Properties

Label 325.6.b.f.274.10
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 326x^{10} + 40401x^{8} + 2365264x^{6} + 65636064x^{4} + 738923264x^{2} + 2250553600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.10
Root \(7.62628i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.f.274.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.62628i q^{2} +29.7832i q^{3} -26.1601 q^{4} -227.135 q^{6} +171.199i q^{7} +44.5366i q^{8} -644.042 q^{9} +452.811 q^{11} -779.133i q^{12} +169.000i q^{13} -1305.61 q^{14} -1176.77 q^{16} +1469.49i q^{17} -4911.64i q^{18} -2007.18 q^{19} -5098.87 q^{21} +3453.26i q^{22} +763.605i q^{23} -1326.44 q^{24} -1288.84 q^{26} -11944.3i q^{27} -4478.59i q^{28} +6493.90 q^{29} +5299.68 q^{31} -7549.22i q^{32} +13486.2i q^{33} -11206.7 q^{34} +16848.2 q^{36} -4537.59i q^{37} -15307.3i q^{38} -5033.37 q^{39} +13699.1 q^{41} -38885.4i q^{42} -3824.25i q^{43} -11845.6 q^{44} -5823.46 q^{46} +15653.3i q^{47} -35048.1i q^{48} -12502.1 q^{49} -43766.2 q^{51} -4421.06i q^{52} +16260.1i q^{53} +91090.7 q^{54} -7624.63 q^{56} -59780.3i q^{57} +49524.3i q^{58} -16817.3 q^{59} +9690.04 q^{61} +40416.8i q^{62} -110259. i q^{63} +19915.7 q^{64} -102849. q^{66} -5726.95i q^{67} -38442.0i q^{68} -22742.6 q^{69} +12847.1 q^{71} -28683.4i q^{72} +41868.8i q^{73} +34604.9 q^{74} +52508.0 q^{76} +77520.8i q^{77} -38385.9i q^{78} +33399.1 q^{79} +199239. q^{81} +104473. i q^{82} +58851.7i q^{83} +133387. q^{84} +29164.8 q^{86} +193409. i q^{87} +20166.7i q^{88} +94010.3 q^{89} -28932.7 q^{91} -19976.0i q^{92} +157842. i q^{93} -119377. q^{94} +224840. q^{96} -126692. i q^{97} -95344.8i q^{98} -291629. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 268 q^{4} - 104 q^{6} - 2068 q^{9} + 1600 q^{11} - 4216 q^{14} + 644 q^{16} - 10608 q^{19} + 2144 q^{21} - 9512 q^{24} - 676 q^{26} + 7328 q^{29} + 33328 q^{31} - 2760 q^{34} + 3636 q^{36} + 6760 q^{39}+ \cdots - 602528 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.62628i 1.34815i 0.738664 + 0.674074i \(0.235457\pi\)
−0.738664 + 0.674074i \(0.764543\pi\)
\(3\) 29.7832i 1.91060i 0.295645 + 0.955298i \(0.404466\pi\)
−0.295645 + 0.955298i \(0.595534\pi\)
\(4\) −26.1601 −0.817503
\(5\) 0 0
\(6\) −227.135 −2.57577
\(7\) 171.199i 1.32055i 0.751022 + 0.660277i \(0.229561\pi\)
−0.751022 + 0.660277i \(0.770439\pi\)
\(8\) 44.5366i 0.246032i
\(9\) −644.042 −2.65038
\(10\) 0 0
\(11\) 452.811 1.12833 0.564163 0.825663i \(-0.309199\pi\)
0.564163 + 0.825663i \(0.309199\pi\)
\(12\) − 779.133i − 1.56192i
\(13\) 169.000i 0.277350i
\(14\) −1305.61 −1.78030
\(15\) 0 0
\(16\) −1176.77 −1.14919
\(17\) 1469.49i 1.23323i 0.787264 + 0.616615i \(0.211497\pi\)
−0.787264 + 0.616615i \(0.788503\pi\)
\(18\) − 4911.64i − 3.57310i
\(19\) −2007.18 −1.27556 −0.637781 0.770218i \(-0.720148\pi\)
−0.637781 + 0.770218i \(0.720148\pi\)
\(20\) 0 0
\(21\) −5098.87 −2.52305
\(22\) 3453.26i 1.52115i
\(23\) 763.605i 0.300988i 0.988611 + 0.150494i \(0.0480864\pi\)
−0.988611 + 0.150494i \(0.951914\pi\)
\(24\) −1326.44 −0.470068
\(25\) 0 0
\(26\) −1288.84 −0.373909
\(27\) − 11944.3i − 3.15320i
\(28\) − 4478.59i − 1.07956i
\(29\) 6493.90 1.43387 0.716936 0.697139i \(-0.245544\pi\)
0.716936 + 0.697139i \(0.245544\pi\)
\(30\) 0 0
\(31\) 5299.68 0.990479 0.495239 0.868757i \(-0.335080\pi\)
0.495239 + 0.868757i \(0.335080\pi\)
\(32\) − 7549.22i − 1.30325i
\(33\) 13486.2i 2.15578i
\(34\) −11206.7 −1.66258
\(35\) 0 0
\(36\) 16848.2 2.16669
\(37\) − 4537.59i − 0.544906i −0.962169 0.272453i \(-0.912165\pi\)
0.962169 0.272453i \(-0.0878349\pi\)
\(38\) − 15307.3i − 1.71965i
\(39\) −5033.37 −0.529904
\(40\) 0 0
\(41\) 13699.1 1.27272 0.636359 0.771393i \(-0.280440\pi\)
0.636359 + 0.771393i \(0.280440\pi\)
\(42\) − 38885.4i − 3.40144i
\(43\) − 3824.25i − 0.315409i −0.987486 0.157705i \(-0.949591\pi\)
0.987486 0.157705i \(-0.0504094\pi\)
\(44\) −11845.6 −0.922411
\(45\) 0 0
\(46\) −5823.46 −0.405776
\(47\) 15653.3i 1.03362i 0.856099 + 0.516811i \(0.172881\pi\)
−0.856099 + 0.516811i \(0.827119\pi\)
\(48\) − 35048.1i − 2.19564i
\(49\) −12502.1 −0.743865
\(50\) 0 0
\(51\) −43766.2 −2.35621
\(52\) − 4421.06i − 0.226735i
\(53\) 16260.1i 0.795120i 0.917576 + 0.397560i \(0.130143\pi\)
−0.917576 + 0.397560i \(0.869857\pi\)
\(54\) 91090.7 4.25099
\(55\) 0 0
\(56\) −7624.63 −0.324899
\(57\) − 59780.3i − 2.43708i
\(58\) 49524.3i 1.93307i
\(59\) −16817.3 −0.628965 −0.314483 0.949263i \(-0.601831\pi\)
−0.314483 + 0.949263i \(0.601831\pi\)
\(60\) 0 0
\(61\) 9690.04 0.333427 0.166714 0.986005i \(-0.446684\pi\)
0.166714 + 0.986005i \(0.446684\pi\)
\(62\) 40416.8i 1.33531i
\(63\) − 110259.i − 3.49997i
\(64\) 19915.7 0.607780
\(65\) 0 0
\(66\) −102849. −2.90631
\(67\) − 5726.95i − 0.155861i −0.996959 0.0779303i \(-0.975169\pi\)
0.996959 0.0779303i \(-0.0248311\pi\)
\(68\) − 38442.0i − 1.00817i
\(69\) −22742.6 −0.575067
\(70\) 0 0
\(71\) 12847.1 0.302455 0.151227 0.988499i \(-0.451677\pi\)
0.151227 + 0.988499i \(0.451677\pi\)
\(72\) − 28683.4i − 0.652079i
\(73\) 41868.8i 0.919566i 0.888031 + 0.459783i \(0.152073\pi\)
−0.888031 + 0.459783i \(0.847927\pi\)
\(74\) 34604.9 0.734614
\(75\) 0 0
\(76\) 52508.0 1.04278
\(77\) 77520.8i 1.49002i
\(78\) − 38385.9i − 0.714389i
\(79\) 33399.1 0.602097 0.301049 0.953609i \(-0.402663\pi\)
0.301049 + 0.953609i \(0.402663\pi\)
\(80\) 0 0
\(81\) 199239. 3.37412
\(82\) 104473.i 1.71581i
\(83\) 58851.7i 0.937700i 0.883278 + 0.468850i \(0.155331\pi\)
−0.883278 + 0.468850i \(0.844669\pi\)
\(84\) 133387. 2.06260
\(85\) 0 0
\(86\) 29164.8 0.425219
\(87\) 193409.i 2.73955i
\(88\) 20166.7i 0.277605i
\(89\) 94010.3 1.25806 0.629029 0.777382i \(-0.283453\pi\)
0.629029 + 0.777382i \(0.283453\pi\)
\(90\) 0 0
\(91\) −28932.7 −0.366256
\(92\) − 19976.0i − 0.246059i
\(93\) 157842.i 1.89241i
\(94\) −119377. −1.39348
\(95\) 0 0
\(96\) 224840. 2.48998
\(97\) − 126692.i − 1.36716i −0.729874 0.683581i \(-0.760421\pi\)
0.729874 0.683581i \(-0.239579\pi\)
\(98\) − 95344.8i − 1.00284i
\(99\) −291629. −2.99049
\(100\) 0 0
\(101\) 35394.0 0.345245 0.172622 0.984988i \(-0.444776\pi\)
0.172622 + 0.984988i \(0.444776\pi\)
\(102\) − 333773.i − 3.17652i
\(103\) 33346.8i 0.309714i 0.987937 + 0.154857i \(0.0494917\pi\)
−0.987937 + 0.154857i \(0.950508\pi\)
\(104\) −7526.69 −0.0682371
\(105\) 0 0
\(106\) −124004. −1.07194
\(107\) − 1497.08i − 0.0126411i −0.999980 0.00632054i \(-0.997988\pi\)
0.999980 0.00632054i \(-0.00201190\pi\)
\(108\) 312465.i 2.57776i
\(109\) 7731.80 0.0623325 0.0311662 0.999514i \(-0.490078\pi\)
0.0311662 + 0.999514i \(0.490078\pi\)
\(110\) 0 0
\(111\) 135144. 1.04109
\(112\) − 201462.i − 1.51757i
\(113\) 149733.i 1.10312i 0.834136 + 0.551558i \(0.185967\pi\)
−0.834136 + 0.551558i \(0.814033\pi\)
\(114\) 455901. 3.28555
\(115\) 0 0
\(116\) −169881. −1.17220
\(117\) − 108843.i − 0.735082i
\(118\) − 128254.i − 0.847938i
\(119\) −251575. −1.62855
\(120\) 0 0
\(121\) 43986.5 0.273122
\(122\) 73898.9i 0.449509i
\(123\) 408003.i 2.43165i
\(124\) −138640. −0.809720
\(125\) 0 0
\(126\) 840869. 4.71848
\(127\) 239284.i 1.31645i 0.752822 + 0.658224i \(0.228692\pi\)
−0.752822 + 0.658224i \(0.771308\pi\)
\(128\) − 89692.1i − 0.483871i
\(129\) 113898. 0.602620
\(130\) 0 0
\(131\) 243815. 1.24132 0.620659 0.784081i \(-0.286865\pi\)
0.620659 + 0.784081i \(0.286865\pi\)
\(132\) − 352800.i − 1.76236i
\(133\) − 343627.i − 1.68445i
\(134\) 43675.3 0.210123
\(135\) 0 0
\(136\) −65446.1 −0.303415
\(137\) − 164453.i − 0.748583i −0.927311 0.374292i \(-0.877886\pi\)
0.927311 0.374292i \(-0.122114\pi\)
\(138\) − 173442.i − 0.775275i
\(139\) −101444. −0.445338 −0.222669 0.974894i \(-0.571477\pi\)
−0.222669 + 0.974894i \(0.571477\pi\)
\(140\) 0 0
\(141\) −466207. −1.97484
\(142\) 97975.8i 0.407754i
\(143\) 76525.0i 0.312942i
\(144\) 757890. 3.04579
\(145\) 0 0
\(146\) −319303. −1.23971
\(147\) − 372354.i − 1.42123i
\(148\) 118704.i 0.445462i
\(149\) 56069.7 0.206901 0.103450 0.994635i \(-0.467012\pi\)
0.103450 + 0.994635i \(0.467012\pi\)
\(150\) 0 0
\(151\) −103359. −0.368897 −0.184449 0.982842i \(-0.559050\pi\)
−0.184449 + 0.982842i \(0.559050\pi\)
\(152\) − 89392.9i − 0.313830i
\(153\) − 946413.i − 3.26853i
\(154\) −591195. −2.00876
\(155\) 0 0
\(156\) 131673. 0.433198
\(157\) − 290816.i − 0.941606i −0.882238 0.470803i \(-0.843964\pi\)
0.882238 0.470803i \(-0.156036\pi\)
\(158\) 254711.i 0.811716i
\(159\) −484278. −1.51915
\(160\) 0 0
\(161\) −130729. −0.397471
\(162\) 1.51945e6i 4.54882i
\(163\) 265789.i 0.783553i 0.920060 + 0.391777i \(0.128139\pi\)
−0.920060 + 0.391777i \(0.871861\pi\)
\(164\) −358370. −1.04045
\(165\) 0 0
\(166\) −448819. −1.26416
\(167\) − 279706.i − 0.776087i −0.921641 0.388043i \(-0.873151\pi\)
0.921641 0.388043i \(-0.126849\pi\)
\(168\) − 227086.i − 0.620751i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 1.29271e6 3.38072
\(172\) 100043.i 0.257848i
\(173\) 657222.i 1.66954i 0.550599 + 0.834770i \(0.314399\pi\)
−0.550599 + 0.834770i \(0.685601\pi\)
\(174\) −1.47499e6 −3.69332
\(175\) 0 0
\(176\) −532855. −1.29666
\(177\) − 500874.i − 1.20170i
\(178\) 716949.i 1.69605i
\(179\) 140536. 0.327836 0.163918 0.986474i \(-0.447587\pi\)
0.163918 + 0.986474i \(0.447587\pi\)
\(180\) 0 0
\(181\) 554170. 1.25732 0.628662 0.777679i \(-0.283603\pi\)
0.628662 + 0.777679i \(0.283603\pi\)
\(182\) − 220648.i − 0.493767i
\(183\) 288601.i 0.637045i
\(184\) −34008.4 −0.0740528
\(185\) 0 0
\(186\) −1.20374e6 −2.55124
\(187\) 665401.i 1.39149i
\(188\) − 409493.i − 0.844990i
\(189\) 2.04486e6 4.16398
\(190\) 0 0
\(191\) 379250. 0.752215 0.376107 0.926576i \(-0.377262\pi\)
0.376107 + 0.926576i \(0.377262\pi\)
\(192\) 593155.i 1.16122i
\(193\) − 884530.i − 1.70930i −0.519201 0.854652i \(-0.673770\pi\)
0.519201 0.854652i \(-0.326230\pi\)
\(194\) 966189. 1.84314
\(195\) 0 0
\(196\) 327057. 0.608112
\(197\) − 529090.i − 0.971323i −0.874147 0.485661i \(-0.838579\pi\)
0.874147 0.485661i \(-0.161421\pi\)
\(198\) − 2.22404e6i − 4.03163i
\(199\) −8938.89 −0.0160011 −0.00800057 0.999968i \(-0.502547\pi\)
−0.00800057 + 0.999968i \(0.502547\pi\)
\(200\) 0 0
\(201\) 170567. 0.297786
\(202\) 269925.i 0.465441i
\(203\) 1.11175e6i 1.89351i
\(204\) 1.14493e6 1.92621
\(205\) 0 0
\(206\) −254312. −0.417541
\(207\) − 491794.i − 0.797732i
\(208\) − 198874.i − 0.318728i
\(209\) −908871. −1.43925
\(210\) 0 0
\(211\) −1.11242e6 −1.72013 −0.860066 0.510183i \(-0.829578\pi\)
−0.860066 + 0.510183i \(0.829578\pi\)
\(212\) − 425365.i − 0.650014i
\(213\) 382629.i 0.577869i
\(214\) 11417.1 0.0170421
\(215\) 0 0
\(216\) 531960. 0.775790
\(217\) 907300.i 1.30798i
\(218\) 58964.9i 0.0840334i
\(219\) −1.24699e6 −1.75692
\(220\) 0 0
\(221\) −248344. −0.342037
\(222\) 1.03065e6i 1.40355i
\(223\) − 1.27817e6i − 1.72118i −0.509301 0.860588i \(-0.670096\pi\)
0.509301 0.860588i \(-0.329904\pi\)
\(224\) 1.29242e6 1.72101
\(225\) 0 0
\(226\) −1.14191e6 −1.48716
\(227\) − 1.31606e6i − 1.69516i −0.530669 0.847579i \(-0.678059\pi\)
0.530669 0.847579i \(-0.321941\pi\)
\(228\) 1.56386e6i 1.99233i
\(229\) 10410.5 0.0131185 0.00655925 0.999978i \(-0.497912\pi\)
0.00655925 + 0.999978i \(0.497912\pi\)
\(230\) 0 0
\(231\) −2.30882e6 −2.84682
\(232\) 289216.i 0.352779i
\(233\) − 1.42470e6i − 1.71923i −0.510941 0.859616i \(-0.670703\pi\)
0.510941 0.859616i \(-0.329297\pi\)
\(234\) 830067. 0.991000
\(235\) 0 0
\(236\) 439943. 0.514181
\(237\) 994733.i 1.15036i
\(238\) − 1.91858e6i − 2.19553i
\(239\) 336053. 0.380552 0.190276 0.981731i \(-0.439062\pi\)
0.190276 + 0.981731i \(0.439062\pi\)
\(240\) 0 0
\(241\) 1.13898e6 1.26320 0.631599 0.775295i \(-0.282399\pi\)
0.631599 + 0.775295i \(0.282399\pi\)
\(242\) 335453.i 0.368208i
\(243\) 3.03150e6i 3.29338i
\(244\) −253493. −0.272578
\(245\) 0 0
\(246\) −3.11155e6 −3.27822
\(247\) − 339213.i − 0.353777i
\(248\) 236030.i 0.243690i
\(249\) −1.75279e6 −1.79157
\(250\) 0 0
\(251\) −1.58387e6 −1.58684 −0.793421 0.608673i \(-0.791702\pi\)
−0.793421 + 0.608673i \(0.791702\pi\)
\(252\) 2.88440e6i 2.86124i
\(253\) 345769.i 0.339613i
\(254\) −1.82484e6 −1.77477
\(255\) 0 0
\(256\) 1.32132e6 1.26011
\(257\) − 1.60657e6i − 1.51729i −0.651507 0.758643i \(-0.725863\pi\)
0.651507 0.758643i \(-0.274137\pi\)
\(258\) 868621.i 0.812421i
\(259\) 776832. 0.719578
\(260\) 0 0
\(261\) −4.18234e6 −3.80030
\(262\) 1.85940e6i 1.67348i
\(263\) − 1.09488e6i − 0.976064i −0.872826 0.488032i \(-0.837715\pi\)
0.872826 0.488032i \(-0.162285\pi\)
\(264\) −600628. −0.530391
\(265\) 0 0
\(266\) 2.62059e6 2.27089
\(267\) 2.79993e6i 2.40364i
\(268\) 149818.i 0.127417i
\(269\) −1.40894e6 −1.18716 −0.593582 0.804774i \(-0.702287\pi\)
−0.593582 + 0.804774i \(0.702287\pi\)
\(270\) 0 0
\(271\) −416084. −0.344158 −0.172079 0.985083i \(-0.555048\pi\)
−0.172079 + 0.985083i \(0.555048\pi\)
\(272\) − 1.72926e6i − 1.41722i
\(273\) − 861708.i − 0.699767i
\(274\) 1.25416e6 1.00920
\(275\) 0 0
\(276\) 594950. 0.470119
\(277\) 1.07825e6i 0.844349i 0.906515 + 0.422174i \(0.138733\pi\)
−0.906515 + 0.422174i \(0.861267\pi\)
\(278\) − 773641.i − 0.600382i
\(279\) −3.41321e6 −2.62514
\(280\) 0 0
\(281\) −1.78529e6 −1.34879 −0.674393 0.738372i \(-0.735595\pi\)
−0.674393 + 0.738372i \(0.735595\pi\)
\(282\) − 3.55542e6i − 2.66237i
\(283\) − 171905.i − 0.127591i −0.997963 0.0637957i \(-0.979679\pi\)
0.997963 0.0637957i \(-0.0203206\pi\)
\(284\) −336082. −0.247258
\(285\) 0 0
\(286\) −583601. −0.421892
\(287\) 2.34527e6i 1.68069i
\(288\) 4.86201e6i 3.45410i
\(289\) −739545. −0.520859
\(290\) 0 0
\(291\) 3.77330e6 2.61210
\(292\) − 1.09529e6i − 0.751749i
\(293\) − 976888.i − 0.664776i −0.943143 0.332388i \(-0.892146\pi\)
0.943143 0.332388i \(-0.107854\pi\)
\(294\) 2.83968e6 1.91602
\(295\) 0 0
\(296\) 202089. 0.134064
\(297\) − 5.40852e6i − 3.55784i
\(298\) 427603.i 0.278933i
\(299\) −129049. −0.0834791
\(300\) 0 0
\(301\) 654708. 0.416515
\(302\) − 788243.i − 0.497328i
\(303\) 1.05415e6i 0.659623i
\(304\) 2.36199e6 1.46587
\(305\) 0 0
\(306\) 7.21761e6 4.40646
\(307\) 1.74098e6i 1.05426i 0.849784 + 0.527131i \(0.176732\pi\)
−0.849784 + 0.527131i \(0.823268\pi\)
\(308\) − 2.02795e6i − 1.21809i
\(309\) −993176. −0.591739
\(310\) 0 0
\(311\) 1.00483e6 0.589104 0.294552 0.955635i \(-0.404830\pi\)
0.294552 + 0.955635i \(0.404830\pi\)
\(312\) − 224169.i − 0.130374i
\(313\) − 458407.i − 0.264478i −0.991218 0.132239i \(-0.957783\pi\)
0.991218 0.132239i \(-0.0422167\pi\)
\(314\) 2.21784e6 1.26942
\(315\) 0 0
\(316\) −873724. −0.492217
\(317\) 383397.i 0.214289i 0.994243 + 0.107145i \(0.0341708\pi\)
−0.994243 + 0.107145i \(0.965829\pi\)
\(318\) − 3.69324e6i − 2.04804i
\(319\) 2.94051e6 1.61788
\(320\) 0 0
\(321\) 44587.8 0.0241520
\(322\) − 996972.i − 0.535850i
\(323\) − 2.94953e6i − 1.57306i
\(324\) −5.21210e6 −2.75836
\(325\) 0 0
\(326\) −2.02698e6 −1.05635
\(327\) 230278.i 0.119092i
\(328\) 610111.i 0.313130i
\(329\) −2.67984e6 −1.36496
\(330\) 0 0
\(331\) 622094. 0.312095 0.156047 0.987750i \(-0.450125\pi\)
0.156047 + 0.987750i \(0.450125\pi\)
\(332\) − 1.53957e6i − 0.766573i
\(333\) 2.92240e6i 1.44421i
\(334\) 2.13311e6 1.04628
\(335\) 0 0
\(336\) 6.00020e6 2.89946
\(337\) − 624562.i − 0.299572i −0.988718 0.149786i \(-0.952142\pi\)
0.988718 0.149786i \(-0.0478584\pi\)
\(338\) − 217814.i − 0.103704i
\(339\) −4.45953e6 −2.10761
\(340\) 0 0
\(341\) 2.39975e6 1.11758
\(342\) 9.85853e6i 4.55771i
\(343\) 736988.i 0.338240i
\(344\) 170319. 0.0776009
\(345\) 0 0
\(346\) −5.01216e6 −2.25079
\(347\) − 1.43412e6i − 0.639382i −0.947522 0.319691i \(-0.896421\pi\)
0.947522 0.319691i \(-0.103579\pi\)
\(348\) − 5.05961e6i − 2.23959i
\(349\) 1.80725e6 0.794247 0.397124 0.917765i \(-0.370008\pi\)
0.397124 + 0.917765i \(0.370008\pi\)
\(350\) 0 0
\(351\) 2.01859e6 0.874541
\(352\) − 3.41837e6i − 1.47049i
\(353\) 2.71033e6i 1.15767i 0.815444 + 0.578835i \(0.196493\pi\)
−0.815444 + 0.578835i \(0.803507\pi\)
\(354\) 3.81981e6 1.62007
\(355\) 0 0
\(356\) −2.45932e6 −1.02847
\(357\) − 7.49273e6i − 3.11150i
\(358\) 1.07177e6i 0.441971i
\(359\) 1.91002e6 0.782171 0.391085 0.920354i \(-0.372100\pi\)
0.391085 + 0.920354i \(0.372100\pi\)
\(360\) 0 0
\(361\) 1.55266e6 0.627060
\(362\) 4.22626e6i 1.69506i
\(363\) 1.31006e6i 0.521825i
\(364\) 756881. 0.299416
\(365\) 0 0
\(366\) −2.20095e6 −0.858831
\(367\) 2.09294e6i 0.811131i 0.914066 + 0.405566i \(0.132925\pi\)
−0.914066 + 0.405566i \(0.867075\pi\)
\(368\) − 898589.i − 0.345893i
\(369\) −8.82278e6 −3.37318
\(370\) 0 0
\(371\) −2.78371e6 −1.05000
\(372\) − 4.12915e6i − 1.54705i
\(373\) − 1.20939e6i − 0.450083i −0.974349 0.225041i \(-0.927748\pi\)
0.974349 0.225041i \(-0.0722518\pi\)
\(374\) −5.07453e6 −1.87593
\(375\) 0 0
\(376\) −697146. −0.254305
\(377\) 1.09747e6i 0.397685i
\(378\) 1.55947e7i 5.61366i
\(379\) 594902. 0.212739 0.106370 0.994327i \(-0.466077\pi\)
0.106370 + 0.994327i \(0.466077\pi\)
\(380\) 0 0
\(381\) −7.12664e6 −2.51520
\(382\) 2.89226e6i 1.01410i
\(383\) 2.34526e6i 0.816946i 0.912770 + 0.408473i \(0.133939\pi\)
−0.912770 + 0.408473i \(0.866061\pi\)
\(384\) 2.67132e6 0.924481
\(385\) 0 0
\(386\) 6.74567e6 2.30440
\(387\) 2.46297e6i 0.835954i
\(388\) 3.31428e6i 1.11766i
\(389\) 4.27642e6 1.43287 0.716434 0.697655i \(-0.245773\pi\)
0.716434 + 0.697655i \(0.245773\pi\)
\(390\) 0 0
\(391\) −1.12211e6 −0.371188
\(392\) − 556803.i − 0.183015i
\(393\) 7.26161e6i 2.37166i
\(394\) 4.03498e6 1.30949
\(395\) 0 0
\(396\) 7.62905e6 2.44474
\(397\) 4.05375e6i 1.29087i 0.763817 + 0.645433i \(0.223323\pi\)
−0.763817 + 0.645433i \(0.776677\pi\)
\(398\) − 68170.5i − 0.0215719i
\(399\) 1.02343e7 3.21830
\(400\) 0 0
\(401\) −2.70195e6 −0.839105 −0.419553 0.907731i \(-0.637813\pi\)
−0.419553 + 0.907731i \(0.637813\pi\)
\(402\) 1.30079e6i 0.401460i
\(403\) 895646.i 0.274709i
\(404\) −925912. −0.282239
\(405\) 0 0
\(406\) −8.47851e6 −2.55273
\(407\) − 2.05467e6i − 0.614832i
\(408\) − 1.94920e6i − 0.579703i
\(409\) 1.61265e6 0.476686 0.238343 0.971181i \(-0.423396\pi\)
0.238343 + 0.971181i \(0.423396\pi\)
\(410\) 0 0
\(411\) 4.89794e6 1.43024
\(412\) − 872356.i − 0.253192i
\(413\) − 2.87911e6i − 0.830583i
\(414\) 3.75055e6 1.07546
\(415\) 0 0
\(416\) 1.27582e6 0.361456
\(417\) − 3.02133e6i − 0.850861i
\(418\) − 6.93131e6i − 1.94032i
\(419\) 1.08547e6 0.302054 0.151027 0.988530i \(-0.451742\pi\)
0.151027 + 0.988530i \(0.451742\pi\)
\(420\) 0 0
\(421\) −5.35894e6 −1.47358 −0.736790 0.676121i \(-0.763659\pi\)
−0.736790 + 0.676121i \(0.763659\pi\)
\(422\) − 8.48361e6i − 2.31899i
\(423\) − 1.00814e7i − 2.73949i
\(424\) −724169. −0.195625
\(425\) 0 0
\(426\) −2.91804e6 −0.779053
\(427\) 1.65893e6i 0.440309i
\(428\) 39163.7i 0.0103341i
\(429\) −2.27916e6 −0.597905
\(430\) 0 0
\(431\) −2.11538e6 −0.548524 −0.274262 0.961655i \(-0.588434\pi\)
−0.274262 + 0.961655i \(0.588434\pi\)
\(432\) 1.40557e7i 3.62364i
\(433\) − 5.31501e6i − 1.36234i −0.732128 0.681168i \(-0.761473\pi\)
0.732128 0.681168i \(-0.238527\pi\)
\(434\) −6.91932e6 −1.76335
\(435\) 0 0
\(436\) −202265. −0.0509570
\(437\) − 1.53269e6i − 0.383929i
\(438\) − 9.50987e6i − 2.36859i
\(439\) −3.32599e6 −0.823682 −0.411841 0.911256i \(-0.635114\pi\)
−0.411841 + 0.911256i \(0.635114\pi\)
\(440\) 0 0
\(441\) 8.05190e6 1.97152
\(442\) − 1.89394e6i − 0.461116i
\(443\) − 5.41394e6i − 1.31070i −0.755324 0.655352i \(-0.772520\pi\)
0.755324 0.655352i \(-0.227480\pi\)
\(444\) −3.53539e6 −0.851098
\(445\) 0 0
\(446\) 9.74766e6 2.32040
\(447\) 1.66994e6i 0.395304i
\(448\) 3.40956e6i 0.802607i
\(449\) −692641. −0.162141 −0.0810704 0.996708i \(-0.525834\pi\)
−0.0810704 + 0.996708i \(0.525834\pi\)
\(450\) 0 0
\(451\) 6.20309e6 1.43604
\(452\) − 3.91703e6i − 0.901801i
\(453\) − 3.07836e6i − 0.704813i
\(454\) 1.00366e7 2.28532
\(455\) 0 0
\(456\) 2.66241e6 0.599602
\(457\) 3.90454e6i 0.874539i 0.899330 + 0.437270i \(0.144054\pi\)
−0.899330 + 0.437270i \(0.855946\pi\)
\(458\) 79393.6i 0.0176857i
\(459\) 1.75521e7 3.88863
\(460\) 0 0
\(461\) −8.82344e6 −1.93368 −0.966842 0.255375i \(-0.917801\pi\)
−0.966842 + 0.255375i \(0.917801\pi\)
\(462\) − 1.76077e7i − 3.83794i
\(463\) 5.52375e6i 1.19752i 0.800930 + 0.598758i \(0.204339\pi\)
−0.800930 + 0.598758i \(0.795661\pi\)
\(464\) −7.64184e6 −1.64779
\(465\) 0 0
\(466\) 1.08652e7 2.31778
\(467\) − 5.29356e6i − 1.12320i −0.827410 0.561598i \(-0.810187\pi\)
0.827410 0.561598i \(-0.189813\pi\)
\(468\) 2.84735e6i 0.600932i
\(469\) 980448. 0.205822
\(470\) 0 0
\(471\) 8.66145e6 1.79903
\(472\) − 748986.i − 0.154746i
\(473\) − 1.73166e6i − 0.355885i
\(474\) −7.58611e6 −1.55086
\(475\) 0 0
\(476\) 6.58124e6 1.33134
\(477\) − 1.04722e7i − 2.10737i
\(478\) 2.56284e6i 0.513040i
\(479\) 4.55616e6 0.907319 0.453659 0.891175i \(-0.350118\pi\)
0.453659 + 0.891175i \(0.350118\pi\)
\(480\) 0 0
\(481\) 766853. 0.151130
\(482\) 8.68614e6i 1.70298i
\(483\) − 3.89352e6i − 0.759407i
\(484\) −1.15069e6 −0.223278
\(485\) 0 0
\(486\) −2.31191e7 −4.43996
\(487\) 8.00881e6i 1.53019i 0.643916 + 0.765096i \(0.277308\pi\)
−0.643916 + 0.765096i \(0.722692\pi\)
\(488\) 431562.i 0.0820339i
\(489\) −7.91607e6 −1.49705
\(490\) 0 0
\(491\) −5.83743e6 −1.09274 −0.546372 0.837543i \(-0.683991\pi\)
−0.546372 + 0.837543i \(0.683991\pi\)
\(492\) − 1.06734e7i − 1.98788i
\(493\) 9.54272e6i 1.76830i
\(494\) 2.58693e6 0.476944
\(495\) 0 0
\(496\) −6.23651e6 −1.13825
\(497\) 2.19942e6i 0.399408i
\(498\) − 1.33673e7i − 2.41530i
\(499\) 2.89323e6 0.520153 0.260077 0.965588i \(-0.416252\pi\)
0.260077 + 0.965588i \(0.416252\pi\)
\(500\) 0 0
\(501\) 8.33055e6 1.48279
\(502\) − 1.20790e7i − 2.13930i
\(503\) − 1.02497e7i − 1.80631i −0.429312 0.903156i \(-0.641244\pi\)
0.429312 0.903156i \(-0.358756\pi\)
\(504\) 4.91058e6 0.861106
\(505\) 0 0
\(506\) −2.63693e6 −0.457849
\(507\) − 850639.i − 0.146969i
\(508\) − 6.25969e6i − 1.07620i
\(509\) −6.87884e6 −1.17685 −0.588424 0.808552i \(-0.700251\pi\)
−0.588424 + 0.808552i \(0.700251\pi\)
\(510\) 0 0
\(511\) −7.16790e6 −1.21434
\(512\) 7.20661e6i 1.21494i
\(513\) 2.39744e7i 4.02211i
\(514\) 1.22522e7 2.04553
\(515\) 0 0
\(516\) −2.97960e6 −0.492644
\(517\) 7.08799e6i 1.16626i
\(518\) 5.92434e6i 0.970097i
\(519\) −1.95742e7 −3.18982
\(520\) 0 0
\(521\) 1.11738e6 0.180346 0.0901728 0.995926i \(-0.471258\pi\)
0.0901728 + 0.995926i \(0.471258\pi\)
\(522\) − 3.18957e7i − 5.12337i
\(523\) − 2.65174e6i − 0.423912i −0.977279 0.211956i \(-0.932017\pi\)
0.977279 0.211956i \(-0.0679834\pi\)
\(524\) −6.37824e6 −1.01478
\(525\) 0 0
\(526\) 8.34988e6 1.31588
\(527\) 7.78783e6i 1.22149i
\(528\) − 1.58702e7i − 2.47740i
\(529\) 5.85325e6 0.909406
\(530\) 0 0
\(531\) 1.08311e7 1.66700
\(532\) 8.98932e6i 1.37704i
\(533\) 2.31515e6i 0.352988i
\(534\) −2.13531e7 −3.24046
\(535\) 0 0
\(536\) 255059. 0.0383467
\(537\) 4.18563e6i 0.626362i
\(538\) − 1.07449e7i − 1.60047i
\(539\) −5.66110e6 −0.839323
\(540\) 0 0
\(541\) 9.63494e6 1.41532 0.707662 0.706551i \(-0.249750\pi\)
0.707662 + 0.706551i \(0.249750\pi\)
\(542\) − 3.17317e6i − 0.463976i
\(543\) 1.65050e7i 2.40224i
\(544\) 1.10935e7 1.60721
\(545\) 0 0
\(546\) 6.57163e6 0.943390
\(547\) 1.83795e6i 0.262642i 0.991340 + 0.131321i \(0.0419219\pi\)
−0.991340 + 0.131321i \(0.958078\pi\)
\(548\) 4.30211e6i 0.611969i
\(549\) −6.24079e6 −0.883708
\(550\) 0 0
\(551\) −1.30344e7 −1.82899
\(552\) − 1.01288e6i − 0.141485i
\(553\) 5.71789e6i 0.795103i
\(554\) −8.22307e6 −1.13831
\(555\) 0 0
\(556\) 2.65379e6 0.364065
\(557\) − 5.72815e6i − 0.782305i −0.920326 0.391152i \(-0.872077\pi\)
0.920326 0.391152i \(-0.127923\pi\)
\(558\) − 2.60301e7i − 3.53908i
\(559\) 646298. 0.0874788
\(560\) 0 0
\(561\) −1.98178e7 −2.65857
\(562\) − 1.36151e7i − 1.81836i
\(563\) 8.32198e6i 1.10651i 0.833012 + 0.553255i \(0.186615\pi\)
−0.833012 + 0.553255i \(0.813385\pi\)
\(564\) 1.21960e7 1.61443
\(565\) 0 0
\(566\) 1.31099e6 0.172012
\(567\) 3.41095e7i 4.45571i
\(568\) 572168.i 0.0744137i
\(569\) 1.13277e7 1.46676 0.733382 0.679817i \(-0.237941\pi\)
0.733382 + 0.679817i \(0.237941\pi\)
\(570\) 0 0
\(571\) −1.31340e7 −1.68581 −0.842904 0.538064i \(-0.819156\pi\)
−0.842904 + 0.538064i \(0.819156\pi\)
\(572\) − 2.00190e6i − 0.255831i
\(573\) 1.12953e7i 1.43718i
\(574\) −1.78857e7 −2.26582
\(575\) 0 0
\(576\) −1.28266e7 −1.61085
\(577\) − 5.24787e6i − 0.656211i −0.944641 0.328105i \(-0.893590\pi\)
0.944641 0.328105i \(-0.106410\pi\)
\(578\) − 5.63997e6i − 0.702195i
\(579\) 2.63442e7 3.26579
\(580\) 0 0
\(581\) −1.00754e7 −1.23828
\(582\) 2.87762e7i 3.52149i
\(583\) 7.36274e6i 0.897156i
\(584\) −1.86469e6 −0.226243
\(585\) 0 0
\(586\) 7.45002e6 0.896217
\(587\) 4.50054e6i 0.539100i 0.962986 + 0.269550i \(0.0868749\pi\)
−0.962986 + 0.269550i \(0.913125\pi\)
\(588\) 9.74083e6i 1.16186i
\(589\) −1.06374e7 −1.26342
\(590\) 0 0
\(591\) 1.57580e7 1.85581
\(592\) 5.33971e6i 0.626201i
\(593\) 1.02931e7i 1.20201i 0.799245 + 0.601005i \(0.205233\pi\)
−0.799245 + 0.601005i \(0.794767\pi\)
\(594\) 4.12468e7 4.79650
\(595\) 0 0
\(596\) −1.46679e6 −0.169142
\(597\) − 266229.i − 0.0305717i
\(598\) − 984166.i − 0.112542i
\(599\) −1.05149e7 −1.19740 −0.598700 0.800973i \(-0.704316\pi\)
−0.598700 + 0.800973i \(0.704316\pi\)
\(600\) 0 0
\(601\) 1.66880e7 1.88460 0.942298 0.334774i \(-0.108660\pi\)
0.942298 + 0.334774i \(0.108660\pi\)
\(602\) 4.99298e6i 0.561525i
\(603\) 3.68839e6i 0.413089i
\(604\) 2.70388e6 0.301575
\(605\) 0 0
\(606\) −8.03924e6 −0.889269
\(607\) − 5.97807e6i − 0.658551i −0.944234 0.329275i \(-0.893196\pi\)
0.944234 0.329275i \(-0.106804\pi\)
\(608\) 1.51526e7i 1.66237i
\(609\) −3.31115e7 −3.61773
\(610\) 0 0
\(611\) −2.64541e6 −0.286675
\(612\) 2.47583e7i 2.67203i
\(613\) 449741.i 0.0483405i 0.999708 + 0.0241702i \(0.00769438\pi\)
−0.999708 + 0.0241702i \(0.992306\pi\)
\(614\) −1.32772e7 −1.42130
\(615\) 0 0
\(616\) −3.45251e6 −0.366593
\(617\) 3.68155e6i 0.389330i 0.980870 + 0.194665i \(0.0623620\pi\)
−0.980870 + 0.194665i \(0.937638\pi\)
\(618\) − 7.57423e6i − 0.797751i
\(619\) 1.14389e6 0.119993 0.0599967 0.998199i \(-0.480891\pi\)
0.0599967 + 0.998199i \(0.480891\pi\)
\(620\) 0 0
\(621\) 9.12075e6 0.949077
\(622\) 7.66312e6i 0.794199i
\(623\) 1.60945e7i 1.66133i
\(624\) 5.92313e6 0.608961
\(625\) 0 0
\(626\) 3.49594e6 0.356556
\(627\) − 2.70691e7i − 2.74983i
\(628\) 7.60778e6i 0.769766i
\(629\) 6.66795e6 0.671995
\(630\) 0 0
\(631\) −1.75675e6 −0.175646 −0.0878228 0.996136i \(-0.527991\pi\)
−0.0878228 + 0.996136i \(0.527991\pi\)
\(632\) 1.48748e6i 0.148135i
\(633\) − 3.31314e7i − 3.28648i
\(634\) −2.92389e6 −0.288894
\(635\) 0 0
\(636\) 1.26688e7 1.24191
\(637\) − 2.11286e6i − 0.206311i
\(638\) 2.24251e7i 2.18114i
\(639\) −8.27409e6 −0.801619
\(640\) 0 0
\(641\) −9.00917e6 −0.866043 −0.433022 0.901384i \(-0.642553\pi\)
−0.433022 + 0.901384i \(0.642553\pi\)
\(642\) 340039.i 0.0325605i
\(643\) 1.98773e7i 1.89596i 0.318327 + 0.947981i \(0.396879\pi\)
−0.318327 + 0.947981i \(0.603121\pi\)
\(644\) 3.41987e6 0.324934
\(645\) 0 0
\(646\) 2.24939e7 2.12072
\(647\) 907817.i 0.0852585i 0.999091 + 0.0426293i \(0.0135734\pi\)
−0.999091 + 0.0426293i \(0.986427\pi\)
\(648\) 8.87341e6i 0.830143i
\(649\) −7.61506e6 −0.709679
\(650\) 0 0
\(651\) −2.70223e7 −2.49902
\(652\) − 6.95308e6i − 0.640557i
\(653\) 4.96671e6i 0.455812i 0.973683 + 0.227906i \(0.0731880\pi\)
−0.973683 + 0.227906i \(0.926812\pi\)
\(654\) −1.75616e6 −0.160554
\(655\) 0 0
\(656\) −1.61207e7 −1.46260
\(657\) − 2.69652e7i − 2.43720i
\(658\) − 2.04372e7i − 1.84016i
\(659\) −1.50643e7 −1.35125 −0.675625 0.737245i \(-0.736126\pi\)
−0.675625 + 0.737245i \(0.736126\pi\)
\(660\) 0 0
\(661\) 2.41958e6 0.215395 0.107698 0.994184i \(-0.465652\pi\)
0.107698 + 0.994184i \(0.465652\pi\)
\(662\) 4.74426e6i 0.420750i
\(663\) − 7.39649e6i − 0.653494i
\(664\) −2.62106e6 −0.230705
\(665\) 0 0
\(666\) −2.22870e7 −1.94700
\(667\) 4.95877e6i 0.431578i
\(668\) 7.31714e6i 0.634454i
\(669\) 3.80680e7 3.28847
\(670\) 0 0
\(671\) 4.38775e6 0.376215
\(672\) 3.84925e7i 3.28816i
\(673\) − 1.65638e7i − 1.40969i −0.709362 0.704844i \(-0.751017\pi\)
0.709362 0.704844i \(-0.248983\pi\)
\(674\) 4.76308e6 0.403867
\(675\) 0 0
\(676\) 747159. 0.0628849
\(677\) 5.75548e6i 0.482625i 0.970447 + 0.241313i \(0.0775779\pi\)
−0.970447 + 0.241313i \(0.922422\pi\)
\(678\) − 3.40096e7i − 2.84137i
\(679\) 2.16896e7 1.80541
\(680\) 0 0
\(681\) 3.91965e7 3.23876
\(682\) 1.83012e7i 1.50667i
\(683\) 5.72848e6i 0.469881i 0.972010 + 0.234940i \(0.0754895\pi\)
−0.972010 + 0.234940i \(0.924511\pi\)
\(684\) −3.38173e7 −2.76375
\(685\) 0 0
\(686\) −5.62048e6 −0.455998
\(687\) 310060.i 0.0250642i
\(688\) 4.50027e6i 0.362466i
\(689\) −2.74795e6 −0.220527
\(690\) 0 0
\(691\) 1.03053e7 0.821041 0.410520 0.911851i \(-0.365347\pi\)
0.410520 + 0.911851i \(0.365347\pi\)
\(692\) − 1.71930e7i − 1.36485i
\(693\) − 4.99266e7i − 3.94911i
\(694\) 1.09370e7 0.861982
\(695\) 0 0
\(696\) −8.61380e6 −0.674018
\(697\) 2.01307e7i 1.56955i
\(698\) 1.37826e7i 1.07076i
\(699\) 4.24323e7 3.28476
\(700\) 0 0
\(701\) 1.51125e7 1.16156 0.580781 0.814060i \(-0.302747\pi\)
0.580781 + 0.814060i \(0.302747\pi\)
\(702\) 1.53943e7i 1.17901i
\(703\) 9.10776e6i 0.695061i
\(704\) 9.01806e6 0.685775
\(705\) 0 0
\(706\) −2.06697e7 −1.56071
\(707\) 6.05943e6i 0.455914i
\(708\) 1.31029e7i 0.982393i
\(709\) −2.17724e7 −1.62664 −0.813318 0.581820i \(-0.802341\pi\)
−0.813318 + 0.581820i \(0.802341\pi\)
\(710\) 0 0
\(711\) −2.15104e7 −1.59579
\(712\) 4.18690e6i 0.309523i
\(713\) 4.04686e6i 0.298122i
\(714\) 5.71417e7 4.19476
\(715\) 0 0
\(716\) −3.67645e6 −0.268007
\(717\) 1.00088e7i 0.727080i
\(718\) 1.45663e7i 1.05448i
\(719\) −7.54447e6 −0.544260 −0.272130 0.962260i \(-0.587728\pi\)
−0.272130 + 0.962260i \(0.587728\pi\)
\(720\) 0 0
\(721\) −5.70894e6 −0.408995
\(722\) 1.18410e7i 0.845369i
\(723\) 3.39224e7i 2.41346i
\(724\) −1.44972e7 −1.02787
\(725\) 0 0
\(726\) −9.99089e6 −0.703498
\(727\) 2.06007e7i 1.44559i 0.691063 + 0.722795i \(0.257143\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(728\) − 1.28856e6i − 0.0901108i
\(729\) −4.18729e7 −2.91820
\(730\) 0 0
\(731\) 5.61969e6 0.388973
\(732\) − 7.54983e6i − 0.520786i
\(733\) 4.42100e6i 0.303921i 0.988387 + 0.151960i \(0.0485586\pi\)
−0.988387 + 0.151960i \(0.951441\pi\)
\(734\) −1.59613e7 −1.09353
\(735\) 0 0
\(736\) 5.76462e6 0.392262
\(737\) − 2.59322e6i − 0.175862i
\(738\) − 6.72850e7i − 4.54755i
\(739\) −847676. −0.0570977 −0.0285489 0.999592i \(-0.509089\pi\)
−0.0285489 + 0.999592i \(0.509089\pi\)
\(740\) 0 0
\(741\) 1.01029e7 0.675926
\(742\) − 2.12294e7i − 1.41556i
\(743\) − 4.18581e6i − 0.278168i −0.990281 0.139084i \(-0.955584\pi\)
0.990281 0.139084i \(-0.0444158\pi\)
\(744\) −7.02973e6 −0.465593
\(745\) 0 0
\(746\) 9.22311e6 0.606778
\(747\) − 3.79030e7i − 2.48526i
\(748\) − 1.74070e7i − 1.13755i
\(749\) 256298. 0.0166932
\(750\) 0 0
\(751\) −2.60568e7 −1.68586 −0.842930 0.538023i \(-0.819171\pi\)
−0.842930 + 0.538023i \(0.819171\pi\)
\(752\) − 1.84204e7i − 1.18783i
\(753\) − 4.71726e7i − 3.03182i
\(754\) −8.36960e6 −0.536138
\(755\) 0 0
\(756\) −5.34937e7 −3.40407
\(757\) − 1.34084e7i − 0.850430i −0.905092 0.425215i \(-0.860199\pi\)
0.905092 0.425215i \(-0.139801\pi\)
\(758\) 4.53689e6i 0.286804i
\(759\) −1.02981e7 −0.648863
\(760\) 0 0
\(761\) 1.74233e7 1.09061 0.545303 0.838239i \(-0.316415\pi\)
0.545303 + 0.838239i \(0.316415\pi\)
\(762\) − 5.43498e7i − 3.39086i
\(763\) 1.32368e6i 0.0823135i
\(764\) −9.92122e6 −0.614938
\(765\) 0 0
\(766\) −1.78856e7 −1.10136
\(767\) − 2.84213e6i − 0.174444i
\(768\) 3.93532e7i 2.40756i
\(769\) −1.67671e6 −0.102245 −0.0511227 0.998692i \(-0.516280\pi\)
−0.0511227 + 0.998692i \(0.516280\pi\)
\(770\) 0 0
\(771\) 4.78489e7 2.89892
\(772\) 2.31394e7i 1.39736i
\(773\) − 2.08953e7i − 1.25776i −0.777501 0.628882i \(-0.783513\pi\)
0.777501 0.628882i \(-0.216487\pi\)
\(774\) −1.87833e7 −1.12699
\(775\) 0 0
\(776\) 5.64244e6 0.336366
\(777\) 2.31366e7i 1.37482i
\(778\) 3.26132e7i 1.93172i
\(779\) −2.74965e7 −1.62343
\(780\) 0 0
\(781\) 5.81732e6 0.341268
\(782\) − 8.55753e6i − 0.500416i
\(783\) − 7.75652e7i − 4.52129i
\(784\) 1.47122e7 0.854843
\(785\) 0 0
\(786\) −5.53791e7 −3.19734
\(787\) 2.62205e7i 1.50905i 0.656269 + 0.754527i \(0.272133\pi\)
−0.656269 + 0.754527i \(0.727867\pi\)
\(788\) 1.38410e7i 0.794060i
\(789\) 3.26092e7 1.86486
\(790\) 0 0
\(791\) −2.56342e7 −1.45673
\(792\) − 1.29882e7i − 0.735758i
\(793\) 1.63762e6i 0.0924761i
\(794\) −3.09150e7 −1.74028
\(795\) 0 0
\(796\) 233842. 0.0130810
\(797\) − 2.73769e6i − 0.152665i −0.997082 0.0763324i \(-0.975679\pi\)
0.997082 0.0763324i \(-0.0243210\pi\)
\(798\) 7.80498e7i 4.33875i
\(799\) −2.30024e7 −1.27470
\(800\) 0 0
\(801\) −6.05465e7 −3.33433
\(802\) − 2.06058e7i − 1.13124i
\(803\) 1.89586e7i 1.03757i
\(804\) −4.46205e6 −0.243441
\(805\) 0 0
\(806\) −6.83044e6 −0.370349
\(807\) − 4.19627e7i − 2.26819i
\(808\) 1.57633e6i 0.0849413i
\(809\) 2.09569e7 1.12578 0.562892 0.826530i \(-0.309689\pi\)
0.562892 + 0.826530i \(0.309689\pi\)
\(810\) 0 0
\(811\) 2.72798e6 0.145643 0.0728213 0.997345i \(-0.476800\pi\)
0.0728213 + 0.997345i \(0.476800\pi\)
\(812\) − 2.90835e7i − 1.54795i
\(813\) − 1.23923e7i − 0.657546i
\(814\) 1.56695e7 0.828884
\(815\) 0 0
\(816\) 5.15028e7 2.70773
\(817\) 7.67594e6i 0.402324i
\(818\) 1.22985e7i 0.642644i
\(819\) 1.86338e7 0.970717
\(820\) 0 0
\(821\) 1.56207e7 0.808801 0.404400 0.914582i \(-0.367480\pi\)
0.404400 + 0.914582i \(0.367480\pi\)
\(822\) 3.73531e7i 1.92818i
\(823\) − 7.04631e6i − 0.362629i −0.983425 0.181314i \(-0.941965\pi\)
0.983425 0.181314i \(-0.0580352\pi\)
\(824\) −1.48515e6 −0.0761997
\(825\) 0 0
\(826\) 2.19569e7 1.11975
\(827\) − 3.60941e7i − 1.83515i −0.397559 0.917577i \(-0.630143\pi\)
0.397559 0.917577i \(-0.369857\pi\)
\(828\) 1.28654e7i 0.652149i
\(829\) 2.15501e7 1.08909 0.544543 0.838733i \(-0.316703\pi\)
0.544543 + 0.838733i \(0.316703\pi\)
\(830\) 0 0
\(831\) −3.21139e7 −1.61321
\(832\) 3.36576e6i 0.168568i
\(833\) − 1.83718e7i − 0.917357i
\(834\) 2.30415e7 1.14709
\(835\) 0 0
\(836\) 2.37762e7 1.17659
\(837\) − 6.33011e7i − 3.12318i
\(838\) 8.27812e6i 0.407213i
\(839\) −1.21355e7 −0.595187 −0.297593 0.954693i \(-0.596184\pi\)
−0.297593 + 0.954693i \(0.596184\pi\)
\(840\) 0 0
\(841\) 2.16596e7 1.05599
\(842\) − 4.08688e7i − 1.98660i
\(843\) − 5.31717e7i − 2.57699i
\(844\) 2.91010e7 1.40621
\(845\) 0 0
\(846\) 7.68835e7 3.69324
\(847\) 7.53045e6i 0.360672i
\(848\) − 1.91344e7i − 0.913746i
\(849\) 5.11988e6 0.243776
\(850\) 0 0
\(851\) 3.46493e6 0.164010
\(852\) − 1.00096e7i − 0.472410i
\(853\) − 3.47231e7i − 1.63398i −0.576653 0.816990i \(-0.695641\pi\)
0.576653 0.816990i \(-0.304359\pi\)
\(854\) −1.26514e7 −0.593602
\(855\) 0 0
\(856\) 66674.7 0.00311012
\(857\) − 7.91521e6i − 0.368138i −0.982913 0.184069i \(-0.941073\pi\)
0.982913 0.184069i \(-0.0589270\pi\)
\(858\) − 1.73815e7i − 0.806064i
\(859\) 2.19414e7 1.01457 0.507284 0.861779i \(-0.330649\pi\)
0.507284 + 0.861779i \(0.330649\pi\)
\(860\) 0 0
\(861\) −6.98498e7 −3.21113
\(862\) − 1.61325e7i − 0.739491i
\(863\) 2.34790e7i 1.07313i 0.843859 + 0.536566i \(0.180279\pi\)
−0.843859 + 0.536566i \(0.819721\pi\)
\(864\) −9.01703e7 −4.10941
\(865\) 0 0
\(866\) 4.05337e7 1.83663
\(867\) − 2.20260e7i − 0.995150i
\(868\) − 2.37351e7i − 1.06928i
\(869\) 1.51235e7 0.679363
\(870\) 0 0
\(871\) 967854. 0.0432279
\(872\) 344348.i 0.0153358i
\(873\) 8.15950e7i 3.62350i
\(874\) 1.16887e7 0.517593
\(875\) 0 0
\(876\) 3.26213e7 1.43629
\(877\) 2.71398e7i 1.19154i 0.803156 + 0.595768i \(0.203152\pi\)
−0.803156 + 0.595768i \(0.796848\pi\)
\(878\) − 2.53649e7i − 1.11045i
\(879\) 2.90949e7 1.27012
\(880\) 0 0
\(881\) 4.57122e6 0.198423 0.0992115 0.995066i \(-0.468368\pi\)
0.0992115 + 0.995066i \(0.468368\pi\)
\(882\) 6.14060e7i 2.65791i
\(883\) − 3.03713e7i − 1.31087i −0.755250 0.655437i \(-0.772484\pi\)
0.755250 0.655437i \(-0.227516\pi\)
\(884\) 6.49670e6 0.279616
\(885\) 0 0
\(886\) 4.12882e7 1.76702
\(887\) 3.39368e7i 1.44831i 0.689636 + 0.724156i \(0.257770\pi\)
−0.689636 + 0.724156i \(0.742230\pi\)
\(888\) 6.01887e6i 0.256143i
\(889\) −4.09652e7 −1.73844
\(890\) 0 0
\(891\) 9.02173e7 3.80711
\(892\) 3.34370e7i 1.40707i
\(893\) − 3.14190e7i − 1.31845i
\(894\) −1.27354e7 −0.532929
\(895\) 0 0
\(896\) 1.53552e7 0.638978
\(897\) − 3.84351e6i − 0.159495i
\(898\) − 5.28227e6i − 0.218590i
\(899\) 3.44156e7 1.42022
\(900\) 0 0
\(901\) −2.38940e7 −0.980567
\(902\) 4.73065e7i 1.93600i
\(903\) 1.94993e7i 0.795793i
\(904\) −6.66860e6 −0.271402
\(905\) 0 0
\(906\) 2.34764e7 0.950193
\(907\) − 2.55351e7i − 1.03067i −0.856989 0.515334i \(-0.827668\pi\)
0.856989 0.515334i \(-0.172332\pi\)
\(908\) 3.44282e7i 1.38580i
\(909\) −2.27952e7 −0.915028
\(910\) 0 0
\(911\) −2.19240e6 −0.0875233 −0.0437616 0.999042i \(-0.513934\pi\)
−0.0437616 + 0.999042i \(0.513934\pi\)
\(912\) 7.03477e7i 2.80068i
\(913\) 2.66487e7i 1.05803i
\(914\) −2.97771e7 −1.17901
\(915\) 0 0
\(916\) −272341. −0.0107244
\(917\) 4.17410e7i 1.63923i
\(918\) 1.33857e8i 5.24245i
\(919\) 1.95519e6 0.0763659 0.0381829 0.999271i \(-0.487843\pi\)
0.0381829 + 0.999271i \(0.487843\pi\)
\(920\) 0 0
\(921\) −5.18521e7 −2.01427
\(922\) − 6.72900e7i − 2.60689i
\(923\) 2.17117e6i 0.0838858i
\(924\) 6.03990e7 2.32729
\(925\) 0 0
\(926\) −4.21256e7 −1.61443
\(927\) − 2.14767e7i − 0.820859i
\(928\) − 4.90239e7i − 1.86869i
\(929\) −2.43874e7 −0.927099 −0.463550 0.886071i \(-0.653424\pi\)
−0.463550 + 0.886071i \(0.653424\pi\)
\(930\) 0 0
\(931\) 2.50940e7 0.948846
\(932\) 3.72704e7i 1.40548i
\(933\) 2.99271e7i 1.12554i
\(934\) 4.03702e7 1.51424
\(935\) 0 0
\(936\) 4.84750e6 0.180854
\(937\) − 4.49798e7i − 1.67367i −0.547458 0.836833i \(-0.684404\pi\)
0.547458 0.836833i \(-0.315596\pi\)
\(938\) 7.47717e6i 0.277479i
\(939\) 1.36528e7 0.505311
\(940\) 0 0
\(941\) 2.36994e7 0.872496 0.436248 0.899826i \(-0.356307\pi\)
0.436248 + 0.899826i \(0.356307\pi\)
\(942\) 6.60546e7i 2.42536i
\(943\) 1.04607e7i 0.383073i
\(944\) 1.97902e7 0.722802
\(945\) 0 0
\(946\) 1.32061e7 0.479786
\(947\) 2.24198e7i 0.812376i 0.913789 + 0.406188i \(0.133142\pi\)
−0.913789 + 0.406188i \(0.866858\pi\)
\(948\) − 2.60223e7i − 0.940427i
\(949\) −7.07582e6 −0.255042
\(950\) 0 0
\(951\) −1.14188e7 −0.409420
\(952\) − 1.12043e7i − 0.400676i
\(953\) − 1.65747e7i − 0.591171i −0.955316 0.295585i \(-0.904485\pi\)
0.955316 0.295585i \(-0.0955147\pi\)
\(954\) 7.98636e7 2.84105
\(955\) 0 0
\(956\) −8.79119e6 −0.311102
\(957\) 8.75778e7i 3.09111i
\(958\) 3.47465e7i 1.22320i
\(959\) 2.81542e7 0.988545
\(960\) 0 0
\(961\) −542563. −0.0189514
\(962\) 5.84824e6i 0.203745i
\(963\) 964179.i 0.0335036i
\(964\) −2.97957e7 −1.03267
\(965\) 0 0
\(966\) 2.96931e7 1.02379
\(967\) 1.57319e7i 0.541021i 0.962717 + 0.270510i \(0.0871924\pi\)
−0.962717 + 0.270510i \(0.912808\pi\)
\(968\) 1.95901e6i 0.0671968i
\(969\) 8.78465e7 3.00549
\(970\) 0 0
\(971\) −8.18745e6 −0.278677 −0.139338 0.990245i \(-0.544498\pi\)
−0.139338 + 0.990245i \(0.544498\pi\)
\(972\) − 7.93044e7i − 2.69235i
\(973\) − 1.73671e7i − 0.588093i
\(974\) −6.10774e7 −2.06292
\(975\) 0 0
\(976\) −1.14030e7 −0.383172
\(977\) 4.04123e7i 1.35450i 0.735755 + 0.677248i \(0.236827\pi\)
−0.735755 + 0.677248i \(0.763173\pi\)
\(978\) − 6.03701e7i − 2.01825i
\(979\) 4.25689e7 1.41950
\(980\) 0 0
\(981\) −4.97960e6 −0.165205
\(982\) − 4.45179e7i − 1.47318i
\(983\) 3.44605e7i 1.13746i 0.822523 + 0.568732i \(0.192566\pi\)
−0.822523 + 0.568732i \(0.807434\pi\)
\(984\) −1.81711e7 −0.598264
\(985\) 0 0
\(986\) −7.27754e7 −2.38392
\(987\) − 7.98142e7i − 2.60788i
\(988\) 8.87385e6i 0.289214i
\(989\) 2.92021e6 0.0949345
\(990\) 0 0
\(991\) 1.80218e7 0.582927 0.291464 0.956582i \(-0.405858\pi\)
0.291464 + 0.956582i \(0.405858\pi\)
\(992\) − 4.00084e7i − 1.29084i
\(993\) 1.85280e7i 0.596287i
\(994\) −1.67734e7 −0.538461
\(995\) 0 0
\(996\) 4.58533e7 1.46461
\(997\) 3.07170e7i 0.978679i 0.872093 + 0.489340i \(0.162762\pi\)
−0.872093 + 0.489340i \(0.837238\pi\)
\(998\) 2.20646e7i 0.701244i
\(999\) −5.41985e7 −1.71820
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.f.274.10 12
5.2 odd 4 325.6.a.f.1.2 6
5.3 odd 4 65.6.a.e.1.5 6
5.4 even 2 inner 325.6.b.f.274.3 12
15.8 even 4 585.6.a.k.1.2 6
20.3 even 4 1040.6.a.r.1.6 6
65.38 odd 4 845.6.a.g.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.e.1.5 6 5.3 odd 4
325.6.a.f.1.2 6 5.2 odd 4
325.6.b.f.274.3 12 5.4 even 2 inner
325.6.b.f.274.10 12 1.1 even 1 trivial
585.6.a.k.1.2 6 15.8 even 4
845.6.a.g.1.2 6 65.38 odd 4
1040.6.a.r.1.6 6 20.3 even 4