{4} + 1668x^{2} + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.5
Root \(5.25457i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.d.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.25457i q^{2} -21.3742i q^{3} -7.11967 q^{4} +133.687 q^{6} -116.319i q^{7} +155.616i q^{8} -213.858 q^{9} -259.239 q^{11} +152.178i q^{12} +169.000i q^{13} +727.523 q^{14} -1201.14 q^{16} -876.601i q^{17} -1337.59i q^{18} +921.477 q^{19} -2486.22 q^{21} -1621.43i q^{22} -2050.72i q^{23} +3326.17 q^{24} -1057.02 q^{26} -622.884i q^{27} +828.150i q^{28} -781.288 q^{29} -5802.03 q^{31} -2532.91i q^{32} +5541.03i q^{33} +5482.76 q^{34} +1522.60 q^{36} +2818.28i q^{37} +5763.44i q^{38} +3612.25 q^{39} -5408.91 q^{41} -15550.3i q^{42} +5189.97i q^{43} +1845.69 q^{44} +12826.4 q^{46} +9661.60i q^{47} +25673.5i q^{48} +3276.98 q^{49} -18736.7 q^{51} -1203.22i q^{52} -763.033i q^{53} +3895.87 q^{54} +18101.0 q^{56} -19695.9i q^{57} -4886.62i q^{58} -44477.7 q^{59} -50834.3 q^{61} -36289.2i q^{62} +24875.7i q^{63} -22594.2 q^{64} -34656.8 q^{66} +67343.8i q^{67} +6241.11i q^{68} -43832.6 q^{69} -79516.3 q^{71} -33279.7i q^{72} -55128.4i q^{73} -17627.2 q^{74} -6560.61 q^{76} +30154.3i q^{77} +22593.1i q^{78} +66467.3 q^{79} -65281.2 q^{81} -33830.4i q^{82} +39771.5i q^{83} +17701.1 q^{84} -32461.0 q^{86} +16699.4i q^{87} -40341.6i q^{88} -59807.6 q^{89} +19657.8 q^{91} +14600.4i q^{92} +124014. i q^{93} -60429.2 q^{94} -54139.0 q^{96} -41624.9i q^{97} +20496.1i q^{98} +55440.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 20 q^{4} + 44 q^{6} - 286 q^{9} - 1232 q^{11} + 2568 q^{14} - 3740 q^{16} + 6720 q^{19} - 7584 q^{21} - 1044 q^{24} - 676 q^{26} - 4612 q^{29} - 12760 q^{31} + 5720 q^{34} - 1372 q^{36} + 5408 q^{39}+ \cdots + 138896 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.25457i 1.10566i 0.833293 + 0.552831i \(0.186453\pi\)
−0.833293 + 0.552831i \(0.813547\pi\)
\(3\) − 21.3742i − 1.37116i −0.727998 0.685579i \(-0.759549\pi\)
0.727998 0.685579i \(-0.240451\pi\)
\(4\) −7.11967 −0.222490
\(5\) 0 0
\(6\) 133.687 1.51604
\(7\) − 116.319i − 0.897231i −0.893725 0.448615i \(-0.851917\pi\)
0.893725 0.448615i \(-0.148083\pi\)
\(8\) 155.616i 0.859664i
\(9\) −213.858 −0.880075
\(10\) 0 0
\(11\) −259.239 −0.645978 −0.322989 0.946403i \(-0.604688\pi\)
−0.322989 + 0.946403i \(0.604688\pi\)
\(12\) 152.178i 0.305069i
\(13\) 169.000i 0.277350i
\(14\) 727.523 0.992034
\(15\) 0 0
\(16\) −1201.14 −1.17299
\(17\) − 876.601i − 0.735664i −0.929892 0.367832i \(-0.880100\pi\)
0.929892 0.367832i \(-0.119900\pi\)
\(18\) − 1337.59i − 0.973066i
\(19\) 921.477 0.585599 0.292800 0.956174i \(-0.405413\pi\)
0.292800 + 0.956174i \(0.405413\pi\)
\(20\) 0 0
\(21\) −2486.22 −1.23025
\(22\) − 1621.43i − 0.714234i
\(23\) − 2050.72i − 0.808326i −0.914687 0.404163i \(-0.867563\pi\)
0.914687 0.404163i \(-0.132437\pi\)
\(24\) 3326.17 1.17874
\(25\) 0 0
\(26\) −1057.02 −0.306656
\(27\) − 622.884i − 0.164436i
\(28\) 828.150i 0.199625i
\(29\) −781.288 −0.172511 −0.0862554 0.996273i \(-0.527490\pi\)
−0.0862554 + 0.996273i \(0.527490\pi\)
\(30\) 0 0
\(31\) −5802.03 −1.08437 −0.542183 0.840260i \(-0.682402\pi\)
−0.542183 + 0.840260i \(0.682402\pi\)
\(32\) − 2532.91i − 0.437265i
\(33\) 5541.03i 0.885738i
\(34\) 5482.76 0.813396
\(35\) 0 0
\(36\) 1522.60 0.195808
\(37\) 2818.28i 0.338439i 0.985578 + 0.169220i \(0.0541247\pi\)
−0.985578 + 0.169220i \(0.945875\pi\)
\(38\) 5763.44i 0.647475i
\(39\) 3612.25 0.380291
\(40\) 0 0
\(41\) −5408.91 −0.502516 −0.251258 0.967920i \(-0.580844\pi\)
−0.251258 + 0.967920i \(0.580844\pi\)
\(42\) − 15550.3i − 1.36024i
\(43\) 5189.97i 0.428049i 0.976828 + 0.214025i \(0.0686573\pi\)
−0.976828 + 0.214025i \(0.931343\pi\)
\(44\) 1845.69 0.143723
\(45\) 0 0
\(46\) 12826.4 0.893736
\(47\) 9661.60i 0.637976i 0.947759 + 0.318988i \(0.103343\pi\)
−0.947759 + 0.318988i \(0.896657\pi\)
\(48\) 25673.5i 1.60835i
\(49\) 3276.98 0.194977
\(50\) 0 0
\(51\) −18736.7 −1.00871
\(52\) − 1203.22i − 0.0617075i
\(53\) − 763.033i − 0.0373125i −0.999826 0.0186562i \(-0.994061\pi\)
0.999826 0.0186562i \(-0.00593881\pi\)
\(54\) 3895.87 0.181811
\(55\) 0 0
\(56\) 18101.0 0.771317
\(57\) − 19695.9i − 0.802949i
\(58\) − 4886.62i − 0.190739i
\(59\) −44477.7 −1.66346 −0.831731 0.555179i \(-0.812650\pi\)
−0.831731 + 0.555179i \(0.812650\pi\)
\(60\) 0 0
\(61\) −50834.3 −1.74917 −0.874585 0.484872i \(-0.838866\pi\)
−0.874585 + 0.484872i \(0.838866\pi\)
\(62\) − 36289.2i − 1.19894i
\(63\) 24875.7i 0.789630i
\(64\) −22594.2 −0.689521
\(65\) 0 0
\(66\) −34656.8 −0.979328
\(67\) 67343.8i 1.83278i 0.400285 + 0.916391i \(0.368911\pi\)
−0.400285 + 0.916391i \(0.631089\pi\)
\(68\) 6241.11i 0.163678i
\(69\) −43832.6 −1.10834
\(70\) 0 0
\(71\) −79516.3 −1.87202 −0.936009 0.351976i \(-0.885510\pi\)
−0.936009 + 0.351976i \(0.885510\pi\)
\(72\) − 33279.7i − 0.756569i
\(73\) − 55128.4i − 1.21079i −0.795926 0.605394i \(-0.793016\pi\)
0.795926 0.605394i \(-0.206984\pi\)
\(74\) −17627.2 −0.374199
\(75\) 0 0
\(76\) −6560.61 −0.130290
\(77\) 30154.3i 0.579591i
\(78\) 22593.1i 0.420473i
\(79\) 66467.3 1.19823 0.599115 0.800663i \(-0.295519\pi\)
0.599115 + 0.800663i \(0.295519\pi\)
\(80\) 0 0
\(81\) −65281.2 −1.10554
\(82\) − 33830.4i − 0.555614i
\(83\) 39771.5i 0.633690i 0.948477 + 0.316845i \(0.102624\pi\)
−0.948477 + 0.316845i \(0.897376\pi\)
\(84\) 17701.1 0.273717
\(85\) 0 0
\(86\) −32461.0 −0.473278
\(87\) 16699.4i 0.236540i
\(88\) − 40341.6i − 0.555324i
\(89\) −59807.6 −0.800352 −0.400176 0.916438i \(-0.631051\pi\)
−0.400176 + 0.916438i \(0.631051\pi\)
\(90\) 0 0
\(91\) 19657.8 0.248847
\(92\) 14600.4i 0.179844i
\(93\) 124014.i 1.48684i
\(94\) −60429.2 −0.705386
\(95\) 0 0
\(96\) −54139.0 −0.599559
\(97\) − 41624.9i − 0.449183i −0.974453 0.224592i \(-0.927895\pi\)
0.974453 0.224592i \(-0.0721048\pi\)
\(98\) 20496.1i 0.215579i
\(99\) 55440.3 0.568509
\(100\) 0 0
\(101\) 160951. 1.56996 0.784982 0.619519i \(-0.212672\pi\)
0.784982 + 0.619519i \(0.212672\pi\)
\(102\) − 117190.i − 1.11529i
\(103\) − 167554.i − 1.55618i −0.628150 0.778092i \(-0.716188\pi\)
0.628150 0.778092i \(-0.283812\pi\)
\(104\) −26299.1 −0.238428
\(105\) 0 0
\(106\) 4772.45 0.0412550
\(107\) 58033.6i 0.490027i 0.969520 + 0.245013i \(0.0787924\pi\)
−0.969520 + 0.245013i \(0.921208\pi\)
\(108\) 4434.73i 0.0365854i
\(109\) −133082. −1.07288 −0.536442 0.843937i \(-0.680232\pi\)
−0.536442 + 0.843937i \(0.680232\pi\)
\(110\) 0 0
\(111\) 60238.7 0.464053
\(112\) 139715.i 1.05244i
\(113\) 148757.i 1.09593i 0.836503 + 0.547963i \(0.184596\pi\)
−0.836503 + 0.547963i \(0.815404\pi\)
\(114\) 123189. 0.887791
\(115\) 0 0
\(116\) 5562.51 0.0383819
\(117\) − 36142.0i − 0.244089i
\(118\) − 278189.i − 1.83923i
\(119\) −101965. −0.660060
\(120\) 0 0
\(121\) −93846.4 −0.582712
\(122\) − 317947.i − 1.93399i
\(123\) 115611.i 0.689029i
\(124\) 41308.6 0.241260
\(125\) 0 0
\(126\) −155587. −0.873064
\(127\) − 133292.i − 0.733324i −0.930354 0.366662i \(-0.880500\pi\)
0.930354 0.366662i \(-0.119500\pi\)
\(128\) − 222370.i − 1.19964i
\(129\) 110932. 0.586923
\(130\) 0 0
\(131\) −140851. −0.717102 −0.358551 0.933510i \(-0.616729\pi\)
−0.358551 + 0.933510i \(0.616729\pi\)
\(132\) − 39450.3i − 0.197068i
\(133\) − 107185.i − 0.525417i
\(134\) −421207. −2.02644
\(135\) 0 0
\(136\) 136413. 0.632424
\(137\) − 251353.i − 1.14415i −0.820202 0.572074i \(-0.806139\pi\)
0.820202 0.572074i \(-0.193861\pi\)
\(138\) − 274154.i − 1.22545i
\(139\) 284722. 1.24992 0.624962 0.780655i \(-0.285115\pi\)
0.624962 + 0.780655i \(0.285115\pi\)
\(140\) 0 0
\(141\) 206509. 0.874766
\(142\) − 497340.i − 2.06982i
\(143\) − 43811.3i − 0.179162i
\(144\) 256874. 1.03232
\(145\) 0 0
\(146\) 344804. 1.33872
\(147\) − 70043.0i − 0.267345i
\(148\) − 20065.3i − 0.0752992i
\(149\) −34484.7 −0.127251 −0.0636254 0.997974i \(-0.520266\pi\)
−0.0636254 + 0.997974i \(0.520266\pi\)
\(150\) 0 0
\(151\) −330461. −1.17945 −0.589723 0.807606i \(-0.700763\pi\)
−0.589723 + 0.807606i \(0.700763\pi\)
\(152\) 143396.i 0.503418i
\(153\) 187468.i 0.647440i
\(154\) −188602. −0.640832
\(155\) 0 0
\(156\) −25718.0 −0.0846108
\(157\) − 384612.i − 1.24530i −0.782501 0.622650i \(-0.786056\pi\)
0.782501 0.622650i \(-0.213944\pi\)
\(158\) 415724.i 1.32484i
\(159\) −16309.3 −0.0511613
\(160\) 0 0
\(161\) −238537. −0.725255
\(162\) − 408306.i − 1.22236i
\(163\) 190142.i 0.560543i 0.959921 + 0.280272i \(0.0904246\pi\)
−0.959921 + 0.280272i \(0.909575\pi\)
\(164\) 38509.7 0.111805
\(165\) 0 0
\(166\) −248754. −0.700648
\(167\) 327019.i 0.907366i 0.891163 + 0.453683i \(0.149890\pi\)
−0.891163 + 0.453683i \(0.850110\pi\)
\(168\) − 386895.i − 1.05760i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −197065. −0.515371
\(172\) − 36950.9i − 0.0952365i
\(173\) − 104123.i − 0.264504i −0.991216 0.132252i \(-0.957779\pi\)
0.991216 0.132252i \(-0.0422209\pi\)
\(174\) −104448. −0.261533
\(175\) 0 0
\(176\) 311382. 0.757725
\(177\) 950678.i 2.28087i
\(178\) − 374071.i − 0.884919i
\(179\) 216503. 0.505047 0.252523 0.967591i \(-0.418740\pi\)
0.252523 + 0.967591i \(0.418740\pi\)
\(180\) 0 0
\(181\) −46482.5 −0.105461 −0.0527306 0.998609i \(-0.516792\pi\)
−0.0527306 + 0.998609i \(0.516792\pi\)
\(182\) 122951.i 0.275141i
\(183\) 1.08654e6i 2.39839i
\(184\) 319124. 0.694889
\(185\) 0 0
\(186\) −775655. −1.64394
\(187\) 227249.i 0.475223i
\(188\) − 68787.4i − 0.141943i
\(189\) −72453.0 −0.147537
\(190\) 0 0
\(191\) −854719. −1.69527 −0.847637 0.530576i \(-0.821975\pi\)
−0.847637 + 0.530576i \(0.821975\pi\)
\(192\) 482934.i 0.945442i
\(193\) − 869527.i − 1.68031i −0.542345 0.840156i \(-0.682464\pi\)
0.542345 0.840156i \(-0.317536\pi\)
\(194\) 260346. 0.496645
\(195\) 0 0
\(196\) −23331.0 −0.0433804
\(197\) 674594.i 1.23845i 0.785215 + 0.619223i \(0.212552\pi\)
−0.785215 + 0.619223i \(0.787448\pi\)
\(198\) 346755.i 0.628579i
\(199\) 630277. 1.12823 0.564117 0.825695i \(-0.309217\pi\)
0.564117 + 0.825695i \(0.309217\pi\)
\(200\) 0 0
\(201\) 1.43942e6 2.51303
\(202\) 1.00668e6i 1.73585i
\(203\) 90878.3i 0.154782i
\(204\) 133399. 0.224428
\(205\) 0 0
\(206\) 1.04798e6 1.72062
\(207\) 438563.i 0.711388i
\(208\) − 202993.i − 0.325328i
\(209\) −238882. −0.378284
\(210\) 0 0
\(211\) 1.19496e6 1.84777 0.923885 0.382671i \(-0.124996\pi\)
0.923885 + 0.382671i \(0.124996\pi\)
\(212\) 5432.55i 0.00830164i
\(213\) 1.69960e6i 2.56683i
\(214\) −362975. −0.541804
\(215\) 0 0
\(216\) 96930.6 0.141360
\(217\) 674885.i 0.972927i
\(218\) − 832371.i − 1.18625i
\(219\) −1.17833e6 −1.66018
\(220\) 0 0
\(221\) 148146. 0.204037
\(222\) 376767.i 0.513087i
\(223\) 1.26371e6i 1.70171i 0.525403 + 0.850854i \(0.323915\pi\)
−0.525403 + 0.850854i \(0.676085\pi\)
\(224\) −294624. −0.392327
\(225\) 0 0
\(226\) −930411. −1.21172
\(227\) 389798.i 0.502082i 0.967976 + 0.251041i \(0.0807729\pi\)
−0.967976 + 0.251041i \(0.919227\pi\)
\(228\) 140228.i 0.178648i
\(229\) 67870.2 0.0855245 0.0427623 0.999085i \(-0.486384\pi\)
0.0427623 + 0.999085i \(0.486384\pi\)
\(230\) 0 0
\(231\) 644524. 0.794711
\(232\) − 121581.i − 0.148301i
\(233\) − 204180.i − 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393140\pi\)
\(234\) 226053. 0.269880
\(235\) 0 0
\(236\) 316667. 0.370103
\(237\) − 1.42069e6i − 1.64296i
\(238\) − 637747.i − 0.729804i
\(239\) −1.35649e6 −1.53611 −0.768056 0.640383i \(-0.778776\pi\)
−0.768056 + 0.640383i \(0.778776\pi\)
\(240\) 0 0
\(241\) 230905. 0.256089 0.128044 0.991768i \(-0.459130\pi\)
0.128044 + 0.991768i \(0.459130\pi\)
\(242\) − 586969.i − 0.644283i
\(243\) 1.24398e6i 1.35144i
\(244\) 361923. 0.389172
\(245\) 0 0
\(246\) −723100. −0.761834
\(247\) 155730.i 0.162416i
\(248\) − 902888.i − 0.932191i
\(249\) 850086. 0.868890
\(250\) 0 0
\(251\) −1.20774e6 −1.21001 −0.605003 0.796223i \(-0.706828\pi\)
−0.605003 + 0.796223i \(0.706828\pi\)
\(252\) − 177107.i − 0.175685i
\(253\) 531626.i 0.522161i
\(254\) 833687. 0.810809
\(255\) 0 0
\(256\) 667816. 0.636879
\(257\) − 675820.i − 0.638261i −0.947711 0.319131i \(-0.896609\pi\)
0.947711 0.319131i \(-0.103391\pi\)
\(258\) 693830.i 0.648939i
\(259\) 327819. 0.303658
\(260\) 0 0
\(261\) 167085. 0.151822
\(262\) − 880961.i − 0.792873i
\(263\) − 377744.i − 0.336751i −0.985723 0.168375i \(-0.946148\pi\)
0.985723 0.168375i \(-0.0538521\pi\)
\(264\) −862271. −0.761437
\(265\) 0 0
\(266\) 670396. 0.580934
\(267\) 1.27834e6i 1.09741i
\(268\) − 479466.i − 0.407775i
\(269\) −82864.5 −0.0698213 −0.0349106 0.999390i \(-0.511115\pi\)
−0.0349106 + 0.999390i \(0.511115\pi\)
\(270\) 0 0
\(271\) 315805. 0.261214 0.130607 0.991434i \(-0.458307\pi\)
0.130607 + 0.991434i \(0.458307\pi\)
\(272\) 1.05292e6i 0.862925i
\(273\) − 420172.i − 0.341209i
\(274\) 1.57210e6 1.26504
\(275\) 0 0
\(276\) 312074. 0.246595
\(277\) 73722.7i 0.0577300i 0.999583 + 0.0288650i \(0.00918929\pi\)
−0.999583 + 0.0288650i \(0.990811\pi\)
\(278\) 1.78081e6i 1.38199i
\(279\) 1.24081e6 0.954324
\(280\) 0 0
\(281\) 983448. 0.742995 0.371497 0.928434i \(-0.378844\pi\)
0.371497 + 0.928434i \(0.378844\pi\)
\(282\) 1.29163e6i 0.967196i
\(283\) − 689549.i − 0.511798i −0.966703 0.255899i \(-0.917628\pi\)
0.966703 0.255899i \(-0.0823715\pi\)
\(284\) 566130. 0.416505
\(285\) 0 0
\(286\) 274021. 0.198093
\(287\) 629157.i 0.450873i
\(288\) 541683.i 0.384826i
\(289\) 651428. 0.458798
\(290\) 0 0
\(291\) −889700. −0.615902
\(292\) 392496.i 0.269388i
\(293\) − 2.26444e6i − 1.54096i −0.637462 0.770482i \(-0.720016\pi\)
0.637462 0.770482i \(-0.279984\pi\)
\(294\) 438089. 0.295593
\(295\) 0 0
\(296\) −438570. −0.290944
\(297\) 161475.i 0.106222i
\(298\) − 215687.i − 0.140696i
\(299\) 346572. 0.224189
\(300\) 0 0
\(301\) 603690. 0.384059
\(302\) − 2.06689e6i − 1.30407i
\(303\) − 3.44020e6i − 2.15267i
\(304\) −1.10682e6 −0.686901
\(305\) 0 0
\(306\) −1.17253e6 −0.715850
\(307\) 133545.i 0.0808690i 0.999182 + 0.0404345i \(0.0128742\pi\)
−0.999182 + 0.0404345i \(0.987126\pi\)
\(308\) − 214688.i − 0.128953i
\(309\) −3.58133e6 −2.13378
\(310\) 0 0
\(311\) 2.40605e6 1.41060 0.705299 0.708910i \(-0.250813\pi\)
0.705299 + 0.708910i \(0.250813\pi\)
\(312\) 562123.i 0.326922i
\(313\) − 1.83885e6i − 1.06093i −0.847708 0.530463i \(-0.822018\pi\)
0.847708 0.530463i \(-0.177982\pi\)
\(314\) 2.40558e6 1.37688
\(315\) 0 0
\(316\) −473225. −0.266594
\(317\) − 3.10514e6i − 1.73553i −0.496972 0.867767i \(-0.665555\pi\)
0.496972 0.867767i \(-0.334445\pi\)
\(318\) − 102007.i − 0.0565671i
\(319\) 202540. 0.111438
\(320\) 0 0
\(321\) 1.24042e6 0.671904
\(322\) − 1.49195e6i − 0.801887i
\(323\) − 807767.i − 0.430804i
\(324\) 464781. 0.245972
\(325\) 0 0
\(326\) −1.18926e6 −0.619772
\(327\) 2.84453e6i 1.47109i
\(328\) − 841712.i − 0.431995i
\(329\) 1.12382e6 0.572412
\(330\) 0 0
\(331\) 2.20989e6 1.10866 0.554332 0.832295i \(-0.312974\pi\)
0.554332 + 0.832295i \(0.312974\pi\)
\(332\) − 283160.i − 0.140990i
\(333\) − 602713.i − 0.297852i
\(334\) −2.04537e6 −1.00324
\(335\) 0 0
\(336\) 2.98630e6 1.44306
\(337\) − 2.47122e6i − 1.18532i −0.805452 0.592661i \(-0.798077\pi\)
0.805452 0.592661i \(-0.201923\pi\)
\(338\) − 178637.i − 0.0850510i
\(339\) 3.17957e6 1.50269
\(340\) 0 0
\(341\) 1.50411e6 0.700477
\(342\) − 1.23256e6i − 0.569826i
\(343\) − 2.33614e6i − 1.07217i
\(344\) −807641. −0.367978
\(345\) 0 0
\(346\) 651247. 0.292453
\(347\) 1.49298e6i 0.665626i 0.942993 + 0.332813i \(0.107998\pi\)
−0.942993 + 0.332813i \(0.892002\pi\)
\(348\) − 118895.i − 0.0526276i
\(349\) 4.00494e6 1.76008 0.880040 0.474900i \(-0.157516\pi\)
0.880040 + 0.474900i \(0.157516\pi\)
\(350\) 0 0
\(351\) 105267. 0.0456064
\(352\) 656628.i 0.282464i
\(353\) − 548627.i − 0.234337i −0.993112 0.117168i \(-0.962618\pi\)
0.993112 0.117168i \(-0.0373817\pi\)
\(354\) −5.94608e6 −2.52187
\(355\) 0 0
\(356\) 425810. 0.178070
\(357\) 2.17942e6i 0.905047i
\(358\) 1.35413e6i 0.558412i
\(359\) 2.00206e6 0.819862 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(360\) 0 0
\(361\) −1.62698e6 −0.657074
\(362\) − 290728.i − 0.116604i
\(363\) 2.00590e6i 0.798991i
\(364\) −139957. −0.0553659
\(365\) 0 0
\(366\) −6.79587e6 −2.65181
\(367\) − 2.30086e6i − 0.891712i −0.895105 0.445856i \(-0.852899\pi\)
0.895105 0.445856i \(-0.147101\pi\)
\(368\) 2.46320e6i 0.948157i
\(369\) 1.15674e6 0.442252
\(370\) 0 0
\(371\) −88755.0 −0.0334779
\(372\) − 882939.i − 0.330806i
\(373\) 1.36153e6i 0.506704i 0.967374 + 0.253352i \(0.0815330\pi\)
−0.967374 + 0.253352i \(0.918467\pi\)
\(374\) −1.42134e6 −0.525436
\(375\) 0 0
\(376\) −1.50350e6 −0.548445
\(377\) − 132038.i − 0.0478459i
\(378\) − 453162.i − 0.163126i
\(379\) −913278. −0.326591 −0.163296 0.986577i \(-0.552212\pi\)
−0.163296 + 0.986577i \(0.552212\pi\)
\(380\) 0 0
\(381\) −2.84902e6 −1.00550
\(382\) − 5.34590e6i − 1.87440i
\(383\) 3.16295e6i 1.10178i 0.834577 + 0.550891i \(0.185712\pi\)
−0.834577 + 0.550891i \(0.814288\pi\)
\(384\) −4.75299e6 −1.64490
\(385\) 0 0
\(386\) 5.43852e6 1.85786
\(387\) − 1.10992e6i − 0.376715i
\(388\) 296355.i 0.0999387i
\(389\) −1.11256e6 −0.372778 −0.186389 0.982476i \(-0.559678\pi\)
−0.186389 + 0.982476i \(0.559678\pi\)
\(390\) 0 0
\(391\) −1.79766e6 −0.594657
\(392\) 509950.i 0.167615i
\(393\) 3.01058e6i 0.983261i
\(394\) −4.21930e6 −1.36930
\(395\) 0 0
\(396\) −394717. −0.126487
\(397\) − 5.30834e6i − 1.69037i −0.534471 0.845187i \(-0.679489\pi\)
0.534471 0.845187i \(-0.320511\pi\)
\(398\) 3.94211e6i 1.24745i
\(399\) −2.29100e6 −0.720430
\(400\) 0 0
\(401\) −2.83298e6 −0.879796 −0.439898 0.898048i \(-0.644985\pi\)
−0.439898 + 0.898048i \(0.644985\pi\)
\(402\) 9.00297e6i 2.77857i
\(403\) − 980544.i − 0.300749i
\(404\) −1.14592e6 −0.349301
\(405\) 0 0
\(406\) −568405. −0.171137
\(407\) − 730608.i − 0.218624i
\(408\) − 2.91572e6i − 0.867153i
\(409\) 5.48711e6 1.62194 0.810971 0.585086i \(-0.198939\pi\)
0.810971 + 0.585086i \(0.198939\pi\)
\(410\) 0 0
\(411\) −5.37247e6 −1.56881
\(412\) 1.19293e6i 0.346235i
\(413\) 5.17359e6i 1.49251i
\(414\) −2.74303e6 −0.786555
\(415\) 0 0
\(416\) 428062. 0.121275
\(417\) − 6.08571e6i − 1.71384i
\(418\) − 1.49411e6i − 0.418255i
\(419\) 2.60460e6 0.724780 0.362390 0.932027i \(-0.381961\pi\)
0.362390 + 0.932027i \(0.381961\pi\)
\(420\) 0 0
\(421\) −154318. −0.0424338 −0.0212169 0.999775i \(-0.506754\pi\)
−0.0212169 + 0.999775i \(0.506754\pi\)
\(422\) 7.47397e6i 2.04301i
\(423\) − 2.06621e6i − 0.561467i
\(424\) 118740. 0.0320762
\(425\) 0 0
\(426\) −1.06303e7 −2.83805
\(427\) 5.91297e6i 1.56941i
\(428\) − 413180.i − 0.109026i
\(429\) −936434. −0.245660
\(430\) 0 0
\(431\) 4.30539e6 1.11640 0.558199 0.829707i \(-0.311492\pi\)
0.558199 + 0.829707i \(0.311492\pi\)
\(432\) 748170.i 0.192882i
\(433\) 3.05395e6i 0.782784i 0.920224 + 0.391392i \(0.128006\pi\)
−0.920224 + 0.391392i \(0.871994\pi\)
\(434\) −4.22111e6 −1.07573
\(435\) 0 0
\(436\) 947500. 0.238706
\(437\) − 1.88969e6i − 0.473355i
\(438\) − 7.36993e6i − 1.83560i
\(439\) −6.28386e6 −1.55620 −0.778100 0.628141i \(-0.783816\pi\)
−0.778100 + 0.628141i \(0.783816\pi\)
\(440\) 0 0
\(441\) −700810. −0.171595
\(442\) 926587.i 0.225596i
\(443\) 5.38851e6i 1.30455i 0.757984 + 0.652273i \(0.226184\pi\)
−0.757984 + 0.652273i \(0.773816\pi\)
\(444\) −428880. −0.103247
\(445\) 0 0
\(446\) −7.90396e6 −1.88151
\(447\) 737084.i 0.174481i
\(448\) 2.62813e6i 0.618659i
\(449\) 285189. 0.0667602 0.0333801 0.999443i \(-0.489373\pi\)
0.0333801 + 0.999443i \(0.489373\pi\)
\(450\) 0 0
\(451\) 1.40220e6 0.324615
\(452\) − 1.05910e6i − 0.243832i
\(453\) 7.06335e6i 1.61721i
\(454\) −2.43802e6 −0.555134
\(455\) 0 0
\(456\) 3.06499e6 0.690266
\(457\) − 5.26002e6i − 1.17814i −0.808082 0.589070i \(-0.799494\pi\)
0.808082 0.589070i \(-0.200506\pi\)
\(458\) 424499.i 0.0945613i
\(459\) −546020. −0.120970
\(460\) 0 0
\(461\) 6.93938e6 1.52079 0.760394 0.649463i \(-0.225006\pi\)
0.760394 + 0.649463i \(0.225006\pi\)
\(462\) 4.03122e6i 0.878683i
\(463\) − 113379.i − 0.0245798i −0.999924 0.0122899i \(-0.996088\pi\)
0.999924 0.0122899i \(-0.00391210\pi\)
\(464\) 938436. 0.202353
\(465\) 0 0
\(466\) 1.27706e6 0.272424
\(467\) − 2.78525e6i − 0.590980i −0.955346 0.295490i \(-0.904517\pi\)
0.955346 0.295490i \(-0.0954829\pi\)
\(468\) 257319.i 0.0543073i
\(469\) 7.83334e6 1.64443
\(470\) 0 0
\(471\) −8.22079e6 −1.70750
\(472\) − 6.92144e6i − 1.43002i
\(473\) − 1.34544e6i − 0.276510i
\(474\) 8.88579e6 1.81656
\(475\) 0 0
\(476\) 725957. 0.146857
\(477\) 163181.i 0.0328378i
\(478\) − 8.48428e6i − 1.69842i
\(479\) 6.54147e6 1.30268 0.651339 0.758787i \(-0.274208\pi\)
0.651339 + 0.758787i \(0.274208\pi\)
\(480\) 0 0
\(481\) −476290. −0.0938661
\(482\) 1.44421e6i 0.283147i
\(483\) 5.09854e6i 0.994440i
\(484\) 668155. 0.129647
\(485\) 0 0
\(486\) −7.78054e6 −1.49423
\(487\) − 4.65514e6i − 0.889427i −0.895673 0.444714i \(-0.853305\pi\)
0.895673 0.444714i \(-0.146695\pi\)
\(488\) − 7.91062e6i − 1.50370i
\(489\) 4.06414e6 0.768594
\(490\) 0 0
\(491\) −6.54709e6 −1.22559 −0.612794 0.790243i \(-0.709955\pi\)
−0.612794 + 0.790243i \(0.709955\pi\)
\(492\) − 823115.i − 0.153302i
\(493\) 684878.i 0.126910i
\(494\) −974022. −0.179577
\(495\) 0 0
\(496\) 6.96905e6 1.27195
\(497\) 9.24922e6i 1.67963i
\(498\) 5.31693e6i 0.960699i
\(499\) −187544. −0.0337173 −0.0168586 0.999858i \(-0.505367\pi\)
−0.0168586 + 0.999858i \(0.505367\pi\)
\(500\) 0 0
\(501\) 6.98979e6 1.24414
\(502\) − 7.55387e6i − 1.33786i
\(503\) − 7.63064e6i − 1.34475i −0.740212 0.672374i \(-0.765275\pi\)
0.740212 0.672374i \(-0.234725\pi\)
\(504\) −3.87105e6 −0.678817
\(505\) 0 0
\(506\) −3.32509e6 −0.577334
\(507\) 610470.i 0.105474i
\(508\) 948998.i 0.163157i
\(509\) 1.64426e6 0.281304 0.140652 0.990059i \(-0.455080\pi\)
0.140652 + 0.990059i \(0.455080\pi\)
\(510\) 0 0
\(511\) −6.41246e6 −1.08636
\(512\) − 2.93895e6i − 0.495469i
\(513\) − 573973.i − 0.0962937i
\(514\) 4.22697e6 0.705702
\(515\) 0 0
\(516\) −789797. −0.130584
\(517\) − 2.50466e6i − 0.412119i
\(518\) 2.05037e6i 0.335743i
\(519\) −2.22556e6 −0.362678
\(520\) 0 0
\(521\) −2.37187e6 −0.382823 −0.191411 0.981510i \(-0.561306\pi\)
−0.191411 + 0.981510i \(0.561306\pi\)
\(522\) 1.04504e6i 0.167864i
\(523\) 2.16500e6i 0.346101i 0.984913 + 0.173051i \(0.0553624\pi\)
−0.984913 + 0.173051i \(0.944638\pi\)
\(524\) 1.00281e6 0.159548
\(525\) 0 0
\(526\) 2.36263e6 0.372333
\(527\) 5.08607e6i 0.797729i
\(528\) − 6.65555e6i − 1.03896i
\(529\) 2.23089e6 0.346608
\(530\) 0 0
\(531\) 9.51193e6 1.46397
\(532\) 763121.i 0.116900i
\(533\) − 914106.i − 0.139373i
\(534\) −7.99548e6 −1.21336
\(535\) 0 0
\(536\) −1.04798e7 −1.57558
\(537\) − 4.62759e6i − 0.692499i
\(538\) − 518282.i − 0.0771988i
\(539\) −849520. −0.125951
\(540\) 0 0
\(541\) 2.41746e6 0.355112 0.177556 0.984111i \(-0.443181\pi\)
0.177556 + 0.984111i \(0.443181\pi\)
\(542\) 1.97523e6i 0.288814i
\(543\) 993527.i 0.144604i
\(544\) −2.22035e6 −0.321680
\(545\) 0 0
\(546\) 2.62799e6 0.377262
\(547\) − 9.98124e6i − 1.42632i −0.701002 0.713159i \(-0.747264\pi\)
0.701002 0.713159i \(-0.252736\pi\)
\(548\) 1.78955e6i 0.254561i
\(549\) 1.08713e7 1.53940
\(550\) 0 0
\(551\) −719939. −0.101022
\(552\) − 6.82104e6i − 0.952803i
\(553\) − 7.73138e6i − 1.07509i
\(554\) −461104. −0.0638299
\(555\) 0 0
\(556\) −2.02712e6 −0.278095
\(557\) 139762.i 0.0190875i 0.999954 + 0.00954377i \(0.00303792\pi\)
−0.999954 + 0.00954377i \(0.996962\pi\)
\(558\) 7.76075e6i 1.05516i
\(559\) −877105. −0.118719
\(560\) 0 0
\(561\) 4.85727e6 0.651606
\(562\) 6.15105e6i 0.821502i
\(563\) 2.73423e6i 0.363550i 0.983340 + 0.181775i \(0.0581843\pi\)
−0.983340 + 0.181775i \(0.941816\pi\)
\(564\) −1.47028e6 −0.194626
\(565\) 0 0
\(566\) 4.31283e6 0.565876
\(567\) 7.59342e6i 0.991927i
\(568\) − 1.23740e7i − 1.60931i
\(569\) −8.14061e6 −1.05409 −0.527043 0.849838i \(-0.676699\pi\)
−0.527043 + 0.849838i \(0.676699\pi\)
\(570\) 0 0
\(571\) −6.32458e6 −0.811785 −0.405893 0.913921i \(-0.633039\pi\)
−0.405893 + 0.913921i \(0.633039\pi\)
\(572\) 311922.i 0.0398617i
\(573\) 1.82690e7i 2.32449i
\(574\) −3.93511e6 −0.498513
\(575\) 0 0
\(576\) 4.83196e6 0.606830
\(577\) − 2.57561e6i − 0.322063i −0.986949 0.161032i \(-0.948518\pi\)
0.986949 0.161032i \(-0.0514821\pi\)
\(578\) 4.07440e6i 0.507276i
\(579\) −1.85855e7 −2.30397
\(580\) 0 0
\(581\) 4.62617e6 0.568566
\(582\) − 5.56470e6i − 0.680979i
\(583\) 197808.i 0.0241030i
\(584\) 8.57885e6 1.04087
\(585\) 0 0
\(586\) 1.41631e7 1.70379
\(587\) − 3.08620e6i − 0.369682i −0.982768 0.184841i \(-0.940823\pi\)
0.982768 0.184841i \(-0.0591771\pi\)
\(588\) 498683.i 0.0594814i
\(589\) −5.34644e6 −0.635004
\(590\) 0 0
\(591\) 1.44189e7 1.69810
\(592\) − 3.38515e6i − 0.396985i
\(593\) 7.24899e6i 0.846527i 0.906007 + 0.423263i \(0.139115\pi\)
−0.906007 + 0.423263i \(0.860885\pi\)
\(594\) −1.00996e6 −0.117446
\(595\) 0 0
\(596\) 245520. 0.0283120
\(597\) − 1.34717e7i − 1.54699i
\(598\) 2.16766e6i 0.247878i
\(599\) 8.78328e6 1.00021 0.500104 0.865966i \(-0.333295\pi\)
0.500104 + 0.865966i \(0.333295\pi\)
\(600\) 0 0
\(601\) −1.04096e7 −1.17557 −0.587783 0.809019i \(-0.699999\pi\)
−0.587783 + 0.809019i \(0.699999\pi\)
\(602\) 3.77582e6i 0.424639i
\(603\) − 1.44020e7i − 1.61298i
\(604\) 2.35277e6 0.262414
\(605\) 0 0
\(606\) 2.15170e7 2.38012
\(607\) 1.02228e7i 1.12616i 0.826403 + 0.563079i \(0.190383\pi\)
−0.826403 + 0.563079i \(0.809617\pi\)
\(608\) − 2.33402e6i − 0.256062i
\(609\) 1.94246e6 0.212231
\(610\) 0 0
\(611\) −1.63281e6 −0.176943
\(612\) − 1.33471e6i − 0.144049i
\(613\) − 1.24077e6i − 0.133364i −0.997774 0.0666822i \(-0.978759\pi\)
0.997774 0.0666822i \(-0.0212414\pi\)
\(614\) −835268. −0.0894139
\(615\) 0 0
\(616\) −4.69248e6 −0.498254
\(617\) 7.95105e6i 0.840836i 0.907330 + 0.420418i \(0.138117\pi\)
−0.907330 + 0.420418i \(0.861883\pi\)
\(618\) − 2.23997e7i − 2.35924i
\(619\) −4.21032e6 −0.441661 −0.220830 0.975312i \(-0.570877\pi\)
−0.220830 + 0.975312i \(0.570877\pi\)
\(620\) 0 0
\(621\) −1.27736e6 −0.132918
\(622\) 1.50488e7i 1.55965i
\(623\) 6.95673e6i 0.718100i
\(624\) −4.33881e6 −0.446077
\(625\) 0 0
\(626\) 1.15012e7 1.17303
\(627\) 5.10593e6i 0.518687i
\(628\) 2.73831e6i 0.277066i
\(629\) 2.47051e6 0.248977
\(630\) 0 0
\(631\) 1.10594e7 1.10575 0.552877 0.833263i \(-0.313530\pi\)
0.552877 + 0.833263i \(0.313530\pi\)
\(632\) 1.03434e7i 1.03007i
\(633\) − 2.55414e7i − 2.53358i
\(634\) 1.94213e7 1.91891
\(635\) 0 0
\(636\) 116117. 0.0113829
\(637\) 553810.i 0.0540770i
\(638\) 1.26680e6i 0.123213i
\(639\) 1.70052e7 1.64752
\(640\) 0 0
\(641\) −5.22205e6 −0.501991 −0.250995 0.967988i \(-0.580758\pi\)
−0.250995 + 0.967988i \(0.580758\pi\)
\(642\) 7.75832e6i 0.742900i
\(643\) 8.62447e6i 0.822631i 0.911493 + 0.411316i \(0.134931\pi\)
−0.911493 + 0.411316i \(0.865069\pi\)
\(644\) 1.69830e6 0.161362
\(645\) 0 0
\(646\) 5.05224e6 0.476324
\(647\) 1.74948e7i 1.64304i 0.570182 + 0.821518i \(0.306873\pi\)
−0.570182 + 0.821518i \(0.693127\pi\)
\(648\) − 1.01588e7i − 0.950396i
\(649\) 1.15303e7 1.07456
\(650\) 0 0
\(651\) 1.44251e7 1.33404
\(652\) − 1.35375e6i − 0.124715i
\(653\) − 1.54315e7i − 1.41620i −0.706113 0.708099i \(-0.749553\pi\)
0.706113 0.708099i \(-0.250447\pi\)
\(654\) −1.77913e7 −1.62653
\(655\) 0 0
\(656\) 6.49686e6 0.589446
\(657\) 1.17897e7i 1.06558i
\(658\) 7.02904e6i 0.632894i
\(659\) −2.04187e7 −1.83154 −0.915768 0.401708i \(-0.868417\pi\)
−0.915768 + 0.401708i \(0.868417\pi\)
\(660\) 0 0
\(661\) −1.40718e7 −1.25270 −0.626349 0.779543i \(-0.715451\pi\)
−0.626349 + 0.779543i \(0.715451\pi\)
\(662\) 1.38219e7i 1.22581i
\(663\) − 3.16650e6i − 0.279766i
\(664\) −6.18908e6 −0.544761
\(665\) 0 0
\(666\) 3.76971e6 0.329323
\(667\) 1.60220e6i 0.139445i
\(668\) − 2.32827e6i − 0.201880i
\(669\) 2.70108e7 2.33331
\(670\) 0 0
\(671\) 1.31782e7 1.12993
\(672\) 6.29737e6i 0.537943i
\(673\) − 1.50655e7i − 1.28217i −0.767469 0.641086i \(-0.778484\pi\)
0.767469 0.641086i \(-0.221516\pi\)
\(674\) 1.54564e7 1.31057
\(675\) 0 0
\(676\) 203345. 0.0171146
\(677\) − 4.13338e6i − 0.346604i −0.984869 0.173302i \(-0.944556\pi\)
0.984869 0.173302i \(-0.0554437\pi\)
\(678\) 1.98868e7i 1.66147i
\(679\) −4.84175e6 −0.403021
\(680\) 0 0
\(681\) 8.33163e6 0.688434
\(682\) 9.40757e6i 0.774491i
\(683\) 1.67899e7i 1.37720i 0.725142 + 0.688599i \(0.241774\pi\)
−0.725142 + 0.688599i \(0.758226\pi\)
\(684\) 1.40304e6 0.114665
\(685\) 0 0
\(686\) 1.46116e7 1.18546
\(687\) − 1.45067e6i − 0.117268i
\(688\) − 6.23388e6i − 0.502096i
\(689\) 128953. 0.0103486
\(690\) 0 0
\(691\) −1.85418e7 −1.47726 −0.738631 0.674110i \(-0.764527\pi\)
−0.738631 + 0.674110i \(0.764527\pi\)
\(692\) 741324.i 0.0588495i
\(693\) − 6.44874e6i − 0.510084i
\(694\) −9.33795e6 −0.735958
\(695\) 0 0
\(696\) −2.59870e6 −0.203345
\(697\) 4.74146e6i 0.369683i
\(698\) 2.50492e7i 1.94605i
\(699\) −4.36419e6 −0.337840
\(700\) 0 0
\(701\) 4.81303e6 0.369933 0.184967 0.982745i \(-0.440782\pi\)
0.184967 + 0.982745i \(0.440782\pi\)
\(702\) 658402.i 0.0504253i
\(703\) 2.59698e6i 0.198190i
\(704\) 5.85729e6 0.445415
\(705\) 0 0
\(706\) 3.43142e6 0.259097
\(707\) − 1.87216e7i − 1.40862i
\(708\) − 6.76851e6i − 0.507470i
\(709\) −2.07738e7 −1.55203 −0.776015 0.630714i \(-0.782762\pi\)
−0.776015 + 0.630714i \(0.782762\pi\)
\(710\) 0 0
\(711\) −1.42146e7 −1.05453
\(712\) − 9.30700e6i − 0.688034i
\(713\) 1.18983e7i 0.876522i
\(714\) −1.36314e7 −1.00068
\(715\) 0 0
\(716\) −1.54143e6 −0.112368
\(717\) 2.89940e7i 2.10625i
\(718\) 1.25220e7i 0.906491i
\(719\) −1.17074e7 −0.844573 −0.422287 0.906462i \(-0.638772\pi\)
−0.422287 + 0.906462i \(0.638772\pi\)
\(720\) 0 0
\(721\) −1.94896e7 −1.39626
\(722\) − 1.01761e7i − 0.726502i
\(723\) − 4.93541e6i − 0.351138i
\(724\) 330940. 0.0234640
\(725\) 0 0
\(726\) −1.25460e7 −0.883414
\(727\) − 1.45991e7i − 1.02445i −0.858851 0.512226i \(-0.828821\pi\)
0.858851 0.512226i \(-0.171179\pi\)
\(728\) 3.05907e6i 0.213925i
\(729\) 1.07257e7 0.747493
\(730\) 0 0
\(731\) 4.54953e6 0.314900
\(732\) − 7.73584e6i − 0.533617i
\(733\) − 2.44712e7i − 1.68227i −0.540826 0.841135i \(-0.681888\pi\)
0.540826 0.841135i \(-0.318112\pi\)
\(734\) 1.43909e7 0.985932
\(735\) 0 0
\(736\) −5.19429e6 −0.353453
\(737\) − 1.74581e7i − 1.18394i
\(738\) 7.23491e6i 0.488982i
\(739\) −1.42425e7 −0.959343 −0.479671 0.877448i \(-0.659244\pi\)
−0.479671 + 0.877448i \(0.659244\pi\)
\(740\) 0 0
\(741\) 3.32860e6 0.222698
\(742\) − 555124.i − 0.0370152i
\(743\) 2.54417e7i 1.69073i 0.534191 + 0.845364i \(0.320616\pi\)
−0.534191 + 0.845364i \(0.679384\pi\)
\(744\) −1.92986e7 −1.27818
\(745\) 0 0
\(746\) −8.51576e6 −0.560243
\(747\) − 8.50547e6i − 0.557695i
\(748\) − 1.61794e6i − 0.105732i
\(749\) 6.75039e6 0.439667
\(750\) 0 0
\(751\) −6.95129e6 −0.449744 −0.224872 0.974388i \(-0.572196\pi\)
−0.224872 + 0.974388i \(0.572196\pi\)
\(752\) − 1.16049e7i − 0.748338i
\(753\) 2.58144e7i 1.65911i
\(754\) 825839. 0.0529014
\(755\) 0 0
\(756\) 515841. 0.0328255
\(757\) 2.30272e7i 1.46050i 0.683181 + 0.730249i \(0.260596\pi\)
−0.683181 + 0.730249i \(0.739404\pi\)
\(758\) − 5.71216e6i − 0.361100i
\(759\) 1.13631e7 0.715966
\(760\) 0 0
\(761\) −1.15710e7 −0.724287 −0.362144 0.932122i \(-0.617955\pi\)
−0.362144 + 0.932122i \(0.617955\pi\)
\(762\) − 1.78194e7i − 1.11175i
\(763\) 1.54799e7i 0.962625i
\(764\) 6.08532e6 0.377181
\(765\) 0 0
\(766\) −1.97829e7 −1.21820
\(767\) − 7.51674e6i − 0.461361i
\(768\) − 1.42741e7i − 0.873261i
\(769\) 1.20721e7 0.736153 0.368076 0.929796i \(-0.380017\pi\)
0.368076 + 0.929796i \(0.380017\pi\)
\(770\) 0 0
\(771\) −1.44451e7 −0.875157
\(772\) 6.19074e6i 0.373852i
\(773\) − 7.33162e6i − 0.441318i −0.975351 0.220659i \(-0.929179\pi\)
0.975351 0.220659i \(-0.0708208\pi\)
\(774\) 6.94206e6 0.416520
\(775\) 0 0
\(776\) 6.47749e6 0.386147
\(777\) − 7.00688e6i − 0.416363i
\(778\) − 6.95860e6i − 0.412167i
\(779\) −4.98419e6 −0.294273
\(780\) 0 0
\(781\) 2.06137e7 1.20928
\(782\) − 1.12436e7i − 0.657490i
\(783\) 486652.i 0.0283670i
\(784\) −3.93611e6 −0.228706
\(785\) 0 0
\(786\) −1.88299e7 −1.08715
\(787\) 1.65857e7i 0.954546i 0.878755 + 0.477273i \(0.158375\pi\)
−0.878755 + 0.477273i \(0.841625\pi\)
\(788\) − 4.80289e6i − 0.275541i
\(789\) −8.07400e6 −0.461738
\(790\) 0 0
\(791\) 1.73032e7 0.983298
\(792\) 8.62739e6i 0.488727i
\(793\) − 8.59099e6i − 0.485133i
\(794\) 3.32014e7 1.86898
\(795\) 0 0
\(796\) −4.48737e6 −0.251020
\(797\) 6.27622e6i 0.349987i 0.984570 + 0.174994i \(0.0559905\pi\)
−0.984570 + 0.174994i \(0.944010\pi\)
\(798\) − 1.43292e7i − 0.796553i
\(799\) 8.46937e6 0.469336
\(800\) 0 0
\(801\) 1.27903e7 0.704370
\(802\) − 1.77191e7i − 0.972758i
\(803\) 1.42914e7i 0.782142i
\(804\) −1.02482e7 −0.559124
\(805\) 0 0
\(806\) 6.13288e6 0.332527
\(807\) 1.77117e6i 0.0957360i
\(808\) 2.50465e7i 1.34964i
\(809\) 2.64760e7 1.42227 0.711134 0.703057i \(-0.248182\pi\)
0.711134 + 0.703057i \(0.248182\pi\)
\(810\) 0 0
\(811\) 1.73949e7 0.928688 0.464344 0.885655i \(-0.346290\pi\)
0.464344 + 0.885655i \(0.346290\pi\)
\(812\) − 647024.i − 0.0344374i
\(813\) − 6.75010e6i − 0.358166i
\(814\) 4.56964e6 0.241725
\(815\) 0 0
\(816\) 2.25054e7 1.18321
\(817\) 4.78244e6i 0.250665i
\(818\) 3.43195e7i 1.79332i
\(819\) −4.20399e6 −0.219004
\(820\) 0 0
\(821\) −2.24599e7 −1.16292 −0.581460 0.813575i \(-0.697518\pi\)
−0.581460 + 0.813575i \(0.697518\pi\)
\(822\) − 3.36025e7i − 1.73457i
\(823\) − 2.29479e7i − 1.18098i −0.807043 0.590492i \(-0.798934\pi\)
0.807043 0.590492i \(-0.201066\pi\)
\(824\) 2.60740e7 1.33780
\(825\) 0 0
\(826\) −3.23586e7 −1.65021
\(827\) − 2.60201e7i − 1.32295i −0.749965 0.661477i \(-0.769930\pi\)
0.749965 0.661477i \(-0.230070\pi\)
\(828\) − 3.12243e6i − 0.158276i
\(829\) −2.59397e7 −1.31093 −0.655463 0.755227i \(-0.727527\pi\)
−0.655463 + 0.755227i \(0.727527\pi\)
\(830\) 0 0
\(831\) 1.57577e6 0.0791570
\(832\) − 3.81842e6i − 0.191239i
\(833\) − 2.87261e6i − 0.143438i
\(834\) 3.80635e7 1.89493
\(835\) 0 0
\(836\) 1.70076e6 0.0841643
\(837\) 3.61399e6i 0.178309i
\(838\) 1.62907e7i 0.801362i
\(839\) 7.59928e6 0.372707 0.186353 0.982483i \(-0.440333\pi\)
0.186353 + 0.982483i \(0.440333\pi\)
\(840\) 0 0
\(841\) −1.99007e7 −0.970240
\(842\) − 965195.i − 0.0469175i
\(843\) − 2.10205e7i − 1.01876i
\(844\) −8.50773e6 −0.411110
\(845\) 0 0
\(846\) 1.29233e7 0.620793
\(847\) 1.09161e7i 0.522827i
\(848\) 916510.i 0.0437671i
\(849\) −1.47386e7 −0.701756
\(850\) 0 0
\(851\) 5.77951e6 0.273569
\(852\) − 1.21006e7i − 0.571094i
\(853\) 4.38692e6i 0.206437i 0.994659 + 0.103218i \(0.0329140\pi\)
−0.994659 + 0.103218i \(0.967086\pi\)
\(854\) −3.69831e7 −1.73524
\(855\) 0 0
\(856\) −9.03094e6 −0.421259
\(857\) 3.98007e6i 0.185114i 0.995707 + 0.0925569i \(0.0295040\pi\)
−0.995707 + 0.0925569i \(0.970496\pi\)
\(858\) − 5.85699e6i − 0.271617i
\(859\) 1.81700e7 0.840178 0.420089 0.907483i \(-0.361999\pi\)
0.420089 + 0.907483i \(0.361999\pi\)
\(860\) 0 0
\(861\) 1.34478e7 0.618218
\(862\) 2.69284e7i 1.23436i
\(863\) 3.33461e7i 1.52412i 0.647509 + 0.762058i \(0.275811\pi\)
−0.647509 + 0.762058i \(0.724189\pi\)
\(864\) −1.57771e6 −0.0719022
\(865\) 0 0
\(866\) −1.91011e7 −0.865495
\(867\) − 1.39238e7i − 0.629085i
\(868\) − 4.80495e6i − 0.216466i
\(869\) −1.72309e7 −0.774030
\(870\) 0 0
\(871\) −1.13811e7 −0.508322
\(872\) − 2.07097e7i − 0.922320i
\(873\) 8.90182e6i 0.395315i
\(874\) 1.18192e7 0.523371
\(875\) 0 0
\(876\) 8.38930e6 0.369373
\(877\) 2.27510e7i 0.998853i 0.866356 + 0.499426i \(0.166456\pi\)
−0.866356 + 0.499426i \(0.833544\pi\)
\(878\) − 3.93029e7i − 1.72063i
\(879\) −4.84008e7 −2.11291
\(880\) 0 0
\(881\) 2.66503e7 1.15681 0.578405 0.815750i \(-0.303676\pi\)
0.578405 + 0.815750i \(0.303676\pi\)
\(882\) − 4.38326e6i − 0.189726i
\(883\) − 2.54804e7i − 1.09978i −0.835238 0.549888i \(-0.814670\pi\)
0.835238 0.549888i \(-0.185330\pi\)
\(884\) −1.05475e6 −0.0453960
\(885\) 0 0
\(886\) −3.37028e7 −1.44239
\(887\) 4.94339e6i 0.210968i 0.994421 + 0.105484i \(0.0336392\pi\)
−0.994421 + 0.105484i \(0.966361\pi\)
\(888\) 9.37409e6i 0.398930i
\(889\) −1.55044e7 −0.657961
\(890\) 0 0
\(891\) 1.69234e7 0.714157
\(892\) − 8.99719e6i − 0.378612i
\(893\) 8.90294e6i 0.373598i
\(894\) −4.61015e6 −0.192917
\(895\) 0 0
\(896\) −2.58658e7 −1.07636
\(897\) − 7.40771e6i − 0.307399i
\(898\) 1.78374e6i 0.0738142i
\(899\) 4.53306e6 0.187065
\(900\) 0 0
\(901\) −668876. −0.0274494
\(902\) 8.77015e6i 0.358914i
\(903\) − 1.29034e7i − 0.526605i
\(904\) −2.31489e7 −0.942128
\(905\) 0 0
\(906\) −4.41783e7 −1.78808
\(907\) 1.72075e7i 0.694542i 0.937765 + 0.347271i \(0.112892\pi\)
−0.937765 + 0.347271i \(0.887108\pi\)
\(908\) − 2.77523e6i − 0.111708i
\(909\) −3.44206e7 −1.38169
\(910\) 0 0
\(911\) −3.34765e7 −1.33642 −0.668212 0.743971i \(-0.732940\pi\)
−0.668212 + 0.743971i \(0.732940\pi\)
\(912\) 2.36575e7i 0.941849i
\(913\) − 1.03103e7i − 0.409350i
\(914\) 3.28992e7 1.30262
\(915\) 0 0
\(916\) −483214. −0.0190283
\(917\) 1.63836e7i 0.643406i
\(918\) − 3.41512e6i − 0.133752i
\(919\) −7.59930e6 −0.296814 −0.148407 0.988926i \(-0.547415\pi\)
−0.148407 + 0.988926i \(0.547415\pi\)
\(920\) 0 0
\(921\) 2.85443e6 0.110884
\(922\) 4.34029e7i 1.68148i
\(923\) − 1.34382e7i − 0.519204i
\(924\) −4.58880e6 −0.176815
\(925\) 0 0
\(926\) 709135. 0.0271770
\(927\) 3.58327e7i 1.36956i
\(928\) 1.97893e6i 0.0754329i
\(929\) −1.98974e7 −0.756411 −0.378205 0.925722i \(-0.623459\pi\)
−0.378205 + 0.925722i \(0.623459\pi\)
\(930\) 0 0
\(931\) 3.01966e6 0.114179
\(932\) 1.45369e6i 0.0548192i
\(933\) − 5.14275e7i − 1.93415i
\(934\) 1.74206e7 0.653424
\(935\) 0 0
\(936\) 5.62427e6 0.209834
\(937\) − 1.39414e7i − 0.518749i −0.965777 0.259375i \(-0.916484\pi\)
0.965777 0.259375i \(-0.0835164\pi\)
\(938\) 4.89942e7i 1.81818i
\(939\) −3.93040e7 −1.45470
\(940\) 0 0
\(941\) 3.02780e7 1.11469 0.557345 0.830281i \(-0.311820\pi\)
0.557345 + 0.830281i \(0.311820\pi\)
\(942\) − 5.14175e7i − 1.88792i
\(943\) 1.10922e7i 0.406197i
\(944\) 5.34240e7 1.95122
\(945\) 0 0
\(946\) 8.41515e6 0.305727
\(947\) − 5.48834e7i − 1.98868i −0.106223 0.994342i \(-0.533876\pi\)
0.106223 0.994342i \(-0.466124\pi\)
\(948\) 1.01148e7i 0.365542i
\(949\) 9.31670e6 0.335812
\(950\) 0 0
\(951\) −6.63700e7 −2.37969
\(952\) − 1.58674e7i − 0.567430i
\(953\) 3.67850e7i 1.31201i 0.754755 + 0.656007i \(0.227756\pi\)
−0.754755 + 0.656007i \(0.772244\pi\)
\(954\) −1.02063e6 −0.0363075
\(955\) 0 0
\(956\) 9.65778e6 0.341769
\(957\) − 4.32914e6i − 0.152799i
\(958\) 4.09141e7i 1.44032i
\(959\) −2.92370e7 −1.02656
\(960\) 0 0
\(961\) 5.03445e6 0.175851
\(962\) − 2.97899e6i − 0.103784i
\(963\) − 1.24110e7i − 0.431260i
\(964\) −1.64396e6 −0.0569770
\(965\) 0 0
\(966\) −3.18892e7 −1.09951
\(967\) 2.94486e6i 0.101274i 0.998717 + 0.0506371i \(0.0161252\pi\)
−0.998717 + 0.0506371i \(0.983875\pi\)
\(968\) − 1.46040e7i − 0.500937i
\(969\) −1.72654e7 −0.590701
\(970\) 0 0
\(971\) −3.29113e7 −1.12020 −0.560102 0.828424i \(-0.689238\pi\)
−0.560102 + 0.828424i \(0.689238\pi\)
\(972\) − 8.85670e6i − 0.300681i
\(973\) − 3.31184e7i − 1.12147i
\(974\) 2.91159e7 0.983407
\(975\) 0 0
\(976\) 6.10591e7 2.05176
\(977\) − 3.00384e7i − 1.00679i −0.864056 0.503396i \(-0.832084\pi\)
0.864056 0.503396i \(-0.167916\pi\)
\(978\) 2.54195e7i 0.849805i
\(979\) 1.55044e7 0.517010
\(980\) 0 0
\(981\) 2.84607e7 0.944219
\(982\) − 4.09492e7i − 1.35509i
\(983\) − 4.02782e7i − 1.32949i −0.747069 0.664747i \(-0.768540\pi\)
0.747069 0.664747i \(-0.231460\pi\)
\(984\) −1.79910e7 −0.592334
\(985\) 0 0
\(986\) −4.28362e6 −0.140320
\(987\) − 2.40209e7i − 0.784867i
\(988\) − 1.10874e6i − 0.0361359i
\(989\) 1.06432e7 0.346003
\(990\) 0 0
\(991\) 4.26432e7 1.37932 0.689661 0.724132i \(-0.257760\pi\)
0.689661 + 0.724132i \(0.257760\pi\)
\(992\) 1.46960e7i 0.474155i
\(993\) − 4.72347e7i − 1.52015i
\(994\) −5.78499e7 −1.85711
\(995\) 0 0
\(996\) −6.05233e6 −0.193319
\(997\) 1.22251e7i 0.389508i 0.980852 + 0.194754i \(0.0623908\pi\)
−0.980852 + 0.194754i \(0.937609\pi\)
\(998\) − 1.17301e6i − 0.0372799i
\(999\) 1.75546e6 0.0556516
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.d.274.5 6
5.2 odd 4 65.6.a.b.1.1 3
5.3 odd 4 325.6.a.d.1.3 3
5.4 even 2 inner 325.6.b.d.274.2 6
15.2 even 4 585.6.a.c.1.3 3
20.7 even 4 1040.6.a.k.1.3 3
65.12 odd 4 845.6.a.c.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.b.1.1 3 5.2 odd 4
325.6.a.d.1.3 3 5.3 odd 4
325.6.b.d.274.2 6 5.4 even 2 inner
325.6.b.d.274.5 6 1.1 even 1 trivial
585.6.a.c.1.3 3 15.2 even 4
845.6.a.c.1.3 3 65.12 odd 4
1040.6.a.k.1.3 3 20.7 even 4