Properties

Label 65.6.a.e.1.5
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(7.62628\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.62628 q^{2} -29.7832 q^{3} +26.1601 q^{4} +25.0000 q^{5} -227.135 q^{6} +171.199 q^{7} -44.5366 q^{8} +644.042 q^{9} +190.657 q^{10} +452.811 q^{11} -779.133 q^{12} -169.000 q^{13} +1305.61 q^{14} -744.581 q^{15} -1176.77 q^{16} +1469.49 q^{17} +4911.64 q^{18} +2007.18 q^{19} +654.003 q^{20} -5098.87 q^{21} +3453.26 q^{22} -763.605 q^{23} +1326.44 q^{24} +625.000 q^{25} -1288.84 q^{26} -11944.3 q^{27} +4478.59 q^{28} -6493.90 q^{29} -5678.38 q^{30} +5299.68 q^{31} -7549.22 q^{32} -13486.2 q^{33} +11206.7 q^{34} +4279.98 q^{35} +16848.2 q^{36} -4537.59 q^{37} +15307.3 q^{38} +5033.37 q^{39} -1113.42 q^{40} +13699.1 q^{41} -38885.4 q^{42} +3824.25 q^{43} +11845.6 q^{44} +16101.0 q^{45} -5823.46 q^{46} +15653.3 q^{47} +35048.1 q^{48} +12502.1 q^{49} +4766.42 q^{50} -43766.2 q^{51} -4421.06 q^{52} -16260.1 q^{53} -91090.7 q^{54} +11320.3 q^{55} -7624.63 q^{56} -59780.3 q^{57} -49524.3 q^{58} +16817.3 q^{59} -19478.3 q^{60} +9690.04 q^{61} +40416.8 q^{62} +110259. q^{63} -19915.7 q^{64} -4225.00 q^{65} -102849. q^{66} -5726.95 q^{67} +38442.0 q^{68} +22742.6 q^{69} +32640.3 q^{70} +12847.1 q^{71} -28683.4 q^{72} -41868.8 q^{73} -34604.9 q^{74} -18614.5 q^{75} +52508.0 q^{76} +77520.8 q^{77} +38385.9 q^{78} -33399.1 q^{79} -29419.3 q^{80} +199239. q^{81} +104473. q^{82} -58851.7 q^{83} -133387. q^{84} +36737.3 q^{85} +29164.8 q^{86} +193409. q^{87} -20166.7 q^{88} -94010.3 q^{89} +122791. q^{90} -28932.7 q^{91} -19976.0 q^{92} -157842. q^{93} +119377. q^{94} +50179.4 q^{95} +224840. q^{96} -126692. q^{97} +95344.8 q^{98} +291629. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 20 q^{3} + 134 q^{4} + 150 q^{5} - 52 q^{6} + 172 q^{7} - 138 q^{8} + 1034 q^{9} + 50 q^{10} + 800 q^{11} - 832 q^{12} - 1014 q^{13} + 2108 q^{14} + 500 q^{15} + 322 q^{16} + 4396 q^{17}+ \cdots + 301264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.62628 1.34815 0.674074 0.738664i \(-0.264543\pi\)
0.674074 + 0.738664i \(0.264543\pi\)
\(3\) −29.7832 −1.91060 −0.955298 0.295645i \(-0.904466\pi\)
−0.955298 + 0.295645i \(0.904466\pi\)
\(4\) 26.1601 0.817503
\(5\) 25.0000 0.447214
\(6\) −227.135 −2.57577
\(7\) 171.199 1.32055 0.660277 0.751022i \(-0.270439\pi\)
0.660277 + 0.751022i \(0.270439\pi\)
\(8\) −44.5366 −0.246032
\(9\) 644.042 2.65038
\(10\) 190.657 0.602910
\(11\) 452.811 1.12833 0.564163 0.825663i \(-0.309199\pi\)
0.564163 + 0.825663i \(0.309199\pi\)
\(12\) −779.133 −1.56192
\(13\) −169.000 −0.277350
\(14\) 1305.61 1.78030
\(15\) −744.581 −0.854445
\(16\) −1176.77 −1.14919
\(17\) 1469.49 1.23323 0.616615 0.787264i \(-0.288503\pi\)
0.616615 + 0.787264i \(0.288503\pi\)
\(18\) 4911.64 3.57310
\(19\) 2007.18 1.27556 0.637781 0.770218i \(-0.279852\pi\)
0.637781 + 0.770218i \(0.279852\pi\)
\(20\) 654.003 0.365599
\(21\) −5098.87 −2.52305
\(22\) 3453.26 1.52115
\(23\) −763.605 −0.300988 −0.150494 0.988611i \(-0.548086\pi\)
−0.150494 + 0.988611i \(0.548086\pi\)
\(24\) 1326.44 0.470068
\(25\) 625.000 0.200000
\(26\) −1288.84 −0.373909
\(27\) −11944.3 −3.15320
\(28\) 4478.59 1.07956
\(29\) −6493.90 −1.43387 −0.716936 0.697139i \(-0.754456\pi\)
−0.716936 + 0.697139i \(0.754456\pi\)
\(30\) −5678.38 −1.15192
\(31\) 5299.68 0.990479 0.495239 0.868757i \(-0.335080\pi\)
0.495239 + 0.868757i \(0.335080\pi\)
\(32\) −7549.22 −1.30325
\(33\) −13486.2 −2.15578
\(34\) 11206.7 1.66258
\(35\) 4279.98 0.590570
\(36\) 16848.2 2.16669
\(37\) −4537.59 −0.544906 −0.272453 0.962169i \(-0.587835\pi\)
−0.272453 + 0.962169i \(0.587835\pi\)
\(38\) 15307.3 1.71965
\(39\) 5033.37 0.529904
\(40\) −1113.42 −0.110029
\(41\) 13699.1 1.27272 0.636359 0.771393i \(-0.280440\pi\)
0.636359 + 0.771393i \(0.280440\pi\)
\(42\) −38885.4 −3.40144
\(43\) 3824.25 0.315409 0.157705 0.987486i \(-0.449591\pi\)
0.157705 + 0.987486i \(0.449591\pi\)
\(44\) 11845.6 0.922411
\(45\) 16101.0 1.18528
\(46\) −5823.46 −0.405776
\(47\) 15653.3 1.03362 0.516811 0.856099i \(-0.327119\pi\)
0.516811 + 0.856099i \(0.327119\pi\)
\(48\) 35048.1 2.19564
\(49\) 12502.1 0.743865
\(50\) 4766.42 0.269630
\(51\) −43766.2 −2.35621
\(52\) −4421.06 −0.226735
\(53\) −16260.1 −0.795120 −0.397560 0.917576i \(-0.630143\pi\)
−0.397560 + 0.917576i \(0.630143\pi\)
\(54\) −91090.7 −4.25099
\(55\) 11320.3 0.504603
\(56\) −7624.63 −0.324899
\(57\) −59780.3 −2.43708
\(58\) −49524.3 −1.93307
\(59\) 16817.3 0.628965 0.314483 0.949263i \(-0.398169\pi\)
0.314483 + 0.949263i \(0.398169\pi\)
\(60\) −19478.3 −0.698511
\(61\) 9690.04 0.333427 0.166714 0.986005i \(-0.446684\pi\)
0.166714 + 0.986005i \(0.446684\pi\)
\(62\) 40416.8 1.33531
\(63\) 110259. 3.49997
\(64\) −19915.7 −0.607780
\(65\) −4225.00 −0.124035
\(66\) −102849. −2.90631
\(67\) −5726.95 −0.155861 −0.0779303 0.996959i \(-0.524831\pi\)
−0.0779303 + 0.996959i \(0.524831\pi\)
\(68\) 38442.0 1.00817
\(69\) 22742.6 0.575067
\(70\) 32640.3 0.796176
\(71\) 12847.1 0.302455 0.151227 0.988499i \(-0.451677\pi\)
0.151227 + 0.988499i \(0.451677\pi\)
\(72\) −28683.4 −0.652079
\(73\) −41868.8 −0.919566 −0.459783 0.888031i \(-0.652073\pi\)
−0.459783 + 0.888031i \(0.652073\pi\)
\(74\) −34604.9 −0.734614
\(75\) −18614.5 −0.382119
\(76\) 52508.0 1.04278
\(77\) 77520.8 1.49002
\(78\) 38385.9 0.714389
\(79\) −33399.1 −0.602097 −0.301049 0.953609i \(-0.597337\pi\)
−0.301049 + 0.953609i \(0.597337\pi\)
\(80\) −29419.3 −0.513934
\(81\) 199239. 3.37412
\(82\) 104473. 1.71581
\(83\) −58851.7 −0.937700 −0.468850 0.883278i \(-0.655331\pi\)
−0.468850 + 0.883278i \(0.655331\pi\)
\(84\) −133387. −2.06260
\(85\) 36737.3 0.551518
\(86\) 29164.8 0.425219
\(87\) 193409. 2.73955
\(88\) −20166.7 −0.277605
\(89\) −94010.3 −1.25806 −0.629029 0.777382i \(-0.716547\pi\)
−0.629029 + 0.777382i \(0.716547\pi\)
\(90\) 122791. 1.59794
\(91\) −28932.7 −0.366256
\(92\) −19976.0 −0.246059
\(93\) −157842. −1.89241
\(94\) 119377. 1.39348
\(95\) 50179.4 0.570449
\(96\) 224840. 2.48998
\(97\) −126692. −1.36716 −0.683581 0.729874i \(-0.739579\pi\)
−0.683581 + 0.729874i \(0.739579\pi\)
\(98\) 95344.8 1.00284
\(99\) 291629. 2.99049
\(100\) 16350.1 0.163501
\(101\) 35394.0 0.345245 0.172622 0.984988i \(-0.444776\pi\)
0.172622 + 0.984988i \(0.444776\pi\)
\(102\) −333773. −3.17652
\(103\) −33346.8 −0.309714 −0.154857 0.987937i \(-0.549492\pi\)
−0.154857 + 0.987937i \(0.549492\pi\)
\(104\) 7526.69 0.0682371
\(105\) −127472. −1.12834
\(106\) −124004. −1.07194
\(107\) −1497.08 −0.0126411 −0.00632054 0.999980i \(-0.502012\pi\)
−0.00632054 + 0.999980i \(0.502012\pi\)
\(108\) −312465. −2.57776
\(109\) −7731.80 −0.0623325 −0.0311662 0.999514i \(-0.509922\pi\)
−0.0311662 + 0.999514i \(0.509922\pi\)
\(110\) 86331.5 0.680280
\(111\) 135144. 1.04109
\(112\) −201462. −1.51757
\(113\) −149733. −1.10312 −0.551558 0.834136i \(-0.685967\pi\)
−0.551558 + 0.834136i \(0.685967\pi\)
\(114\) −455901. −3.28555
\(115\) −19090.1 −0.134606
\(116\) −169881. −1.17220
\(117\) −108843. −0.735082
\(118\) 128254. 0.847938
\(119\) 251575. 1.62855
\(120\) 33161.1 0.210221
\(121\) 43986.5 0.273122
\(122\) 73898.9 0.449509
\(123\) −408003. −2.43165
\(124\) 138640. 0.809720
\(125\) 15625.0 0.0894427
\(126\) 840869. 4.71848
\(127\) 239284. 1.31645 0.658224 0.752822i \(-0.271308\pi\)
0.658224 + 0.752822i \(0.271308\pi\)
\(128\) 89692.1 0.483871
\(129\) −113898. −0.602620
\(130\) −32221.0 −0.167217
\(131\) 243815. 1.24132 0.620659 0.784081i \(-0.286865\pi\)
0.620659 + 0.784081i \(0.286865\pi\)
\(132\) −352800. −1.76236
\(133\) 343627. 1.68445
\(134\) −43675.3 −0.210123
\(135\) −298608. −1.41016
\(136\) −65446.1 −0.303415
\(137\) −164453. −0.748583 −0.374292 0.927311i \(-0.622114\pi\)
−0.374292 + 0.927311i \(0.622114\pi\)
\(138\) 173442. 0.775275
\(139\) 101444. 0.445338 0.222669 0.974894i \(-0.428523\pi\)
0.222669 + 0.974894i \(0.428523\pi\)
\(140\) 111965. 0.482793
\(141\) −466207. −1.97484
\(142\) 97975.8 0.407754
\(143\) −76525.0 −0.312942
\(144\) −757890. −3.04579
\(145\) −162347. −0.641247
\(146\) −319303. −1.23971
\(147\) −372354. −1.42123
\(148\) −118704. −0.445462
\(149\) −56069.7 −0.206901 −0.103450 0.994635i \(-0.532988\pi\)
−0.103450 + 0.994635i \(0.532988\pi\)
\(150\) −141960. −0.515153
\(151\) −103359. −0.368897 −0.184449 0.982842i \(-0.559050\pi\)
−0.184449 + 0.982842i \(0.559050\pi\)
\(152\) −89392.9 −0.313830
\(153\) 946413. 3.26853
\(154\) 591195. 2.00876
\(155\) 132492. 0.442956
\(156\) 131673. 0.433198
\(157\) −290816. −0.941606 −0.470803 0.882238i \(-0.656036\pi\)
−0.470803 + 0.882238i \(0.656036\pi\)
\(158\) −254711. −0.811716
\(159\) 484278. 1.51915
\(160\) −188730. −0.582830
\(161\) −130729. −0.397471
\(162\) 1.51945e6 4.54882
\(163\) −265789. −0.783553 −0.391777 0.920060i \(-0.628139\pi\)
−0.391777 + 0.920060i \(0.628139\pi\)
\(164\) 358370. 1.04045
\(165\) −337154. −0.964093
\(166\) −448819. −1.26416
\(167\) −279706. −0.776087 −0.388043 0.921641i \(-0.626849\pi\)
−0.388043 + 0.921641i \(0.626849\pi\)
\(168\) 227086. 0.620751
\(169\) 28561.0 0.0769231
\(170\) 280169. 0.743528
\(171\) 1.29271e6 3.38072
\(172\) 100043. 0.257848
\(173\) −657222. −1.66954 −0.834770 0.550599i \(-0.814399\pi\)
−0.834770 + 0.550599i \(0.814399\pi\)
\(174\) 1.47499e6 3.69332
\(175\) 106999. 0.264111
\(176\) −532855. −1.29666
\(177\) −500874. −1.20170
\(178\) −716949. −1.69605
\(179\) −140536. −0.327836 −0.163918 0.986474i \(-0.552413\pi\)
−0.163918 + 0.986474i \(0.552413\pi\)
\(180\) 421205. 0.968974
\(181\) 554170. 1.25732 0.628662 0.777679i \(-0.283603\pi\)
0.628662 + 0.777679i \(0.283603\pi\)
\(182\) −220648. −0.493767
\(183\) −288601. −0.637045
\(184\) 34008.4 0.0740528
\(185\) −113440. −0.243689
\(186\) −1.20374e6 −2.55124
\(187\) 665401. 1.39149
\(188\) 409493. 0.844990
\(189\) −2.04486e6 −4.16398
\(190\) 382682. 0.769050
\(191\) 379250. 0.752215 0.376107 0.926576i \(-0.377262\pi\)
0.376107 + 0.926576i \(0.377262\pi\)
\(192\) 593155. 1.16122
\(193\) 884530. 1.70930 0.854652 0.519201i \(-0.173770\pi\)
0.854652 + 0.519201i \(0.173770\pi\)
\(194\) −966189. −1.84314
\(195\) 125834. 0.236980
\(196\) 327057. 0.608112
\(197\) −529090. −0.971323 −0.485661 0.874147i \(-0.661421\pi\)
−0.485661 + 0.874147i \(0.661421\pi\)
\(198\) 2.22404e6 4.03163
\(199\) 8938.89 0.0160011 0.00800057 0.999968i \(-0.497453\pi\)
0.00800057 + 0.999968i \(0.497453\pi\)
\(200\) −27835.4 −0.0492065
\(201\) 170567. 0.297786
\(202\) 269925. 0.465441
\(203\) −1.11175e6 −1.89351
\(204\) −1.14493e6 −1.92621
\(205\) 342477. 0.569177
\(206\) −254312. −0.417541
\(207\) −491794. −0.797732
\(208\) 198874. 0.318728
\(209\) 908871. 1.43925
\(210\) −972134. −1.52117
\(211\) −1.11242e6 −1.72013 −0.860066 0.510183i \(-0.829578\pi\)
−0.860066 + 0.510183i \(0.829578\pi\)
\(212\) −425365. −0.650014
\(213\) −382629. −0.577869
\(214\) −11417.1 −0.0170421
\(215\) 95606.2 0.141055
\(216\) 531960. 0.775790
\(217\) 907300. 1.30798
\(218\) −58964.9 −0.0840334
\(219\) 1.24699e6 1.75692
\(220\) 296139. 0.412515
\(221\) −248344. −0.342037
\(222\) 1.03065e6 1.40355
\(223\) 1.27817e6 1.72118 0.860588 0.509301i \(-0.170096\pi\)
0.860588 + 0.509301i \(0.170096\pi\)
\(224\) −1.29242e6 −1.72101
\(225\) 402526. 0.530075
\(226\) −1.14191e6 −1.48716
\(227\) −1.31606e6 −1.69516 −0.847579 0.530669i \(-0.821941\pi\)
−0.847579 + 0.530669i \(0.821941\pi\)
\(228\) −1.56386e6 −1.99233
\(229\) −10410.5 −0.0131185 −0.00655925 0.999978i \(-0.502088\pi\)
−0.00655925 + 0.999978i \(0.502088\pi\)
\(230\) −145587. −0.181469
\(231\) −2.30882e6 −2.84682
\(232\) 289216. 0.352779
\(233\) 1.42470e6 1.71923 0.859616 0.510941i \(-0.170703\pi\)
0.859616 + 0.510941i \(0.170703\pi\)
\(234\) −830067. −0.991000
\(235\) 391333. 0.462250
\(236\) 439943. 0.514181
\(237\) 994733. 1.15036
\(238\) 1.91858e6 2.19553
\(239\) −336053. −0.380552 −0.190276 0.981731i \(-0.560938\pi\)
−0.190276 + 0.981731i \(0.560938\pi\)
\(240\) 876202. 0.981920
\(241\) 1.13898e6 1.26320 0.631599 0.775295i \(-0.282399\pi\)
0.631599 + 0.775295i \(0.282399\pi\)
\(242\) 335453. 0.368208
\(243\) −3.03150e6 −3.29338
\(244\) 253493. 0.272578
\(245\) 312554. 0.332667
\(246\) −3.11155e6 −3.27822
\(247\) −339213. −0.353777
\(248\) −236030. −0.243690
\(249\) 1.75279e6 1.79157
\(250\) 119161. 0.120582
\(251\) −1.58387e6 −1.58684 −0.793421 0.608673i \(-0.791702\pi\)
−0.793421 + 0.608673i \(0.791702\pi\)
\(252\) 2.88440e6 2.86124
\(253\) −345769. −0.339613
\(254\) 1.82484e6 1.77477
\(255\) −1.09415e6 −1.05373
\(256\) 1.32132e6 1.26011
\(257\) −1.60657e6 −1.51729 −0.758643 0.651507i \(-0.774137\pi\)
−0.758643 + 0.651507i \(0.774137\pi\)
\(258\) −868621. −0.812421
\(259\) −776832. −0.719578
\(260\) −110526. −0.101399
\(261\) −4.18234e6 −3.80030
\(262\) 1.85940e6 1.67348
\(263\) 1.09488e6 0.976064 0.488032 0.872826i \(-0.337715\pi\)
0.488032 + 0.872826i \(0.337715\pi\)
\(264\) 600628. 0.530391
\(265\) −406502. −0.355589
\(266\) 2.62059e6 2.27089
\(267\) 2.79993e6 2.40364
\(268\) −149818. −0.127417
\(269\) 1.40894e6 1.18716 0.593582 0.804774i \(-0.297713\pi\)
0.593582 + 0.804774i \(0.297713\pi\)
\(270\) −2.27727e6 −1.90110
\(271\) −416084. −0.344158 −0.172079 0.985083i \(-0.555048\pi\)
−0.172079 + 0.985083i \(0.555048\pi\)
\(272\) −1.72926e6 −1.41722
\(273\) 861708. 0.699767
\(274\) −1.25416e6 −1.00920
\(275\) 283007. 0.225665
\(276\) 594950. 0.470119
\(277\) 1.07825e6 0.844349 0.422174 0.906515i \(-0.361267\pi\)
0.422174 + 0.906515i \(0.361267\pi\)
\(278\) 773641. 0.600382
\(279\) 3.41321e6 2.62514
\(280\) −190616. −0.145299
\(281\) −1.78529e6 −1.34879 −0.674393 0.738372i \(-0.735595\pi\)
−0.674393 + 0.738372i \(0.735595\pi\)
\(282\) −3.55542e6 −2.66237
\(283\) 171905. 0.127591 0.0637957 0.997963i \(-0.479679\pi\)
0.0637957 + 0.997963i \(0.479679\pi\)
\(284\) 336082. 0.247258
\(285\) −1.49451e6 −1.08990
\(286\) −583601. −0.421892
\(287\) 2.34527e6 1.68069
\(288\) −4.86201e6 −3.45410
\(289\) 739545. 0.520859
\(290\) −1.23811e6 −0.864496
\(291\) 3.77330e6 2.61210
\(292\) −1.09529e6 −0.751749
\(293\) 976888. 0.664776 0.332388 0.943143i \(-0.392146\pi\)
0.332388 + 0.943143i \(0.392146\pi\)
\(294\) −2.83968e6 −1.91602
\(295\) 420433. 0.281282
\(296\) 202089. 0.134064
\(297\) −5.40852e6 −3.55784
\(298\) −427603. −0.278933
\(299\) 129049. 0.0834791
\(300\) −486958. −0.312384
\(301\) 654708. 0.416515
\(302\) −788243. −0.497328
\(303\) −1.05415e6 −0.659623
\(304\) −2.36199e6 −1.46587
\(305\) 242251. 0.149113
\(306\) 7.21761e6 4.40646
\(307\) 1.74098e6 1.05426 0.527131 0.849784i \(-0.323268\pi\)
0.527131 + 0.849784i \(0.323268\pi\)
\(308\) 2.02795e6 1.21809
\(309\) 993176. 0.591739
\(310\) 1.01042e6 0.597170
\(311\) 1.00483e6 0.589104 0.294552 0.955635i \(-0.404830\pi\)
0.294552 + 0.955635i \(0.404830\pi\)
\(312\) −224169. −0.130374
\(313\) 458407. 0.264478 0.132239 0.991218i \(-0.457783\pi\)
0.132239 + 0.991218i \(0.457783\pi\)
\(314\) −2.21784e6 −1.26942
\(315\) 2.75648e6 1.56523
\(316\) −873724. −0.492217
\(317\) 383397. 0.214289 0.107145 0.994243i \(-0.465829\pi\)
0.107145 + 0.994243i \(0.465829\pi\)
\(318\) 3.69324e6 2.04804
\(319\) −2.94051e6 −1.61788
\(320\) −497893. −0.271807
\(321\) 44587.8 0.0241520
\(322\) −996972. −0.535850
\(323\) 2.94953e6 1.57306
\(324\) 5.21210e6 2.75836
\(325\) −105625. −0.0554700
\(326\) −2.02698e6 −1.05635
\(327\) 230278. 0.119092
\(328\) −610111. −0.313130
\(329\) 2.67984e6 1.36496
\(330\) −2.57123e6 −1.29974
\(331\) 622094. 0.312095 0.156047 0.987750i \(-0.450125\pi\)
0.156047 + 0.987750i \(0.450125\pi\)
\(332\) −1.53957e6 −0.766573
\(333\) −2.92240e6 −1.44421
\(334\) −2.13311e6 −1.04628
\(335\) −143174. −0.0697029
\(336\) 6.00020e6 2.89946
\(337\) −624562. −0.299572 −0.149786 0.988718i \(-0.547858\pi\)
−0.149786 + 0.988718i \(0.547858\pi\)
\(338\) 217814. 0.103704
\(339\) 4.45953e6 2.10761
\(340\) 961051. 0.450868
\(341\) 2.39975e6 1.11758
\(342\) 9.85853e6 4.55771
\(343\) −736988. −0.338240
\(344\) −170319. −0.0776009
\(345\) 568566. 0.257178
\(346\) −5.01216e6 −2.25079
\(347\) −1.43412e6 −0.639382 −0.319691 0.947522i \(-0.603579\pi\)
−0.319691 + 0.947522i \(0.603579\pi\)
\(348\) 5.05961e6 2.23959
\(349\) −1.80725e6 −0.794247 −0.397124 0.917765i \(-0.629992\pi\)
−0.397124 + 0.917765i \(0.629992\pi\)
\(350\) 816008. 0.356061
\(351\) 2.01859e6 0.874541
\(352\) −3.41837e6 −1.47049
\(353\) −2.71033e6 −1.15767 −0.578835 0.815444i \(-0.696493\pi\)
−0.578835 + 0.815444i \(0.696493\pi\)
\(354\) −3.81981e6 −1.62007
\(355\) 321178. 0.135262
\(356\) −2.45932e6 −1.02847
\(357\) −7.49273e6 −3.11150
\(358\) −1.07177e6 −0.441971
\(359\) −1.91002e6 −0.782171 −0.391085 0.920354i \(-0.627900\pi\)
−0.391085 + 0.920354i \(0.627900\pi\)
\(360\) −717086. −0.291618
\(361\) 1.55266e6 0.627060
\(362\) 4.22626e6 1.69506
\(363\) −1.31006e6 −0.521825
\(364\) −756881. −0.299416
\(365\) −1.04672e6 −0.411242
\(366\) −2.20095e6 −0.858831
\(367\) 2.09294e6 0.811131 0.405566 0.914066i \(-0.367075\pi\)
0.405566 + 0.914066i \(0.367075\pi\)
\(368\) 898589. 0.345893
\(369\) 8.82278e6 3.37318
\(370\) −865124. −0.328529
\(371\) −2.78371e6 −1.05000
\(372\) −4.12915e6 −1.54705
\(373\) 1.20939e6 0.450083 0.225041 0.974349i \(-0.427748\pi\)
0.225041 + 0.974349i \(0.427748\pi\)
\(374\) 5.07453e6 1.87593
\(375\) −465363. −0.170889
\(376\) −697146. −0.254305
\(377\) 1.09747e6 0.397685
\(378\) −1.55947e7 −5.61366
\(379\) −594902. −0.212739 −0.106370 0.994327i \(-0.533923\pi\)
−0.106370 + 0.994327i \(0.533923\pi\)
\(380\) 1.31270e6 0.466344
\(381\) −7.12664e6 −2.51520
\(382\) 2.89226e6 1.01410
\(383\) −2.34526e6 −0.816946 −0.408473 0.912770i \(-0.633939\pi\)
−0.408473 + 0.912770i \(0.633939\pi\)
\(384\) −2.67132e6 −0.924481
\(385\) 1.93802e6 0.666356
\(386\) 6.74567e6 2.30440
\(387\) 2.46297e6 0.835954
\(388\) −3.31428e6 −1.11766
\(389\) −4.27642e6 −1.43287 −0.716434 0.697655i \(-0.754227\pi\)
−0.716434 + 0.697655i \(0.754227\pi\)
\(390\) 959647. 0.319485
\(391\) −1.12211e6 −0.371188
\(392\) −556803. −0.183015
\(393\) −7.26161e6 −2.37166
\(394\) −4.03498e6 −1.30949
\(395\) −834977. −0.269266
\(396\) 7.62905e6 2.44474
\(397\) 4.05375e6 1.29087 0.645433 0.763817i \(-0.276677\pi\)
0.645433 + 0.763817i \(0.276677\pi\)
\(398\) 68170.5 0.0215719
\(399\) −1.02343e7 −3.21830
\(400\) −735483. −0.229838
\(401\) −2.70195e6 −0.839105 −0.419553 0.907731i \(-0.637813\pi\)
−0.419553 + 0.907731i \(0.637813\pi\)
\(402\) 1.30079e6 0.401460
\(403\) −895646. −0.274709
\(404\) 925912. 0.282239
\(405\) 4.98096e6 1.50895
\(406\) −8.47851e6 −2.55273
\(407\) −2.05467e6 −0.614832
\(408\) 1.94920e6 0.579703
\(409\) −1.61265e6 −0.476686 −0.238343 0.971181i \(-0.576604\pi\)
−0.238343 + 0.971181i \(0.576604\pi\)
\(410\) 2.61183e6 0.767334
\(411\) 4.89794e6 1.43024
\(412\) −872356. −0.253192
\(413\) 2.87911e6 0.830583
\(414\) −3.75055e6 −1.07546
\(415\) −1.47129e6 −0.419352
\(416\) 1.27582e6 0.361456
\(417\) −3.02133e6 −0.850861
\(418\) 6.93131e6 1.94032
\(419\) −1.08547e6 −0.302054 −0.151027 0.988530i \(-0.548258\pi\)
−0.151027 + 0.988530i \(0.548258\pi\)
\(420\) −3.33467e6 −0.922423
\(421\) −5.35894e6 −1.47358 −0.736790 0.676121i \(-0.763659\pi\)
−0.736790 + 0.676121i \(0.763659\pi\)
\(422\) −8.48361e6 −2.31899
\(423\) 1.00814e7 2.73949
\(424\) 724169. 0.195625
\(425\) 918431. 0.246646
\(426\) −2.91804e6 −0.779053
\(427\) 1.65893e6 0.440309
\(428\) −39163.7 −0.0103341
\(429\) 2.27916e6 0.597905
\(430\) 729119. 0.190164
\(431\) −2.11538e6 −0.548524 −0.274262 0.961655i \(-0.588434\pi\)
−0.274262 + 0.961655i \(0.588434\pi\)
\(432\) 1.40557e7 3.62364
\(433\) 5.31501e6 1.36234 0.681168 0.732128i \(-0.261473\pi\)
0.681168 + 0.732128i \(0.261473\pi\)
\(434\) 6.91932e6 1.76335
\(435\) 4.83523e6 1.22516
\(436\) −202265. −0.0509570
\(437\) −1.53269e6 −0.383929
\(438\) 9.50987e6 2.36859
\(439\) 3.32599e6 0.823682 0.411841 0.911256i \(-0.364886\pi\)
0.411841 + 0.911256i \(0.364886\pi\)
\(440\) −504166. −0.124149
\(441\) 8.05190e6 1.97152
\(442\) −1.89394e6 −0.461116
\(443\) 5.41394e6 1.31070 0.655352 0.755324i \(-0.272520\pi\)
0.655352 + 0.755324i \(0.272520\pi\)
\(444\) 3.53539e6 0.851098
\(445\) −2.35026e6 −0.562620
\(446\) 9.74766e6 2.32040
\(447\) 1.66994e6 0.395304
\(448\) −3.40956e6 −0.802607
\(449\) 692641. 0.162141 0.0810704 0.996708i \(-0.474166\pi\)
0.0810704 + 0.996708i \(0.474166\pi\)
\(450\) 3.06978e6 0.714620
\(451\) 6.20309e6 1.43604
\(452\) −3.91703e6 −0.901801
\(453\) 3.07836e6 0.704813
\(454\) −1.00366e7 −2.28532
\(455\) −723316. −0.163795
\(456\) 2.66241e6 0.599602
\(457\) 3.90454e6 0.874539 0.437270 0.899330i \(-0.355946\pi\)
0.437270 + 0.899330i \(0.355946\pi\)
\(458\) −79393.6 −0.0176857
\(459\) −1.75521e7 −3.88863
\(460\) −499400. −0.110041
\(461\) −8.82344e6 −1.93368 −0.966842 0.255375i \(-0.917801\pi\)
−0.966842 + 0.255375i \(0.917801\pi\)
\(462\) −1.76077e7 −3.83794
\(463\) −5.52375e6 −1.19752 −0.598758 0.800930i \(-0.704339\pi\)
−0.598758 + 0.800930i \(0.704339\pi\)
\(464\) 7.64184e6 1.64779
\(465\) −3.94604e6 −0.846309
\(466\) 1.08652e7 2.31778
\(467\) −5.29356e6 −1.12320 −0.561598 0.827410i \(-0.689813\pi\)
−0.561598 + 0.827410i \(0.689813\pi\)
\(468\) −2.84735e6 −0.600932
\(469\) −980448. −0.205822
\(470\) 2.98442e6 0.623182
\(471\) 8.66145e6 1.79903
\(472\) −748986. −0.154746
\(473\) 1.73166e6 0.355885
\(474\) 7.58611e6 1.55086
\(475\) 1.25449e6 0.255113
\(476\) 6.58124e6 1.33134
\(477\) −1.04722e7 −2.10737
\(478\) −2.56284e6 −0.513040
\(479\) −4.55616e6 −0.907319 −0.453659 0.891175i \(-0.649882\pi\)
−0.453659 + 0.891175i \(0.649882\pi\)
\(480\) 5.62101e6 1.11355
\(481\) 766853. 0.151130
\(482\) 8.68614e6 1.70298
\(483\) 3.89352e6 0.759407
\(484\) 1.15069e6 0.223278
\(485\) −3.16730e6 −0.611414
\(486\) −2.31191e7 −4.43996
\(487\) 8.00881e6 1.53019 0.765096 0.643916i \(-0.222692\pi\)
0.765096 + 0.643916i \(0.222692\pi\)
\(488\) −431562. −0.0820339
\(489\) 7.91607e6 1.49705
\(490\) 2.38362e6 0.448484
\(491\) −5.83743e6 −1.09274 −0.546372 0.837543i \(-0.683991\pi\)
−0.546372 + 0.837543i \(0.683991\pi\)
\(492\) −1.06734e7 −1.98788
\(493\) −9.54272e6 −1.76830
\(494\) −2.58693e6 −0.476944
\(495\) 7.29072e6 1.33739
\(496\) −6.23651e6 −1.13825
\(497\) 2.19942e6 0.399408
\(498\) 1.33673e7 2.41530
\(499\) −2.89323e6 −0.520153 −0.260077 0.965588i \(-0.583748\pi\)
−0.260077 + 0.965588i \(0.583748\pi\)
\(500\) 408752. 0.0731197
\(501\) 8.33055e6 1.48279
\(502\) −1.20790e7 −2.13930
\(503\) 1.02497e7 1.80631 0.903156 0.429312i \(-0.141244\pi\)
0.903156 + 0.429312i \(0.141244\pi\)
\(504\) −4.91058e6 −0.861106
\(505\) 884851. 0.154398
\(506\) −2.63693e6 −0.457849
\(507\) −850639. −0.146969
\(508\) 6.25969e6 1.07620
\(509\) 6.87884e6 1.17685 0.588424 0.808552i \(-0.299749\pi\)
0.588424 + 0.808552i \(0.299749\pi\)
\(510\) −8.34433e6 −1.42058
\(511\) −7.16790e6 −1.21434
\(512\) 7.20661e6 1.21494
\(513\) −2.39744e7 −4.02211
\(514\) −1.22522e7 −2.04553
\(515\) −833670. −0.138508
\(516\) −2.97960e6 −0.492644
\(517\) 7.08799e6 1.16626
\(518\) −5.92434e6 −0.970097
\(519\) 1.95742e7 3.18982
\(520\) 188167. 0.0305166
\(521\) 1.11738e6 0.180346 0.0901728 0.995926i \(-0.471258\pi\)
0.0901728 + 0.995926i \(0.471258\pi\)
\(522\) −3.18957e7 −5.12337
\(523\) 2.65174e6 0.423912 0.211956 0.977279i \(-0.432017\pi\)
0.211956 + 0.977279i \(0.432017\pi\)
\(524\) 6.37824e6 1.01478
\(525\) −3.18679e6 −0.504609
\(526\) 8.34988e6 1.31588
\(527\) 7.78783e6 1.22149
\(528\) 1.58702e7 2.47740
\(529\) −5.85325e6 −0.909406
\(530\) −3.10010e6 −0.479386
\(531\) 1.08311e7 1.66700
\(532\) 8.98932e6 1.37704
\(533\) −2.31515e6 −0.352988
\(534\) 2.13531e7 3.24046
\(535\) −37426.9 −0.00565326
\(536\) 255059. 0.0383467
\(537\) 4.18563e6 0.626362
\(538\) 1.07449e7 1.60047
\(539\) 5.66110e6 0.839323
\(540\) −7.81162e6 −1.15281
\(541\) 9.63494e6 1.41532 0.707662 0.706551i \(-0.249750\pi\)
0.707662 + 0.706551i \(0.249750\pi\)
\(542\) −3.17317e6 −0.463976
\(543\) −1.65050e7 −2.40224
\(544\) −1.10935e7 −1.60721
\(545\) −193295. −0.0278759
\(546\) 6.57163e6 0.943390
\(547\) 1.83795e6 0.262642 0.131321 0.991340i \(-0.458078\pi\)
0.131321 + 0.991340i \(0.458078\pi\)
\(548\) −4.30211e6 −0.611969
\(549\) 6.24079e6 0.883708
\(550\) 2.15829e6 0.304230
\(551\) −1.30344e7 −1.82899
\(552\) −1.01288e6 −0.141485
\(553\) −5.71789e6 −0.795103
\(554\) 8.22307e6 1.13831
\(555\) 3.37861e6 0.465592
\(556\) 2.65379e6 0.364065
\(557\) −5.72815e6 −0.782305 −0.391152 0.920326i \(-0.627923\pi\)
−0.391152 + 0.920326i \(0.627923\pi\)
\(558\) 2.60301e7 3.53908
\(559\) −646298. −0.0874788
\(560\) −5.03656e6 −0.678678
\(561\) −1.98178e7 −2.65857
\(562\) −1.36151e7 −1.81836
\(563\) −8.32198e6 −1.10651 −0.553255 0.833012i \(-0.686615\pi\)
−0.553255 + 0.833012i \(0.686615\pi\)
\(564\) −1.21960e7 −1.61443
\(565\) −3.74332e6 −0.493329
\(566\) 1.31099e6 0.172012
\(567\) 3.41095e7 4.45571
\(568\) −572168. −0.0744137
\(569\) −1.13277e7 −1.46676 −0.733382 0.679817i \(-0.762059\pi\)
−0.733382 + 0.679817i \(0.762059\pi\)
\(570\) −1.13975e7 −1.46934
\(571\) −1.31340e7 −1.68581 −0.842904 0.538064i \(-0.819156\pi\)
−0.842904 + 0.538064i \(0.819156\pi\)
\(572\) −2.00190e6 −0.255831
\(573\) −1.12953e7 −1.43718
\(574\) 1.78857e7 2.26582
\(575\) −477253. −0.0601976
\(576\) −1.28266e7 −1.61085
\(577\) −5.24787e6 −0.656211 −0.328105 0.944641i \(-0.606410\pi\)
−0.328105 + 0.944641i \(0.606410\pi\)
\(578\) 5.63997e6 0.702195
\(579\) −2.63442e7 −3.26579
\(580\) −4.24703e6 −0.524222
\(581\) −1.00754e7 −1.23828
\(582\) 2.87762e7 3.52149
\(583\) −7.36274e6 −0.897156
\(584\) 1.86469e6 0.226243
\(585\) −2.72108e6 −0.328739
\(586\) 7.45002e6 0.896217
\(587\) 4.50054e6 0.539100 0.269550 0.962986i \(-0.413125\pi\)
0.269550 + 0.962986i \(0.413125\pi\)
\(588\) −9.74083e6 −1.16186
\(589\) 1.06374e7 1.26342
\(590\) 3.20634e6 0.379210
\(591\) 1.57580e7 1.85581
\(592\) 5.33971e6 0.626201
\(593\) −1.02931e7 −1.20201 −0.601005 0.799245i \(-0.705233\pi\)
−0.601005 + 0.799245i \(0.705233\pi\)
\(594\) −4.12468e7 −4.79650
\(595\) 6.28939e6 0.728309
\(596\) −1.46679e6 −0.169142
\(597\) −266229. −0.0305717
\(598\) 984166. 0.112542
\(599\) 1.05149e7 1.19740 0.598700 0.800973i \(-0.295684\pi\)
0.598700 + 0.800973i \(0.295684\pi\)
\(600\) 829028. 0.0940137
\(601\) 1.66880e7 1.88460 0.942298 0.334774i \(-0.108660\pi\)
0.942298 + 0.334774i \(0.108660\pi\)
\(602\) 4.99298e6 0.561525
\(603\) −3.68839e6 −0.413089
\(604\) −2.70388e6 −0.301575
\(605\) 1.09966e6 0.122144
\(606\) −8.03924e6 −0.889269
\(607\) −5.97807e6 −0.658551 −0.329275 0.944234i \(-0.606804\pi\)
−0.329275 + 0.944234i \(0.606804\pi\)
\(608\) −1.51526e7 −1.66237
\(609\) 3.31115e7 3.61773
\(610\) 1.84747e6 0.201027
\(611\) −2.64541e6 −0.286675
\(612\) 2.47583e7 2.67203
\(613\) −449741. −0.0483405 −0.0241702 0.999708i \(-0.507694\pi\)
−0.0241702 + 0.999708i \(0.507694\pi\)
\(614\) 1.32772e7 1.42130
\(615\) −1.02001e7 −1.08747
\(616\) −3.45251e6 −0.366593
\(617\) 3.68155e6 0.389330 0.194665 0.980870i \(-0.437638\pi\)
0.194665 + 0.980870i \(0.437638\pi\)
\(618\) 7.57423e6 0.797751
\(619\) −1.14389e6 −0.119993 −0.0599967 0.998199i \(-0.519109\pi\)
−0.0599967 + 0.998199i \(0.519109\pi\)
\(620\) 3.46600e6 0.362118
\(621\) 9.12075e6 0.949077
\(622\) 7.66312e6 0.794199
\(623\) −1.60945e7 −1.66133
\(624\) −5.92313e6 −0.608961
\(625\) 390625. 0.0400000
\(626\) 3.49594e6 0.356556
\(627\) −2.70691e7 −2.74983
\(628\) −7.60778e6 −0.769766
\(629\) −6.66795e6 −0.671995
\(630\) 2.10217e7 2.11017
\(631\) −1.75675e6 −0.175646 −0.0878228 0.996136i \(-0.527991\pi\)
−0.0878228 + 0.996136i \(0.527991\pi\)
\(632\) 1.48748e6 0.148135
\(633\) 3.31314e7 3.28648
\(634\) 2.92389e6 0.288894
\(635\) 5.98209e6 0.588734
\(636\) 1.26688e7 1.24191
\(637\) −2.11286e6 −0.206311
\(638\) −2.24251e7 −2.18114
\(639\) 8.27409e6 0.801619
\(640\) 2.24230e6 0.216394
\(641\) −9.00917e6 −0.866043 −0.433022 0.901384i \(-0.642553\pi\)
−0.433022 + 0.901384i \(0.642553\pi\)
\(642\) 340039. 0.0325605
\(643\) −1.98773e7 −1.89596 −0.947981 0.318327i \(-0.896879\pi\)
−0.947981 + 0.318327i \(0.896879\pi\)
\(644\) −3.41987e6 −0.324934
\(645\) −2.84746e6 −0.269500
\(646\) 2.24939e7 2.12072
\(647\) 907817. 0.0852585 0.0426293 0.999091i \(-0.486427\pi\)
0.0426293 + 0.999091i \(0.486427\pi\)
\(648\) −8.87341e6 −0.830143
\(649\) 7.61506e6 0.709679
\(650\) −805526. −0.0747818
\(651\) −2.70223e7 −2.49902
\(652\) −6.95308e6 −0.640557
\(653\) −4.96671e6 −0.455812 −0.227906 0.973683i \(-0.573188\pi\)
−0.227906 + 0.973683i \(0.573188\pi\)
\(654\) 1.75616e6 0.160554
\(655\) 6.09538e6 0.555134
\(656\) −1.61207e7 −1.46260
\(657\) −2.69652e7 −2.43720
\(658\) 2.04372e7 1.84016
\(659\) 1.50643e7 1.35125 0.675625 0.737245i \(-0.263874\pi\)
0.675625 + 0.737245i \(0.263874\pi\)
\(660\) −8.81999e6 −0.788149
\(661\) 2.41958e6 0.215395 0.107698 0.994184i \(-0.465652\pi\)
0.107698 + 0.994184i \(0.465652\pi\)
\(662\) 4.74426e6 0.420750
\(663\) 7.39649e6 0.653494
\(664\) 2.62106e6 0.230705
\(665\) 8.59068e6 0.753309
\(666\) −2.22870e7 −1.94700
\(667\) 4.95877e6 0.431578
\(668\) −7.31714e6 −0.634454
\(669\) −3.80680e7 −3.28847
\(670\) −1.09188e6 −0.0939699
\(671\) 4.38775e6 0.376215
\(672\) 3.84925e7 3.28816
\(673\) 1.65638e7 1.40969 0.704844 0.709362i \(-0.251017\pi\)
0.704844 + 0.709362i \(0.251017\pi\)
\(674\) −4.76308e6 −0.403867
\(675\) −7.46520e6 −0.630641
\(676\) 747159. 0.0628849
\(677\) 5.75548e6 0.482625 0.241313 0.970447i \(-0.422422\pi\)
0.241313 + 0.970447i \(0.422422\pi\)
\(678\) 3.40096e7 2.84137
\(679\) −2.16896e7 −1.80541
\(680\) −1.63615e6 −0.135691
\(681\) 3.91965e7 3.23876
\(682\) 1.83012e7 1.50667
\(683\) −5.72848e6 −0.469881 −0.234940 0.972010i \(-0.575489\pi\)
−0.234940 + 0.972010i \(0.575489\pi\)
\(684\) 3.38173e7 2.76375
\(685\) −4.11132e6 −0.334777
\(686\) −5.62048e6 −0.455998
\(687\) 310060. 0.0250642
\(688\) −4.50027e6 −0.362466
\(689\) 2.74795e6 0.220527
\(690\) 4.33604e6 0.346713
\(691\) 1.03053e7 0.821041 0.410520 0.911851i \(-0.365347\pi\)
0.410520 + 0.911851i \(0.365347\pi\)
\(692\) −1.71930e7 −1.36485
\(693\) 4.99266e7 3.94911
\(694\) −1.09370e7 −0.861982
\(695\) 2.53610e6 0.199161
\(696\) −8.61380e6 −0.674018
\(697\) 2.01307e7 1.56955
\(698\) −1.37826e7 −1.07076
\(699\) −4.24323e7 −3.28476
\(700\) 2.79912e6 0.215912
\(701\) 1.51125e7 1.16156 0.580781 0.814060i \(-0.302747\pi\)
0.580781 + 0.814060i \(0.302747\pi\)
\(702\) 1.53943e7 1.17901
\(703\) −9.10776e6 −0.695061
\(704\) −9.01806e6 −0.685775
\(705\) −1.16552e7 −0.883173
\(706\) −2.06697e7 −1.56071
\(707\) 6.05943e6 0.455914
\(708\) −1.31029e7 −0.982393
\(709\) 2.17724e7 1.62664 0.813318 0.581820i \(-0.197659\pi\)
0.813318 + 0.581820i \(0.197659\pi\)
\(710\) 2.44940e6 0.182353
\(711\) −2.15104e7 −1.59579
\(712\) 4.18690e6 0.309523
\(713\) −4.04686e6 −0.298122
\(714\) −5.71417e7 −4.19476
\(715\) −1.91313e6 −0.139952
\(716\) −3.67645e6 −0.268007
\(717\) 1.00088e7 0.727080
\(718\) −1.45663e7 −1.05448
\(719\) 7.54447e6 0.544260 0.272130 0.962260i \(-0.412272\pi\)
0.272130 + 0.962260i \(0.412272\pi\)
\(720\) −1.89473e7 −1.36212
\(721\) −5.70894e6 −0.408995
\(722\) 1.18410e7 0.845369
\(723\) −3.39224e7 −2.41346
\(724\) 1.44972e7 1.02787
\(725\) −4.05869e6 −0.286774
\(726\) −9.99089e6 −0.703498
\(727\) 2.06007e7 1.44559 0.722795 0.691063i \(-0.242857\pi\)
0.722795 + 0.691063i \(0.242857\pi\)
\(728\) 1.28856e6 0.0901108
\(729\) 4.18729e7 2.91820
\(730\) −7.98257e6 −0.554416
\(731\) 5.61969e6 0.388973
\(732\) −7.54983e6 −0.520786
\(733\) −4.42100e6 −0.303921 −0.151960 0.988387i \(-0.548559\pi\)
−0.151960 + 0.988387i \(0.548559\pi\)
\(734\) 1.59613e7 1.09353
\(735\) −9.30886e6 −0.635591
\(736\) 5.76462e6 0.392262
\(737\) −2.59322e6 −0.175862
\(738\) 6.72850e7 4.54755
\(739\) 847676. 0.0570977 0.0285489 0.999592i \(-0.490911\pi\)
0.0285489 + 0.999592i \(0.490911\pi\)
\(740\) −2.96760e6 −0.199217
\(741\) 1.01029e7 0.675926
\(742\) −2.12294e7 −1.41556
\(743\) 4.18581e6 0.278168 0.139084 0.990281i \(-0.455584\pi\)
0.139084 + 0.990281i \(0.455584\pi\)
\(744\) 7.02973e6 0.465593
\(745\) −1.40174e6 −0.0925289
\(746\) 9.22311e6 0.606778
\(747\) −3.79030e7 −2.48526
\(748\) 1.74070e7 1.13755
\(749\) −256298. −0.0166932
\(750\) −3.54899e6 −0.230384
\(751\) −2.60568e7 −1.68586 −0.842930 0.538023i \(-0.819171\pi\)
−0.842930 + 0.538023i \(0.819171\pi\)
\(752\) −1.84204e7 −1.18783
\(753\) 4.71726e7 3.03182
\(754\) 8.36960e6 0.536138
\(755\) −2.58397e6 −0.164976
\(756\) −5.34937e7 −3.40407
\(757\) −1.34084e7 −0.850430 −0.425215 0.905092i \(-0.639801\pi\)
−0.425215 + 0.905092i \(0.639801\pi\)
\(758\) −4.53689e6 −0.286804
\(759\) 1.02981e7 0.648863
\(760\) −2.23482e6 −0.140349
\(761\) 1.74233e7 1.09061 0.545303 0.838239i \(-0.316415\pi\)
0.545303 + 0.838239i \(0.316415\pi\)
\(762\) −5.43498e7 −3.39086
\(763\) −1.32368e6 −0.0823135
\(764\) 9.92122e6 0.614938
\(765\) 2.36603e7 1.46173
\(766\) −1.78856e7 −1.10136
\(767\) −2.84213e6 −0.174444
\(768\) −3.93532e7 −2.40756
\(769\) 1.67671e6 0.102245 0.0511227 0.998692i \(-0.483720\pi\)
0.0511227 + 0.998692i \(0.483720\pi\)
\(770\) 1.47799e7 0.898347
\(771\) 4.78489e7 2.89892
\(772\) 2.31394e7 1.39736
\(773\) 2.08953e7 1.25776 0.628882 0.777501i \(-0.283513\pi\)
0.628882 + 0.777501i \(0.283513\pi\)
\(774\) 1.87833e7 1.12699
\(775\) 3.31230e6 0.198096
\(776\) 5.64244e6 0.336366
\(777\) 2.31366e7 1.37482
\(778\) −3.26132e7 −1.93172
\(779\) 2.74965e7 1.62343
\(780\) 3.29184e6 0.193732
\(781\) 5.81732e6 0.341268
\(782\) −8.55753e6 −0.500416
\(783\) 7.75652e7 4.52129
\(784\) −1.47122e7 −0.854843
\(785\) −7.27040e6 −0.421099
\(786\) −5.53791e7 −3.19734
\(787\) 2.62205e7 1.50905 0.754527 0.656269i \(-0.227867\pi\)
0.754527 + 0.656269i \(0.227867\pi\)
\(788\) −1.38410e7 −0.794060
\(789\) −3.26092e7 −1.86486
\(790\) −6.36777e6 −0.363011
\(791\) −2.56342e7 −1.45673
\(792\) −1.29882e7 −0.735758
\(793\) −1.63762e6 −0.0924761
\(794\) 3.09150e7 1.74028
\(795\) 1.21069e7 0.679386
\(796\) 233842. 0.0130810
\(797\) −2.73769e6 −0.152665 −0.0763324 0.997082i \(-0.524321\pi\)
−0.0763324 + 0.997082i \(0.524321\pi\)
\(798\) −7.80498e7 −4.33875
\(799\) 2.30024e7 1.27470
\(800\) −4.71826e6 −0.260650
\(801\) −6.05465e7 −3.33433
\(802\) −2.06058e7 −1.13124
\(803\) −1.89586e7 −1.03757
\(804\) 4.46205e6 0.243441
\(805\) −3.26821e6 −0.177755
\(806\) −6.83044e6 −0.370349
\(807\) −4.19627e7 −2.26819
\(808\) −1.57633e6 −0.0849413
\(809\) −2.09569e7 −1.12578 −0.562892 0.826530i \(-0.690311\pi\)
−0.562892 + 0.826530i \(0.690311\pi\)
\(810\) 3.79862e7 2.03429
\(811\) 2.72798e6 0.145643 0.0728213 0.997345i \(-0.476800\pi\)
0.0728213 + 0.997345i \(0.476800\pi\)
\(812\) −2.90835e7 −1.54795
\(813\) 1.23923e7 0.657546
\(814\) −1.56695e7 −0.828884
\(815\) −6.64473e6 −0.350416
\(816\) 5.15028e7 2.70773
\(817\) 7.67594e6 0.402324
\(818\) −1.22985e7 −0.642644
\(819\) −1.86338e7 −0.970717
\(820\) 8.95924e6 0.465304
\(821\) 1.56207e7 0.808801 0.404400 0.914582i \(-0.367480\pi\)
0.404400 + 0.914582i \(0.367480\pi\)
\(822\) 3.73531e7 1.92818
\(823\) 7.04631e6 0.362629 0.181314 0.983425i \(-0.441965\pi\)
0.181314 + 0.983425i \(0.441965\pi\)
\(824\) 1.48515e6 0.0761997
\(825\) −8.42886e6 −0.431155
\(826\) 2.19569e7 1.11975
\(827\) −3.60941e7 −1.83515 −0.917577 0.397559i \(-0.869857\pi\)
−0.917577 + 0.397559i \(0.869857\pi\)
\(828\) −1.28654e7 −0.652149
\(829\) −2.15501e7 −1.08909 −0.544543 0.838733i \(-0.683297\pi\)
−0.544543 + 0.838733i \(0.683297\pi\)
\(830\) −1.12205e7 −0.565349
\(831\) −3.21139e7 −1.61321
\(832\) 3.36576e6 0.168568
\(833\) 1.83718e7 0.917357
\(834\) −2.30415e7 −1.14709
\(835\) −6.99265e6 −0.347077
\(836\) 2.37762e7 1.17659
\(837\) −6.33011e7 −3.12318
\(838\) −8.27812e6 −0.407213
\(839\) 1.21355e7 0.595187 0.297593 0.954693i \(-0.403816\pi\)
0.297593 + 0.954693i \(0.403816\pi\)
\(840\) 5.67716e6 0.277608
\(841\) 2.16596e7 1.05599
\(842\) −4.08688e7 −1.98660
\(843\) 5.31717e7 2.57699
\(844\) −2.91010e7 −1.40621
\(845\) 714025. 0.0344010
\(846\) 7.68835e7 3.69324
\(847\) 7.53045e6 0.360672
\(848\) 1.91344e7 0.913746
\(849\) −5.11988e6 −0.243776
\(850\) 7.00421e6 0.332516
\(851\) 3.46493e6 0.164010
\(852\) −1.00096e7 −0.472410
\(853\) 3.47231e7 1.63398 0.816990 0.576653i \(-0.195641\pi\)
0.816990 + 0.576653i \(0.195641\pi\)
\(854\) 1.26514e7 0.593602
\(855\) 3.23176e7 1.51190
\(856\) 66674.7 0.00311012
\(857\) −7.91521e6 −0.368138 −0.184069 0.982913i \(-0.558927\pi\)
−0.184069 + 0.982913i \(0.558927\pi\)
\(858\) 1.73815e7 0.806064
\(859\) −2.19414e7 −1.01457 −0.507284 0.861779i \(-0.669351\pi\)
−0.507284 + 0.861779i \(0.669351\pi\)
\(860\) 2.50107e6 0.115313
\(861\) −6.98498e7 −3.21113
\(862\) −1.61325e7 −0.739491
\(863\) −2.34790e7 −1.07313 −0.536566 0.843859i \(-0.680279\pi\)
−0.536566 + 0.843859i \(0.680279\pi\)
\(864\) 9.01703e7 4.10941
\(865\) −1.64305e7 −0.746641
\(866\) 4.05337e7 1.83663
\(867\) −2.20260e7 −0.995150
\(868\) 2.37351e7 1.06928
\(869\) −1.51235e7 −0.679363
\(870\) 3.68748e7 1.65170
\(871\) 967854. 0.0432279
\(872\) 344348. 0.0153358
\(873\) −8.15950e7 −3.62350
\(874\) −1.16887e7 −0.517593
\(875\) 2.67499e6 0.118114
\(876\) 3.26213e7 1.43629
\(877\) 2.71398e7 1.19154 0.595768 0.803156i \(-0.296848\pi\)
0.595768 + 0.803156i \(0.296848\pi\)
\(878\) 2.53649e7 1.11045
\(879\) −2.90949e7 −1.27012
\(880\) −1.33214e7 −0.579886
\(881\) 4.57122e6 0.198423 0.0992115 0.995066i \(-0.468368\pi\)
0.0992115 + 0.995066i \(0.468368\pi\)
\(882\) 6.14060e7 2.65791
\(883\) 3.03713e7 1.31087 0.655437 0.755250i \(-0.272484\pi\)
0.655437 + 0.755250i \(0.272484\pi\)
\(884\) −6.49670e6 −0.279616
\(885\) −1.25219e7 −0.537416
\(886\) 4.12882e7 1.76702
\(887\) 3.39368e7 1.44831 0.724156 0.689636i \(-0.242230\pi\)
0.724156 + 0.689636i \(0.242230\pi\)
\(888\) −6.01887e6 −0.256143
\(889\) 4.09652e7 1.73844
\(890\) −1.79237e7 −0.758496
\(891\) 9.02173e7 3.80711
\(892\) 3.34370e7 1.40707
\(893\) 3.14190e7 1.31845
\(894\) 1.27354e7 0.532929
\(895\) −3.51341e6 −0.146613
\(896\) 1.53552e7 0.638978
\(897\) −3.84351e6 −0.159495
\(898\) 5.28227e6 0.218590
\(899\) −3.44156e7 −1.42022
\(900\) 1.05301e7 0.433339
\(901\) −2.38940e7 −0.980567
\(902\) 4.73065e7 1.93600
\(903\) −1.94993e7 −0.795793
\(904\) 6.66860e6 0.271402
\(905\) 1.38543e7 0.562292
\(906\) 2.34764e7 0.950193
\(907\) −2.55351e7 −1.03067 −0.515334 0.856989i \(-0.672332\pi\)
−0.515334 + 0.856989i \(0.672332\pi\)
\(908\) −3.44282e7 −1.38580
\(909\) 2.27952e7 0.915028
\(910\) −5.51621e6 −0.220819
\(911\) −2.19240e6 −0.0875233 −0.0437616 0.999042i \(-0.513934\pi\)
−0.0437616 + 0.999042i \(0.513934\pi\)
\(912\) 7.03477e7 2.80068
\(913\) −2.66487e7 −1.05803
\(914\) 2.97771e7 1.17901
\(915\) −7.21502e6 −0.284895
\(916\) −272341. −0.0107244
\(917\) 4.17410e7 1.63923
\(918\) −1.33857e8 −5.24245
\(919\) −1.95519e6 −0.0763659 −0.0381829 0.999271i \(-0.512157\pi\)
−0.0381829 + 0.999271i \(0.512157\pi\)
\(920\) 850210. 0.0331174
\(921\) −5.18521e7 −2.01427
\(922\) −6.72900e7 −2.60689
\(923\) −2.17117e6 −0.0838858
\(924\) −6.03990e7 −2.32729
\(925\) −2.83600e6 −0.108981
\(926\) −4.21256e7 −1.61443
\(927\) −2.14767e7 −0.820859
\(928\) 4.90239e7 1.86869
\(929\) 2.43874e7 0.927099 0.463550 0.886071i \(-0.346576\pi\)
0.463550 + 0.886071i \(0.346576\pi\)
\(930\) −3.00936e7 −1.14095
\(931\) 2.50940e7 0.948846
\(932\) 3.72704e7 1.40548
\(933\) −2.99271e7 −1.12554
\(934\) −4.03702e7 −1.51424
\(935\) 1.66350e7 0.622292
\(936\) 4.84750e6 0.180854
\(937\) −4.49798e7 −1.67367 −0.836833 0.547458i \(-0.815596\pi\)
−0.836833 + 0.547458i \(0.815596\pi\)
\(938\) −7.47717e6 −0.277479
\(939\) −1.36528e7 −0.505311
\(940\) 1.02373e7 0.377891
\(941\) 2.36994e7 0.872496 0.436248 0.899826i \(-0.356307\pi\)
0.436248 + 0.899826i \(0.356307\pi\)
\(942\) 6.60546e7 2.42536
\(943\) −1.04607e7 −0.383073
\(944\) −1.97902e7 −0.722802
\(945\) −5.11214e7 −1.86219
\(946\) 1.32061e7 0.479786
\(947\) 2.24198e7 0.812376 0.406188 0.913789i \(-0.366858\pi\)
0.406188 + 0.913789i \(0.366858\pi\)
\(948\) 2.60223e7 0.940427
\(949\) 7.07582e6 0.255042
\(950\) 9.56706e6 0.343929
\(951\) −1.14188e7 −0.409420
\(952\) −1.12043e7 −0.400676
\(953\) 1.65747e7 0.591171 0.295585 0.955316i \(-0.404485\pi\)
0.295585 + 0.955316i \(0.404485\pi\)
\(954\) −7.98636e7 −2.84105
\(955\) 9.48125e6 0.336401
\(956\) −8.79119e6 −0.311102
\(957\) 8.75778e7 3.09111
\(958\) −3.47465e7 −1.22320
\(959\) −2.81542e7 −0.988545
\(960\) 1.48289e7 0.519314
\(961\) −542563. −0.0189514
\(962\) 5.84824e6 0.203745
\(963\) −964179. −0.0335036
\(964\) 2.97957e7 1.03267
\(965\) 2.21133e7 0.764424
\(966\) 2.96931e7 1.02379
\(967\) 1.57319e7 0.541021 0.270510 0.962717i \(-0.412808\pi\)
0.270510 + 0.962717i \(0.412808\pi\)
\(968\) −1.95901e6 −0.0671968
\(969\) −8.78465e7 −3.00549
\(970\) −2.41547e7 −0.824276
\(971\) −8.18745e6 −0.278677 −0.139338 0.990245i \(-0.544498\pi\)
−0.139338 + 0.990245i \(0.544498\pi\)
\(972\) −7.93044e7 −2.69235
\(973\) 1.73671e7 0.588093
\(974\) 6.10774e7 2.06292
\(975\) 3.14586e6 0.105981
\(976\) −1.14030e7 −0.383172
\(977\) 4.04123e7 1.35450 0.677248 0.735755i \(-0.263173\pi\)
0.677248 + 0.735755i \(0.263173\pi\)
\(978\) 6.03701e7 2.01825
\(979\) −4.25689e7 −1.41950
\(980\) 8.17643e6 0.271956
\(981\) −4.97960e6 −0.165205
\(982\) −4.45179e7 −1.47318
\(983\) −3.44605e7 −1.13746 −0.568732 0.822523i \(-0.692566\pi\)
−0.568732 + 0.822523i \(0.692566\pi\)
\(984\) 1.81711e7 0.598264
\(985\) −1.32272e7 −0.434389
\(986\) −7.27754e7 −2.38392
\(987\) −7.98142e7 −2.60788
\(988\) −8.87385e6 −0.289214
\(989\) −2.92021e6 −0.0949345
\(990\) 5.56011e7 1.80300
\(991\) 1.80218e7 0.582927 0.291464 0.956582i \(-0.405858\pi\)
0.291464 + 0.956582i \(0.405858\pi\)
\(992\) −4.00084e7 −1.29084
\(993\) −1.85280e7 −0.596287
\(994\) 1.67734e7 0.538461
\(995\) 223472. 0.00715593
\(996\) 4.58533e7 1.46461
\(997\) 3.07170e7 0.978679 0.489340 0.872093i \(-0.337238\pi\)
0.489340 + 0.872093i \(0.337238\pi\)
\(998\) −2.20646e7 −0.701244
\(999\) 5.41985e7 1.71820
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.e.1.5 6
3.2 odd 2 585.6.a.k.1.2 6
4.3 odd 2 1040.6.a.r.1.6 6
5.2 odd 4 325.6.b.f.274.10 12
5.3 odd 4 325.6.b.f.274.3 12
5.4 even 2 325.6.a.f.1.2 6
13.12 even 2 845.6.a.g.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.e.1.5 6 1.1 even 1 trivial
325.6.a.f.1.2 6 5.4 even 2
325.6.b.f.274.3 12 5.3 odd 4
325.6.b.f.274.10 12 5.2 odd 4
585.6.a.k.1.2 6 3.2 odd 2
845.6.a.g.1.2 6 13.12 even 2
1040.6.a.r.1.6 6 4.3 odd 2