Properties

Label 325.6.b.g.274.2
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 326x^{10} + 38809x^{8} + 2034064x^{6} + 43897824x^{4} + 281822976x^{2} + 377913600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.2
Root \(-9.61672i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.g.274.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.61672i q^{2} +28.9791i q^{3} -60.4813 q^{4} +278.684 q^{6} +189.995i q^{7} +273.896i q^{8} -596.790 q^{9} -566.944 q^{11} -1752.69i q^{12} +169.000i q^{13} +1827.13 q^{14} +698.582 q^{16} +686.585i q^{17} +5739.16i q^{18} -125.865 q^{19} -5505.88 q^{21} +5452.14i q^{22} +3481.79i q^{23} -7937.27 q^{24} +1625.23 q^{26} -10252.5i q^{27} -11491.1i q^{28} -1909.26 q^{29} +6579.43 q^{31} +2046.61i q^{32} -16429.5i q^{33} +6602.70 q^{34} +36094.6 q^{36} -6923.49i q^{37} +1210.41i q^{38} -4897.47 q^{39} -1117.84 q^{41} +52948.5i q^{42} -3465.64i q^{43} +34289.5 q^{44} +33483.4 q^{46} -7747.01i q^{47} +20244.3i q^{48} -19291.0 q^{49} -19896.6 q^{51} -10221.3i q^{52} -15186.2i q^{53} -98595.7 q^{54} -52038.8 q^{56} -3647.45i q^{57} +18360.8i q^{58} +48418.6 q^{59} -14031.1 q^{61} -63272.5i q^{62} -113387. i q^{63} +42036.3 q^{64} -157998. q^{66} +33089.4i q^{67} -41525.5i q^{68} -100899. q^{69} +21014.6 q^{71} -163459. i q^{72} -83446.8i q^{73} -66581.3 q^{74} +7612.47 q^{76} -107716. i q^{77} +47097.6i q^{78} -74858.5 q^{79} +152089. q^{81} +10750.0i q^{82} +51860.8i q^{83} +333003. q^{84} -33328.1 q^{86} -55328.7i q^{87} -155284. i q^{88} -122582. q^{89} -32109.1 q^{91} -210583. i q^{92} +190666. i q^{93} -74500.8 q^{94} -59309.0 q^{96} -19305.3i q^{97} +185516. i q^{98} +338346. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 268 q^{4} + 636 q^{6} - 1036 q^{9} - 340 q^{11} + 2880 q^{14} + 7012 q^{16} - 2436 q^{19} - 792 q^{21} - 25236 q^{24} - 16728 q^{29} + 5724 q^{31} + 42968 q^{34} - 4276 q^{36} - 12844 q^{39} + 4496 q^{41}+ \cdots + 64540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 9.61672i − 1.70001i −0.526773 0.850006i \(-0.676598\pi\)
0.526773 0.850006i \(-0.323402\pi\)
\(3\) 28.9791i 1.85901i 0.368807 + 0.929506i \(0.379766\pi\)
−0.368807 + 0.929506i \(0.620234\pi\)
\(4\) −60.4813 −1.89004
\(5\) 0 0
\(6\) 278.684 3.16034
\(7\) 189.995i 1.46554i 0.680478 + 0.732768i \(0.261772\pi\)
−0.680478 + 0.732768i \(0.738228\pi\)
\(8\) 273.896i 1.51308i
\(9\) −596.790 −2.45593
\(10\) 0 0
\(11\) −566.944 −1.41273 −0.706363 0.707849i \(-0.749666\pi\)
−0.706363 + 0.707849i \(0.749666\pi\)
\(12\) − 1752.69i − 3.51361i
\(13\) 169.000i 0.277350i
\(14\) 1827.13 2.49143
\(15\) 0 0
\(16\) 698.582 0.682209
\(17\) 686.585i 0.576198i 0.957601 + 0.288099i \(0.0930233\pi\)
−0.957601 + 0.288099i \(0.906977\pi\)
\(18\) 5739.16i 4.17510i
\(19\) −125.865 −0.0799872 −0.0399936 0.999200i \(-0.512734\pi\)
−0.0399936 + 0.999200i \(0.512734\pi\)
\(20\) 0 0
\(21\) −5505.88 −2.72445
\(22\) 5452.14i 2.40165i
\(23\) 3481.79i 1.37241i 0.727410 + 0.686203i \(0.240724\pi\)
−0.727410 + 0.686203i \(0.759276\pi\)
\(24\) −7937.27 −2.81283
\(25\) 0 0
\(26\) 1625.23 0.471498
\(27\) − 10252.5i − 2.70659i
\(28\) − 11491.1i − 2.76992i
\(29\) −1909.26 −0.421570 −0.210785 0.977532i \(-0.567602\pi\)
−0.210785 + 0.977532i \(0.567602\pi\)
\(30\) 0 0
\(31\) 6579.43 1.22966 0.614828 0.788661i \(-0.289225\pi\)
0.614828 + 0.788661i \(0.289225\pi\)
\(32\) 2046.61i 0.353314i
\(33\) − 16429.5i − 2.62628i
\(34\) 6602.70 0.979544
\(35\) 0 0
\(36\) 36094.6 4.64180
\(37\) − 6923.49i − 0.831421i −0.909497 0.415710i \(-0.863533\pi\)
0.909497 0.415710i \(-0.136467\pi\)
\(38\) 1210.41i 0.135979i
\(39\) −4897.47 −0.515597
\(40\) 0 0
\(41\) −1117.84 −0.103853 −0.0519266 0.998651i \(-0.516536\pi\)
−0.0519266 + 0.998651i \(0.516536\pi\)
\(42\) 52948.5i 4.63160i
\(43\) − 3465.64i − 0.285833i −0.989735 0.142916i \(-0.954352\pi\)
0.989735 0.142916i \(-0.0456480\pi\)
\(44\) 34289.5 2.67011
\(45\) 0 0
\(46\) 33483.4 2.33311
\(47\) − 7747.01i − 0.511552i −0.966736 0.255776i \(-0.917669\pi\)
0.966736 0.255776i \(-0.0823309\pi\)
\(48\) 20244.3i 1.26824i
\(49\) −19291.0 −1.14780
\(50\) 0 0
\(51\) −19896.6 −1.07116
\(52\) − 10221.3i − 0.524203i
\(53\) − 15186.2i − 0.742609i −0.928511 0.371305i \(-0.878911\pi\)
0.928511 0.371305i \(-0.121089\pi\)
\(54\) −98595.7 −4.60123
\(55\) 0 0
\(56\) −52038.8 −2.21747
\(57\) − 3647.45i − 0.148697i
\(58\) 18360.8i 0.716675i
\(59\) 48418.6 1.81085 0.905424 0.424508i \(-0.139553\pi\)
0.905424 + 0.424508i \(0.139553\pi\)
\(60\) 0 0
\(61\) −14031.1 −0.482801 −0.241400 0.970426i \(-0.577607\pi\)
−0.241400 + 0.970426i \(0.577607\pi\)
\(62\) − 63272.5i − 2.09043i
\(63\) − 113387.i − 3.59925i
\(64\) 42036.3 1.28285
\(65\) 0 0
\(66\) −157998. −4.46470
\(67\) 33089.4i 0.900537i 0.892893 + 0.450268i \(0.148672\pi\)
−0.892893 + 0.450268i \(0.851328\pi\)
\(68\) − 41525.5i − 1.08904i
\(69\) −100899. −2.55132
\(70\) 0 0
\(71\) 21014.6 0.494738 0.247369 0.968921i \(-0.420434\pi\)
0.247369 + 0.968921i \(0.420434\pi\)
\(72\) − 163459.i − 3.71601i
\(73\) − 83446.8i − 1.83275i −0.400325 0.916373i \(-0.631103\pi\)
0.400325 0.916373i \(-0.368897\pi\)
\(74\) −66581.3 −1.41342
\(75\) 0 0
\(76\) 7612.47 0.151179
\(77\) − 107716.i − 2.07040i
\(78\) 47097.6i 0.876521i
\(79\) −74858.5 −1.34950 −0.674751 0.738045i \(-0.735749\pi\)
−0.674751 + 0.738045i \(0.735749\pi\)
\(80\) 0 0
\(81\) 152089. 2.57565
\(82\) 10750.0i 0.176552i
\(83\) 51860.8i 0.826311i 0.910660 + 0.413156i \(0.135573\pi\)
−0.910660 + 0.413156i \(0.864427\pi\)
\(84\) 333003. 5.14932
\(85\) 0 0
\(86\) −33328.1 −0.485919
\(87\) − 55328.7i − 0.783705i
\(88\) − 155284.i − 2.13756i
\(89\) −122582. −1.64041 −0.820205 0.572070i \(-0.806141\pi\)
−0.820205 + 0.572070i \(0.806141\pi\)
\(90\) 0 0
\(91\) −32109.1 −0.406467
\(92\) − 210583.i − 2.59390i
\(93\) 190666.i 2.28595i
\(94\) −74500.8 −0.869644
\(95\) 0 0
\(96\) −59309.0 −0.656814
\(97\) − 19305.3i − 0.208328i −0.994560 0.104164i \(-0.966783\pi\)
0.994560 0.104164i \(-0.0332166\pi\)
\(98\) 185516.i 1.95127i
\(99\) 338346. 3.46955
\(100\) 0 0
\(101\) −83222.2 −0.811775 −0.405888 0.913923i \(-0.633038\pi\)
−0.405888 + 0.913923i \(0.633038\pi\)
\(102\) 191340.i 1.82098i
\(103\) 109529.i 1.01727i 0.860983 + 0.508634i \(0.169849\pi\)
−0.860983 + 0.508634i \(0.830151\pi\)
\(104\) −46288.5 −0.419652
\(105\) 0 0
\(106\) −146042. −1.26244
\(107\) 65171.1i 0.550295i 0.961402 + 0.275148i \(0.0887267\pi\)
−0.961402 + 0.275148i \(0.911273\pi\)
\(108\) 620086.i 5.11555i
\(109\) 180012. 1.45123 0.725615 0.688101i \(-0.241555\pi\)
0.725615 + 0.688101i \(0.241555\pi\)
\(110\) 0 0
\(111\) 200637. 1.54562
\(112\) 132727.i 0.999802i
\(113\) − 63753.0i − 0.469683i −0.972034 0.234841i \(-0.924543\pi\)
0.972034 0.234841i \(-0.0754571\pi\)
\(114\) −35076.5 −0.252787
\(115\) 0 0
\(116\) 115474. 0.796785
\(117\) − 100858.i − 0.681151i
\(118\) − 465628.i − 3.07846i
\(119\) −130448. −0.844440
\(120\) 0 0
\(121\) 160374. 0.995797
\(122\) 134933.i 0.820767i
\(123\) − 32394.0i − 0.193064i
\(124\) −397932. −2.32410
\(125\) 0 0
\(126\) −1.09041e6 −6.11877
\(127\) 18792.2i 0.103388i 0.998663 + 0.0516939i \(0.0164620\pi\)
−0.998663 + 0.0516939i \(0.983538\pi\)
\(128\) − 338760.i − 1.82754i
\(129\) 100431. 0.531367
\(130\) 0 0
\(131\) −18190.6 −0.0926122 −0.0463061 0.998927i \(-0.514745\pi\)
−0.0463061 + 0.998927i \(0.514745\pi\)
\(132\) 993679.i 4.96377i
\(133\) − 23913.7i − 0.117224i
\(134\) 318211. 1.53092
\(135\) 0 0
\(136\) −188053. −0.871833
\(137\) − 106188.i − 0.483363i −0.970356 0.241682i \(-0.922301\pi\)
0.970356 0.241682i \(-0.0776990\pi\)
\(138\) 970319.i 4.33727i
\(139\) −33944.0 −0.149014 −0.0745069 0.997221i \(-0.523738\pi\)
−0.0745069 + 0.997221i \(0.523738\pi\)
\(140\) 0 0
\(141\) 224502. 0.950981
\(142\) − 202092.i − 0.841061i
\(143\) − 95813.5i − 0.391820i
\(144\) −416907. −1.67546
\(145\) 0 0
\(146\) −802484. −3.11569
\(147\) − 559037.i − 2.13377i
\(148\) 418741.i 1.57142i
\(149\) −248671. −0.917612 −0.458806 0.888536i \(-0.651723\pi\)
−0.458806 + 0.888536i \(0.651723\pi\)
\(150\) 0 0
\(151\) 62344.4 0.222513 0.111256 0.993792i \(-0.464512\pi\)
0.111256 + 0.993792i \(0.464512\pi\)
\(152\) − 34473.9i − 0.121027i
\(153\) − 409747.i − 1.41510i
\(154\) −1.03588e6 −3.51971
\(155\) 0 0
\(156\) 296205. 0.974499
\(157\) 275219.i 0.891106i 0.895256 + 0.445553i \(0.146993\pi\)
−0.895256 + 0.445553i \(0.853007\pi\)
\(158\) 719893.i 2.29417i
\(159\) 440084. 1.38052
\(160\) 0 0
\(161\) −661521. −2.01131
\(162\) − 1.46260e6i − 4.37863i
\(163\) − 53135.9i − 0.156646i −0.996928 0.0783229i \(-0.975043\pi\)
0.996928 0.0783229i \(-0.0249565\pi\)
\(164\) 67608.4 0.196287
\(165\) 0 0
\(166\) 498730. 1.40474
\(167\) − 412563.i − 1.14472i −0.820002 0.572360i \(-0.806028\pi\)
0.820002 0.572360i \(-0.193972\pi\)
\(168\) − 1.50804e6i − 4.12230i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 75114.9 0.196443
\(172\) 209606.i 0.540235i
\(173\) − 584248.i − 1.48416i −0.670309 0.742082i \(-0.733838\pi\)
0.670309 0.742082i \(-0.266162\pi\)
\(174\) −532081. −1.33231
\(175\) 0 0
\(176\) −396057. −0.963775
\(177\) 1.40313e6i 3.36639i
\(178\) 1.17884e6i 2.78872i
\(179\) 19918.7 0.0464652 0.0232326 0.999730i \(-0.492604\pi\)
0.0232326 + 0.999730i \(0.492604\pi\)
\(180\) 0 0
\(181\) 585612. 1.32866 0.664329 0.747440i \(-0.268717\pi\)
0.664329 + 0.747440i \(0.268717\pi\)
\(182\) 308784.i 0.690998i
\(183\) − 406610.i − 0.897533i
\(184\) −953648. −2.07656
\(185\) 0 0
\(186\) 1.83358e6 3.88614
\(187\) − 389255.i − 0.814011i
\(188\) 468549.i 0.966853i
\(189\) 1.94793e6 3.96660
\(190\) 0 0
\(191\) −257249. −0.510235 −0.255117 0.966910i \(-0.582114\pi\)
−0.255117 + 0.966910i \(0.582114\pi\)
\(192\) 1.21818e6i 2.38483i
\(193\) 729315.i 1.40936i 0.709525 + 0.704680i \(0.248909\pi\)
−0.709525 + 0.704680i \(0.751091\pi\)
\(194\) −185653. −0.354159
\(195\) 0 0
\(196\) 1.16674e6 2.16938
\(197\) − 614173.i − 1.12752i −0.825938 0.563761i \(-0.809354\pi\)
0.825938 0.563761i \(-0.190646\pi\)
\(198\) − 3.25378e6i − 5.89828i
\(199\) 2188.99 0.00391842 0.00195921 0.999998i \(-0.499376\pi\)
0.00195921 + 0.999998i \(0.499376\pi\)
\(200\) 0 0
\(201\) −958901. −1.67411
\(202\) 800325.i 1.38003i
\(203\) − 362749.i − 0.617827i
\(204\) 1.20337e6 2.02453
\(205\) 0 0
\(206\) 1.05331e6 1.72937
\(207\) − 2.07790e6i − 3.37053i
\(208\) 118060.i 0.189211i
\(209\) 71358.3 0.113000
\(210\) 0 0
\(211\) 95873.8 0.148250 0.0741248 0.997249i \(-0.476384\pi\)
0.0741248 + 0.997249i \(0.476384\pi\)
\(212\) 918483.i 1.40356i
\(213\) 608985.i 0.919725i
\(214\) 626732. 0.935508
\(215\) 0 0
\(216\) 2.80813e6 4.09527
\(217\) 1.25006e6i 1.80211i
\(218\) − 1.73113e6i − 2.46711i
\(219\) 2.41822e6 3.40710
\(220\) 0 0
\(221\) −116033. −0.159809
\(222\) − 1.92947e6i − 2.62757i
\(223\) 822496.i 1.10757i 0.832659 + 0.553786i \(0.186817\pi\)
−0.832659 + 0.553786i \(0.813183\pi\)
\(224\) −388845. −0.517794
\(225\) 0 0
\(226\) −613095. −0.798466
\(227\) 431133.i 0.555325i 0.960679 + 0.277662i \(0.0895597\pi\)
−0.960679 + 0.277662i \(0.910440\pi\)
\(228\) 220603.i 0.281044i
\(229\) −962073. −1.21233 −0.606163 0.795341i \(-0.707292\pi\)
−0.606163 + 0.795341i \(0.707292\pi\)
\(230\) 0 0
\(231\) 3.12153e6 3.84890
\(232\) − 522939.i − 0.637869i
\(233\) − 517023.i − 0.623907i −0.950097 0.311953i \(-0.899017\pi\)
0.950097 0.311953i \(-0.100983\pi\)
\(234\) −969918. −1.15797
\(235\) 0 0
\(236\) −2.92842e6 −3.42257
\(237\) − 2.16934e6i − 2.50874i
\(238\) 1.25448e6i 1.43556i
\(239\) 573574. 0.649523 0.324761 0.945796i \(-0.394716\pi\)
0.324761 + 0.945796i \(0.394716\pi\)
\(240\) 0 0
\(241\) −967200. −1.07269 −0.536344 0.843999i \(-0.680195\pi\)
−0.536344 + 0.843999i \(0.680195\pi\)
\(242\) − 1.54227e6i − 1.69287i
\(243\) 1.91606e6i 2.08158i
\(244\) 848620. 0.912513
\(245\) 0 0
\(246\) −311524. −0.328212
\(247\) − 21271.2i − 0.0221845i
\(248\) 1.80208e6i 1.86057i
\(249\) −1.50288e6 −1.53612
\(250\) 0 0
\(251\) −1.51519e6 −1.51804 −0.759018 0.651069i \(-0.774321\pi\)
−0.759018 + 0.651069i \(0.774321\pi\)
\(252\) 6.85779e6i 6.80272i
\(253\) − 1.97398e6i − 1.93883i
\(254\) 180720. 0.175760
\(255\) 0 0
\(256\) −1.91259e6 −1.82399
\(257\) − 408239.i − 0.385551i −0.981243 0.192775i \(-0.938251\pi\)
0.981243 0.192775i \(-0.0617489\pi\)
\(258\) − 965819.i − 0.903330i
\(259\) 1.31543e6 1.21848
\(260\) 0 0
\(261\) 1.13943e6 1.03535
\(262\) 174934.i 0.157442i
\(263\) − 1.24387e6i − 1.10888i −0.832224 0.554440i \(-0.812932\pi\)
0.832224 0.554440i \(-0.187068\pi\)
\(264\) 4.49999e6 3.97376
\(265\) 0 0
\(266\) −229971. −0.199282
\(267\) − 3.55233e6i − 3.04954i
\(268\) − 2.00129e6i − 1.70205i
\(269\) 971010. 0.818169 0.409084 0.912497i \(-0.365848\pi\)
0.409084 + 0.912497i \(0.365848\pi\)
\(270\) 0 0
\(271\) 647163. 0.535292 0.267646 0.963517i \(-0.413754\pi\)
0.267646 + 0.963517i \(0.413754\pi\)
\(272\) 479636.i 0.393088i
\(273\) − 930494.i − 0.755626i
\(274\) −1.02118e6 −0.821724
\(275\) 0 0
\(276\) 6.10251e6 4.82209
\(277\) − 684624.i − 0.536109i −0.963404 0.268054i \(-0.913619\pi\)
0.963404 0.268054i \(-0.0863807\pi\)
\(278\) 326430.i 0.253325i
\(279\) −3.92654e6 −3.01995
\(280\) 0 0
\(281\) −2.08097e6 −1.57217 −0.786085 0.618118i \(-0.787895\pi\)
−0.786085 + 0.618118i \(0.787895\pi\)
\(282\) − 2.15897e6i − 1.61668i
\(283\) 2.09568e6i 1.55546i 0.628598 + 0.777730i \(0.283629\pi\)
−0.628598 + 0.777730i \(0.716371\pi\)
\(284\) −1.27099e6 −0.935075
\(285\) 0 0
\(286\) −921411. −0.666098
\(287\) − 212384.i − 0.152201i
\(288\) − 1.22140e6i − 0.867712i
\(289\) 948458. 0.667995
\(290\) 0 0
\(291\) 559450. 0.387284
\(292\) 5.04697e6i 3.46396i
\(293\) 170648.i 0.116127i 0.998313 + 0.0580633i \(0.0184925\pi\)
−0.998313 + 0.0580633i \(0.981507\pi\)
\(294\) −5.37610e6 −3.62743
\(295\) 0 0
\(296\) 1.89632e6 1.25800
\(297\) 5.81261e6i 3.82367i
\(298\) 2.39140e6i 1.55995i
\(299\) −588422. −0.380637
\(300\) 0 0
\(301\) 658453. 0.418898
\(302\) − 599549.i − 0.378275i
\(303\) − 2.41171e6i − 1.50910i
\(304\) −87926.9 −0.0545680
\(305\) 0 0
\(306\) −3.94042e6 −2.40569
\(307\) 42275.0i 0.0255998i 0.999918 + 0.0127999i \(0.00407445\pi\)
−0.999918 + 0.0127999i \(0.995926\pi\)
\(308\) 6.51482e6i 3.91314i
\(309\) −3.17405e6 −1.89111
\(310\) 0 0
\(311\) −1.35058e6 −0.791808 −0.395904 0.918292i \(-0.629569\pi\)
−0.395904 + 0.918292i \(0.629569\pi\)
\(312\) − 1.34140e6i − 0.780138i
\(313\) 2.22900e6i 1.28603i 0.765856 + 0.643013i \(0.222316\pi\)
−0.765856 + 0.643013i \(0.777684\pi\)
\(314\) 2.64670e6 1.51489
\(315\) 0 0
\(316\) 4.52754e6 2.55061
\(317\) 3.24898e6i 1.81593i 0.419048 + 0.907964i \(0.362364\pi\)
−0.419048 + 0.907964i \(0.637636\pi\)
\(318\) − 4.23216e6i − 2.34690i
\(319\) 1.08244e6 0.595564
\(320\) 0 0
\(321\) −1.88860e6 −1.02301
\(322\) 6.36166e6i 3.41925i
\(323\) − 86416.9i − 0.0460885i
\(324\) −9.19856e6 −4.86808
\(325\) 0 0
\(326\) −510993. −0.266300
\(327\) 5.21661e6i 2.69786i
\(328\) − 306172.i − 0.157138i
\(329\) 1.47189e6 0.749698
\(330\) 0 0
\(331\) 1.81129e6 0.908694 0.454347 0.890825i \(-0.349873\pi\)
0.454347 + 0.890825i \(0.349873\pi\)
\(332\) − 3.13660e6i − 1.56176i
\(333\) 4.13187e6i 2.04191i
\(334\) −3.96750e6 −1.94604
\(335\) 0 0
\(336\) −3.84631e6 −1.85864
\(337\) 1.43117e6i 0.686461i 0.939251 + 0.343231i \(0.111521\pi\)
−0.939251 + 0.343231i \(0.888479\pi\)
\(338\) 274663.i 0.130770i
\(339\) 1.84751e6 0.873146
\(340\) 0 0
\(341\) −3.73016e6 −1.73717
\(342\) − 722359.i − 0.333955i
\(343\) − 471949.i − 0.216601i
\(344\) 949225. 0.432487
\(345\) 0 0
\(346\) −5.61855e6 −2.52310
\(347\) − 2.89201e6i − 1.28937i −0.764450 0.644683i \(-0.776989\pi\)
0.764450 0.644683i \(-0.223011\pi\)
\(348\) 3.34635e6i 1.48123i
\(349\) 3.29833e6 1.44954 0.724771 0.688990i \(-0.241946\pi\)
0.724771 + 0.688990i \(0.241946\pi\)
\(350\) 0 0
\(351\) 1.73268e6 0.750672
\(352\) − 1.16031e6i − 0.499136i
\(353\) 2.87329e6i 1.22728i 0.789587 + 0.613639i \(0.210295\pi\)
−0.789587 + 0.613639i \(0.789705\pi\)
\(354\) 1.34935e7 5.72290
\(355\) 0 0
\(356\) 7.41393e6 3.10044
\(357\) − 3.78026e6i − 1.56982i
\(358\) − 191552.i − 0.0789914i
\(359\) 655112. 0.268274 0.134137 0.990963i \(-0.457174\pi\)
0.134137 + 0.990963i \(0.457174\pi\)
\(360\) 0 0
\(361\) −2.46026e6 −0.993602
\(362\) − 5.63166e6i − 2.25873i
\(363\) 4.64750e6i 1.85120i
\(364\) 1.94200e6 0.768238
\(365\) 0 0
\(366\) −3.91025e6 −1.52582
\(367\) − 3.46555e6i − 1.34310i −0.740960 0.671549i \(-0.765629\pi\)
0.740960 0.671549i \(-0.234371\pi\)
\(368\) 2.43231e6i 0.936268i
\(369\) 667116. 0.255056
\(370\) 0 0
\(371\) 2.88531e6 1.08832
\(372\) − 1.15317e7i − 4.32053i
\(373\) 3.97540e6i 1.47948i 0.672894 + 0.739739i \(0.265051\pi\)
−0.672894 + 0.739739i \(0.734949\pi\)
\(374\) −3.74336e6 −1.38383
\(375\) 0 0
\(376\) 2.12188e6 0.774017
\(377\) − 322665.i − 0.116923i
\(378\) − 1.87327e7i − 6.74326i
\(379\) 187178. 0.0669357 0.0334679 0.999440i \(-0.489345\pi\)
0.0334679 + 0.999440i \(0.489345\pi\)
\(380\) 0 0
\(381\) −544583. −0.192199
\(382\) 2.47389e6i 0.867405i
\(383\) − 2.85416e6i − 0.994216i −0.867689 0.497108i \(-0.834395\pi\)
0.867689 0.497108i \(-0.165605\pi\)
\(384\) 9.81696e6 3.39742
\(385\) 0 0
\(386\) 7.01362e6 2.39593
\(387\) 2.06826e6i 0.701985i
\(388\) 1.16761e6i 0.393747i
\(389\) 3.54177e6 1.18671 0.593357 0.804939i \(-0.297802\pi\)
0.593357 + 0.804939i \(0.297802\pi\)
\(390\) 0 0
\(391\) −2.39054e6 −0.790778
\(392\) − 5.28373e6i − 1.73670i
\(393\) − 527147.i − 0.172167i
\(394\) −5.90633e6 −1.91680
\(395\) 0 0
\(396\) −2.04636e7 −6.55759
\(397\) 1.24829e6i 0.397501i 0.980050 + 0.198751i \(0.0636884\pi\)
−0.980050 + 0.198751i \(0.936312\pi\)
\(398\) − 21050.9i − 0.00666136i
\(399\) 692997. 0.217921
\(400\) 0 0
\(401\) −2.74122e6 −0.851299 −0.425650 0.904888i \(-0.639954\pi\)
−0.425650 + 0.904888i \(0.639954\pi\)
\(402\) 9.22148e6i 2.84600i
\(403\) 1.11192e6i 0.341045i
\(404\) 5.03339e6 1.53429
\(405\) 0 0
\(406\) −3.48846e6 −1.05031
\(407\) 3.92523e6i 1.17457i
\(408\) − 5.44961e6i − 1.62075i
\(409\) −6.13745e6 −1.81418 −0.907089 0.420940i \(-0.861700\pi\)
−0.907089 + 0.420940i \(0.861700\pi\)
\(410\) 0 0
\(411\) 3.07723e6 0.898579
\(412\) − 6.62444e6i − 1.92267i
\(413\) 9.19928e6i 2.65386i
\(414\) −1.99825e7 −5.72994
\(415\) 0 0
\(416\) −345877. −0.0979916
\(417\) − 983668.i − 0.277018i
\(418\) − 686232.i − 0.192101i
\(419\) −1.95897e6 −0.545120 −0.272560 0.962139i \(-0.587870\pi\)
−0.272560 + 0.962139i \(0.587870\pi\)
\(420\) 0 0
\(421\) 5.26629e6 1.44810 0.724051 0.689746i \(-0.242278\pi\)
0.724051 + 0.689746i \(0.242278\pi\)
\(422\) − 921991.i − 0.252026i
\(423\) 4.62334e6i 1.25633i
\(424\) 4.15945e6 1.12363
\(425\) 0 0
\(426\) 5.85644e6 1.56354
\(427\) − 2.66584e6i − 0.707562i
\(428\) − 3.94163e6i − 1.04008i
\(429\) 2.77659e6 0.728398
\(430\) 0 0
\(431\) −3.23336e6 −0.838420 −0.419210 0.907889i \(-0.637693\pi\)
−0.419210 + 0.907889i \(0.637693\pi\)
\(432\) − 7.16224e6i − 1.84646i
\(433\) − 3.49771e6i − 0.896529i −0.893901 0.448265i \(-0.852042\pi\)
0.893901 0.448265i \(-0.147958\pi\)
\(434\) 1.20214e7 3.06360
\(435\) 0 0
\(436\) −1.08874e7 −2.74288
\(437\) − 438235.i − 0.109775i
\(438\) − 2.32553e7i − 5.79211i
\(439\) 29404.2 0.00728197 0.00364098 0.999993i \(-0.498841\pi\)
0.00364098 + 0.999993i \(0.498841\pi\)
\(440\) 0 0
\(441\) 1.15127e7 2.81890
\(442\) 1.11586e6i 0.271677i
\(443\) 545860.i 0.132151i 0.997815 + 0.0660757i \(0.0210479\pi\)
−0.997815 + 0.0660757i \(0.978952\pi\)
\(444\) −1.21348e7 −2.92128
\(445\) 0 0
\(446\) 7.90971e6 1.88288
\(447\) − 7.20626e6i − 1.70585i
\(448\) 7.98668e6i 1.88006i
\(449\) 5.46505e6 1.27932 0.639658 0.768660i \(-0.279076\pi\)
0.639658 + 0.768660i \(0.279076\pi\)
\(450\) 0 0
\(451\) 633752. 0.146716
\(452\) 3.85586e6i 0.887719i
\(453\) 1.80669e6i 0.413654i
\(454\) 4.14609e6 0.944059
\(455\) 0 0
\(456\) 999024. 0.224990
\(457\) 5.34706e6i 1.19764i 0.800885 + 0.598818i \(0.204363\pi\)
−0.800885 + 0.598818i \(0.795637\pi\)
\(458\) 9.25198e6i 2.06097i
\(459\) 7.03924e6 1.55953
\(460\) 0 0
\(461\) 3.14978e6 0.690284 0.345142 0.938550i \(-0.387831\pi\)
0.345142 + 0.938550i \(0.387831\pi\)
\(462\) − 3.00188e7i − 6.54318i
\(463\) − 5.22334e6i − 1.13239i −0.824272 0.566194i \(-0.808415\pi\)
0.824272 0.566194i \(-0.191585\pi\)
\(464\) −1.33378e6 −0.287599
\(465\) 0 0
\(466\) −4.97206e6 −1.06065
\(467\) − 6.64502e6i − 1.40995i −0.709231 0.704976i \(-0.750958\pi\)
0.709231 0.704976i \(-0.249042\pi\)
\(468\) 6.09999e6i 1.28740i
\(469\) −6.28681e6 −1.31977
\(470\) 0 0
\(471\) −7.97561e6 −1.65658
\(472\) 1.32617e7i 2.73995i
\(473\) 1.96482e6i 0.403804i
\(474\) −2.08619e7 −4.26489
\(475\) 0 0
\(476\) 7.88963e6 1.59602
\(477\) 9.06300e6i 1.82379i
\(478\) − 5.51590e6i − 1.10420i
\(479\) −6.76505e6 −1.34720 −0.673600 0.739096i \(-0.735253\pi\)
−0.673600 + 0.739096i \(0.735253\pi\)
\(480\) 0 0
\(481\) 1.17007e6 0.230595
\(482\) 9.30129e6i 1.82358i
\(483\) − 1.91703e7i − 3.73905i
\(484\) −9.69962e6 −1.88209
\(485\) 0 0
\(486\) 1.84262e7 3.53871
\(487\) − 1.34500e6i − 0.256980i −0.991711 0.128490i \(-0.958987\pi\)
0.991711 0.128490i \(-0.0410130\pi\)
\(488\) − 3.84307e6i − 0.730515i
\(489\) 1.53983e6 0.291207
\(490\) 0 0
\(491\) −7.33455e6 −1.37300 −0.686498 0.727131i \(-0.740853\pi\)
−0.686498 + 0.727131i \(0.740853\pi\)
\(492\) 1.95923e6i 0.364899i
\(493\) − 1.31087e6i − 0.242908i
\(494\) −204559. −0.0377138
\(495\) 0 0
\(496\) 4.59627e6 0.838883
\(497\) 3.99267e6i 0.725057i
\(498\) 1.44528e7i 2.61143i
\(499\) −4.61062e6 −0.828912 −0.414456 0.910069i \(-0.636028\pi\)
−0.414456 + 0.910069i \(0.636028\pi\)
\(500\) 0 0
\(501\) 1.19557e7 2.12805
\(502\) 1.45711e7i 2.58068i
\(503\) 7.67903e6i 1.35328i 0.736316 + 0.676638i \(0.236564\pi\)
−0.736316 + 0.676638i \(0.763436\pi\)
\(504\) 3.10563e7 5.44594
\(505\) 0 0
\(506\) −1.89832e7 −3.29604
\(507\) − 827673.i − 0.143001i
\(508\) − 1.13658e6i − 0.195407i
\(509\) −3.69348e6 −0.631890 −0.315945 0.948778i \(-0.602322\pi\)
−0.315945 + 0.948778i \(0.602322\pi\)
\(510\) 0 0
\(511\) 1.58545e7 2.68596
\(512\) 7.55257e6i 1.27327i
\(513\) 1.29043e6i 0.216492i
\(514\) −3.92592e6 −0.655441
\(515\) 0 0
\(516\) −6.07421e6 −1.00430
\(517\) 4.39212e6i 0.722683i
\(518\) − 1.26501e7i − 2.07143i
\(519\) 1.69310e7 2.75908
\(520\) 0 0
\(521\) 1.07885e7 1.74127 0.870636 0.491927i \(-0.163707\pi\)
0.870636 + 0.491927i \(0.163707\pi\)
\(522\) − 1.09576e7i − 1.76010i
\(523\) 7.52060e6i 1.20226i 0.799151 + 0.601130i \(0.205283\pi\)
−0.799151 + 0.601130i \(0.794717\pi\)
\(524\) 1.10019e6 0.175041
\(525\) 0 0
\(526\) −1.19619e7 −1.88511
\(527\) 4.51734e6i 0.708526i
\(528\) − 1.14774e7i − 1.79167i
\(529\) −5.68650e6 −0.883498
\(530\) 0 0
\(531\) −2.88957e7 −4.44731
\(532\) 1.44633e6i 0.221558i
\(533\) − 188915.i − 0.0288037i
\(534\) −3.41617e7 −5.18426
\(535\) 0 0
\(536\) −9.06305e6 −1.36258
\(537\) 577226.i 0.0863794i
\(538\) − 9.33793e6i − 1.39090i
\(539\) 1.09369e7 1.62152
\(540\) 0 0
\(541\) −5.06833e6 −0.744512 −0.372256 0.928130i \(-0.621416\pi\)
−0.372256 + 0.928130i \(0.621416\pi\)
\(542\) − 6.22358e6i − 0.910002i
\(543\) 1.69705e7i 2.46999i
\(544\) −1.40517e6 −0.203579
\(545\) 0 0
\(546\) −8.94830e6 −1.28457
\(547\) − 6.41454e6i − 0.916636i −0.888788 0.458318i \(-0.848452\pi\)
0.888788 0.458318i \(-0.151548\pi\)
\(548\) 6.42238e6i 0.913576i
\(549\) 8.37364e6 1.18572
\(550\) 0 0
\(551\) 240309. 0.0337202
\(552\) − 2.76359e7i − 3.86034i
\(553\) − 1.42227e7i − 1.97774i
\(554\) −6.58384e6 −0.911391
\(555\) 0 0
\(556\) 2.05298e6 0.281642
\(557\) 4.77336e6i 0.651908i 0.945386 + 0.325954i \(0.105685\pi\)
−0.945386 + 0.325954i \(0.894315\pi\)
\(558\) 3.77604e7i 5.13394i
\(559\) 585693. 0.0792758
\(560\) 0 0
\(561\) 1.12803e7 1.51326
\(562\) 2.00121e7i 2.67271i
\(563\) − 4.94279e6i − 0.657205i −0.944468 0.328603i \(-0.893422\pi\)
0.944468 0.328603i \(-0.106578\pi\)
\(564\) −1.35781e7 −1.79739
\(565\) 0 0
\(566\) 2.01536e7 2.64430
\(567\) 2.88962e7i 3.77471i
\(568\) 5.75582e6i 0.748577i
\(569\) −1.01177e7 −1.31008 −0.655042 0.755592i \(-0.727349\pi\)
−0.655042 + 0.755592i \(0.727349\pi\)
\(570\) 0 0
\(571\) −4.01134e6 −0.514872 −0.257436 0.966295i \(-0.582878\pi\)
−0.257436 + 0.966295i \(0.582878\pi\)
\(572\) 5.79492e6i 0.740555i
\(573\) − 7.45485e6i − 0.948533i
\(574\) −2.04243e6 −0.258743
\(575\) 0 0
\(576\) −2.50869e7 −3.15058
\(577\) − 715280.i − 0.0894410i −0.999000 0.0447205i \(-0.985760\pi\)
0.999000 0.0447205i \(-0.0142397\pi\)
\(578\) − 9.12105e6i − 1.13560i
\(579\) −2.11349e7 −2.62002
\(580\) 0 0
\(581\) −9.85327e6 −1.21099
\(582\) − 5.38008e6i − 0.658386i
\(583\) 8.60974e6i 1.04910i
\(584\) 2.28558e7 2.77309
\(585\) 0 0
\(586\) 1.64107e6 0.197417
\(587\) − 7.23624e6i − 0.866798i −0.901202 0.433399i \(-0.857314\pi\)
0.901202 0.433399i \(-0.142686\pi\)
\(588\) 3.38112e7i 4.03290i
\(589\) −828119. −0.0983568
\(590\) 0 0
\(591\) 1.77982e7 2.09608
\(592\) − 4.83663e6i − 0.567203i
\(593\) − 9.23201e6i − 1.07810i −0.842274 0.539050i \(-0.818783\pi\)
0.842274 0.539050i \(-0.181217\pi\)
\(594\) 5.58982e7 6.50028
\(595\) 0 0
\(596\) 1.50399e7 1.73432
\(597\) 63435.0i 0.00728439i
\(598\) 5.65869e6i 0.647087i
\(599\) 1.13007e7 1.28688 0.643441 0.765495i \(-0.277506\pi\)
0.643441 + 0.765495i \(0.277506\pi\)
\(600\) 0 0
\(601\) −1.57883e6 −0.178299 −0.0891494 0.996018i \(-0.528415\pi\)
−0.0891494 + 0.996018i \(0.528415\pi\)
\(602\) − 6.33216e6i − 0.712132i
\(603\) − 1.97474e7i − 2.21165i
\(604\) −3.77067e6 −0.420558
\(605\) 0 0
\(606\) −2.31927e7 −2.56549
\(607\) − 1.76228e7i − 1.94135i −0.240405 0.970673i \(-0.577280\pi\)
0.240405 0.970673i \(-0.422720\pi\)
\(608\) − 257596.i − 0.0282606i
\(609\) 1.05122e7 1.14855
\(610\) 0 0
\(611\) 1.30925e6 0.141879
\(612\) 2.47820e7i 2.67460i
\(613\) 985236.i 0.105898i 0.998597 + 0.0529492i \(0.0168621\pi\)
−0.998597 + 0.0529492i \(0.983138\pi\)
\(614\) 406546. 0.0435200
\(615\) 0 0
\(616\) 2.95031e7 3.13268
\(617\) − 1.09020e7i − 1.15290i −0.817132 0.576451i \(-0.804437\pi\)
0.817132 0.576451i \(-0.195563\pi\)
\(618\) 3.05239e7i 3.21491i
\(619\) −1.39085e7 −1.45900 −0.729499 0.683982i \(-0.760247\pi\)
−0.729499 + 0.683982i \(0.760247\pi\)
\(620\) 0 0
\(621\) 3.56971e7 3.71453
\(622\) 1.29882e7i 1.34608i
\(623\) − 2.32900e7i − 2.40408i
\(624\) −3.42129e6 −0.351745
\(625\) 0 0
\(626\) 2.14357e7 2.18626
\(627\) 2.06790e6i 0.210068i
\(628\) − 1.66456e7i − 1.68422i
\(629\) 4.75357e6 0.479063
\(630\) 0 0
\(631\) −3.18595e6 −0.318541 −0.159271 0.987235i \(-0.550914\pi\)
−0.159271 + 0.987235i \(0.550914\pi\)
\(632\) − 2.05035e7i − 2.04190i
\(633\) 2.77834e6i 0.275598i
\(634\) 3.12445e7 3.08710
\(635\) 0 0
\(636\) −2.66168e7 −2.60924
\(637\) − 3.26018e6i − 0.318341i
\(638\) − 1.04095e7i − 1.01247i
\(639\) −1.25413e7 −1.21504
\(640\) 0 0
\(641\) −9.63334e6 −0.926044 −0.463022 0.886347i \(-0.653235\pi\)
−0.463022 + 0.886347i \(0.653235\pi\)
\(642\) 1.81622e7i 1.73912i
\(643\) 1.78705e7i 1.70455i 0.523093 + 0.852276i \(0.324778\pi\)
−0.523093 + 0.852276i \(0.675222\pi\)
\(644\) 4.00096e7 3.80146
\(645\) 0 0
\(646\) −831047. −0.0783510
\(647\) − 1.14547e6i − 0.107578i −0.998552 0.0537891i \(-0.982870\pi\)
0.998552 0.0537891i \(-0.0171299\pi\)
\(648\) 4.16567e7i 3.89716i
\(649\) −2.74506e7 −2.55823
\(650\) 0 0
\(651\) −3.62256e7 −3.35014
\(652\) 3.21372e6i 0.296067i
\(653\) − 1.04972e7i − 0.963366i −0.876345 0.481683i \(-0.840026\pi\)
0.876345 0.481683i \(-0.159974\pi\)
\(654\) 5.01666e7 4.58639
\(655\) 0 0
\(656\) −780903. −0.0708496
\(657\) 4.98002e7i 4.50109i
\(658\) − 1.41548e7i − 1.27449i
\(659\) 1.21009e7 1.08543 0.542717 0.839915i \(-0.317395\pi\)
0.542717 + 0.839915i \(0.317395\pi\)
\(660\) 0 0
\(661\) −6.81298e6 −0.606504 −0.303252 0.952910i \(-0.598072\pi\)
−0.303252 + 0.952910i \(0.598072\pi\)
\(662\) − 1.74186e7i − 1.54479i
\(663\) − 3.36253e6i − 0.297086i
\(664\) −1.42045e7 −1.25027
\(665\) 0 0
\(666\) 3.97350e7 3.47127
\(667\) − 6.64764e6i − 0.578566i
\(668\) 2.49523e7i 2.16357i
\(669\) −2.38352e7 −2.05899
\(670\) 0 0
\(671\) 7.95486e6 0.682066
\(672\) − 1.12684e7i − 0.962585i
\(673\) − 9.41818e6i − 0.801548i −0.916177 0.400774i \(-0.868741\pi\)
0.916177 0.400774i \(-0.131259\pi\)
\(674\) 1.37631e7 1.16699
\(675\) 0 0
\(676\) 1.72741e6 0.145388
\(677\) − 2.81424e6i − 0.235988i −0.993014 0.117994i \(-0.962354\pi\)
0.993014 0.117994i \(-0.0376463\pi\)
\(678\) − 1.77670e7i − 1.48436i
\(679\) 3.66790e6 0.305312
\(680\) 0 0
\(681\) −1.24939e7 −1.03236
\(682\) 3.58719e7i 2.95321i
\(683\) 1.31222e6i 0.107635i 0.998551 + 0.0538176i \(0.0171389\pi\)
−0.998551 + 0.0538176i \(0.982861\pi\)
\(684\) −4.54304e6 −0.371284
\(685\) 0 0
\(686\) −4.53860e6 −0.368224
\(687\) − 2.78800e7i − 2.25373i
\(688\) − 2.42103e6i − 0.194998i
\(689\) 2.56647e6 0.205963
\(690\) 0 0
\(691\) −8.31043e6 −0.662107 −0.331054 0.943612i \(-0.607404\pi\)
−0.331054 + 0.943612i \(0.607404\pi\)
\(692\) 3.53361e7i 2.80513i
\(693\) 6.42840e7i 5.08476i
\(694\) −2.78117e7 −2.19194
\(695\) 0 0
\(696\) 1.51543e7 1.18581
\(697\) − 767492.i − 0.0598401i
\(698\) − 3.17191e7i − 2.46424i
\(699\) 1.49829e7 1.15985
\(700\) 0 0
\(701\) −1.04904e7 −0.806298 −0.403149 0.915134i \(-0.632084\pi\)
−0.403149 + 0.915134i \(0.632084\pi\)
\(702\) − 1.66627e7i − 1.27615i
\(703\) 871424.i 0.0665030i
\(704\) −2.38322e7 −1.81231
\(705\) 0 0
\(706\) 2.76316e7 2.08639
\(707\) − 1.58118e7i − 1.18969i
\(708\) − 8.48630e7i − 6.36261i
\(709\) −1.69019e7 −1.26276 −0.631380 0.775474i \(-0.717511\pi\)
−0.631380 + 0.775474i \(0.717511\pi\)
\(710\) 0 0
\(711\) 4.46748e7 3.31428
\(712\) − 3.35748e7i − 2.48207i
\(713\) 2.29082e7i 1.68759i
\(714\) −3.63537e7 −2.66872
\(715\) 0 0
\(716\) −1.20471e6 −0.0878211
\(717\) 1.66217e7i 1.20747i
\(718\) − 6.30003e6i − 0.456070i
\(719\) 4.94815e6 0.356961 0.178481 0.983943i \(-0.442882\pi\)
0.178481 + 0.983943i \(0.442882\pi\)
\(720\) 0 0
\(721\) −2.08099e7 −1.49084
\(722\) 2.36596e7i 1.68913i
\(723\) − 2.80286e7i − 1.99414i
\(724\) −3.54185e7 −2.51122
\(725\) 0 0
\(726\) 4.46937e7 3.14706
\(727\) − 1.84144e7i − 1.29218i −0.763262 0.646089i \(-0.776404\pi\)
0.763262 0.646089i \(-0.223596\pi\)
\(728\) − 8.79456e6i − 0.615015i
\(729\) −1.85679e7 −1.29403
\(730\) 0 0
\(731\) 2.37946e6 0.164696
\(732\) 2.45923e7i 1.69637i
\(733\) − 1.37224e7i − 0.943344i −0.881774 0.471672i \(-0.843651\pi\)
0.881774 0.471672i \(-0.156349\pi\)
\(734\) −3.33273e7 −2.28328
\(735\) 0 0
\(736\) −7.12586e6 −0.484890
\(737\) − 1.87598e7i − 1.27221i
\(738\) − 6.41546e6i − 0.433598i
\(739\) 3.74000e6 0.251919 0.125960 0.992035i \(-0.459799\pi\)
0.125960 + 0.992035i \(0.459799\pi\)
\(740\) 0 0
\(741\) 616420. 0.0412412
\(742\) − 2.77472e7i − 1.85016i
\(743\) 8.50626e6i 0.565284i 0.959226 + 0.282642i \(0.0912108\pi\)
−0.959226 + 0.282642i \(0.908789\pi\)
\(744\) −5.22227e7 −3.45881
\(745\) 0 0
\(746\) 3.82303e7 2.51513
\(747\) − 3.09500e7i − 2.02936i
\(748\) 2.35426e7i 1.53851i
\(749\) −1.23822e7 −0.806477
\(750\) 0 0
\(751\) −1.43639e7 −0.929335 −0.464667 0.885485i \(-0.653826\pi\)
−0.464667 + 0.885485i \(0.653826\pi\)
\(752\) − 5.41192e6i − 0.348985i
\(753\) − 4.39088e7i − 2.82205i
\(754\) −3.10298e6 −0.198770
\(755\) 0 0
\(756\) −1.17813e8 −7.49703
\(757\) − 1.37525e7i − 0.872253i −0.899885 0.436126i \(-0.856350\pi\)
0.899885 0.436126i \(-0.143650\pi\)
\(758\) − 1.80004e6i − 0.113791i
\(759\) 5.72041e7 3.60432
\(760\) 0 0
\(761\) −1.54163e7 −0.964978 −0.482489 0.875902i \(-0.660267\pi\)
−0.482489 + 0.875902i \(0.660267\pi\)
\(762\) 5.23710e6i 0.326741i
\(763\) 3.42014e7i 2.12683i
\(764\) 1.55587e7 0.964364
\(765\) 0 0
\(766\) −2.74476e7 −1.69018
\(767\) 8.18274e6i 0.502239i
\(768\) − 5.54253e7i − 3.39082i
\(769\) 2.69620e7 1.64413 0.822065 0.569393i \(-0.192822\pi\)
0.822065 + 0.569393i \(0.192822\pi\)
\(770\) 0 0
\(771\) 1.18304e7 0.716743
\(772\) − 4.41099e7i − 2.66375i
\(773\) − 2.34249e7i − 1.41003i −0.709191 0.705017i \(-0.750939\pi\)
0.709191 0.705017i \(-0.249061\pi\)
\(774\) 1.98899e7 1.19338
\(775\) 0 0
\(776\) 5.28764e6 0.315216
\(777\) 3.81199e7i 2.26516i
\(778\) − 3.40602e7i − 2.01743i
\(779\) 140697. 0.00830693
\(780\) 0 0
\(781\) −1.19141e7 −0.698930
\(782\) 2.29892e7i 1.34433i
\(783\) 1.95748e7i 1.14102i
\(784\) −1.34764e7 −0.783037
\(785\) 0 0
\(786\) −5.06943e6 −0.292686
\(787\) − 6.92601e6i − 0.398608i −0.979938 0.199304i \(-0.936132\pi\)
0.979938 0.199304i \(-0.0638682\pi\)
\(788\) 3.71459e7i 2.13106i
\(789\) 3.60462e7 2.06142
\(790\) 0 0
\(791\) 1.21127e7 0.688337
\(792\) 9.26718e7i 5.24970i
\(793\) − 2.37126e6i − 0.133905i
\(794\) 1.20044e7 0.675757
\(795\) 0 0
\(796\) −132393. −0.00740597
\(797\) 6.71294e6i 0.374341i 0.982327 + 0.187170i \(0.0599316\pi\)
−0.982327 + 0.187170i \(0.940068\pi\)
\(798\) − 6.66436e6i − 0.370468i
\(799\) 5.31898e6 0.294755
\(800\) 0 0
\(801\) 7.31559e7 4.02873
\(802\) 2.63615e7i 1.44722i
\(803\) 4.73096e7i 2.58917i
\(804\) 5.79955e7 3.16413
\(805\) 0 0
\(806\) 1.06931e7 0.579781
\(807\) 2.81390e7i 1.52099i
\(808\) − 2.27943e7i − 1.22828i
\(809\) −1.59763e7 −0.858235 −0.429117 0.903249i \(-0.641175\pi\)
−0.429117 + 0.903249i \(0.641175\pi\)
\(810\) 0 0
\(811\) −2.53698e7 −1.35445 −0.677227 0.735774i \(-0.736819\pi\)
−0.677227 + 0.735774i \(0.736819\pi\)
\(812\) 2.19395e7i 1.16772i
\(813\) 1.87542e7i 0.995114i
\(814\) 3.77478e7 1.99678
\(815\) 0 0
\(816\) −1.38994e7 −0.730755
\(817\) 436202.i 0.0228630i
\(818\) 5.90221e7i 3.08412i
\(819\) 1.91624e7 0.998252
\(820\) 0 0
\(821\) 1.23967e7 0.641874 0.320937 0.947101i \(-0.396002\pi\)
0.320937 + 0.947101i \(0.396002\pi\)
\(822\) − 2.95929e7i − 1.52759i
\(823\) − 1.23249e7i − 0.634286i −0.948378 0.317143i \(-0.897277\pi\)
0.948378 0.317143i \(-0.102723\pi\)
\(824\) −2.99995e7 −1.53920
\(825\) 0 0
\(826\) 8.84669e7 4.51160
\(827\) 2.17696e6i 0.110684i 0.998467 + 0.0553422i \(0.0176250\pi\)
−0.998467 + 0.0553422i \(0.982375\pi\)
\(828\) 1.25674e8i 6.37043i
\(829\) 948009. 0.0479100 0.0239550 0.999713i \(-0.492374\pi\)
0.0239550 + 0.999713i \(0.492374\pi\)
\(830\) 0 0
\(831\) 1.98398e7 0.996633
\(832\) 7.10414e6i 0.355798i
\(833\) − 1.32449e7i − 0.661358i
\(834\) −9.45966e6 −0.470934
\(835\) 0 0
\(836\) −4.31584e6 −0.213575
\(837\) − 6.74558e7i − 3.32817i
\(838\) 1.88388e7i 0.926711i
\(839\) −2.05015e7 −1.00550 −0.502748 0.864433i \(-0.667678\pi\)
−0.502748 + 0.864433i \(0.667678\pi\)
\(840\) 0 0
\(841\) −1.68659e7 −0.822278
\(842\) − 5.06444e7i − 2.46179i
\(843\) − 6.03046e7i − 2.92268i
\(844\) −5.79856e6 −0.280198
\(845\) 0 0
\(846\) 4.44614e7 2.13578
\(847\) 3.04702e7i 1.45938i
\(848\) − 1.06088e7i − 0.506615i
\(849\) −6.07310e7 −2.89162
\(850\) 0 0
\(851\) 2.41061e7 1.14105
\(852\) − 3.68322e7i − 1.73832i
\(853\) 3.75405e7i 1.76655i 0.468851 + 0.883277i \(0.344668\pi\)
−0.468851 + 0.883277i \(0.655332\pi\)
\(854\) −2.56366e7 −1.20286
\(855\) 0 0
\(856\) −1.78501e7 −0.832639
\(857\) − 2.62833e7i − 1.22244i −0.791460 0.611221i \(-0.790678\pi\)
0.791460 0.611221i \(-0.209322\pi\)
\(858\) − 2.67017e7i − 1.23828i
\(859\) 1.04479e7 0.483110 0.241555 0.970387i \(-0.422343\pi\)
0.241555 + 0.970387i \(0.422343\pi\)
\(860\) 0 0
\(861\) 6.15470e6 0.282943
\(862\) 3.10944e7i 1.42532i
\(863\) − 8.76214e6i − 0.400482i −0.979747 0.200241i \(-0.935827\pi\)
0.979747 0.200241i \(-0.0641726\pi\)
\(864\) 2.09829e7 0.956274
\(865\) 0 0
\(866\) −3.36365e7 −1.52411
\(867\) 2.74855e7i 1.24181i
\(868\) − 7.56050e7i − 3.40605i
\(869\) 4.24406e7 1.90648
\(870\) 0 0
\(871\) −5.59210e6 −0.249764
\(872\) 4.93047e7i 2.19582i
\(873\) 1.15212e7i 0.511637i
\(874\) −4.21438e6 −0.186619
\(875\) 0 0
\(876\) −1.46257e8 −6.43955
\(877\) 1.51823e7i 0.666558i 0.942828 + 0.333279i \(0.108155\pi\)
−0.942828 + 0.333279i \(0.891845\pi\)
\(878\) − 282772.i − 0.0123794i
\(879\) −4.94523e6 −0.215881
\(880\) 0 0
\(881\) 2.86755e7 1.24472 0.622359 0.782732i \(-0.286175\pi\)
0.622359 + 0.782732i \(0.286175\pi\)
\(882\) − 1.10714e8i − 4.79217i
\(883\) − 1.89214e6i − 0.0816681i −0.999166 0.0408340i \(-0.986999\pi\)
0.999166 0.0408340i \(-0.0130015\pi\)
\(884\) 7.01781e6 0.302045
\(885\) 0 0
\(886\) 5.24938e6 0.224659
\(887\) − 1.08388e7i − 0.462564i −0.972887 0.231282i \(-0.925708\pi\)
0.972887 0.231282i \(-0.0742920\pi\)
\(888\) 5.49536e7i 2.33864i
\(889\) −3.57043e6 −0.151519
\(890\) 0 0
\(891\) −8.62262e7 −3.63869
\(892\) − 4.97456e7i − 2.09335i
\(893\) 975077.i 0.0409176i
\(894\) −6.93006e7 −2.89997
\(895\) 0 0
\(896\) 6.43626e7 2.67833
\(897\) − 1.70520e7i − 0.707609i
\(898\) − 5.25558e7i − 2.17485i
\(899\) −1.25618e7 −0.518387
\(900\) 0 0
\(901\) 1.04266e7 0.427890
\(902\) − 6.09462e6i − 0.249419i
\(903\) 1.90814e7i 0.778737i
\(904\) 1.74617e7 0.710666
\(905\) 0 0
\(906\) 1.73744e7 0.703217
\(907\) 2.32175e7i 0.937123i 0.883431 + 0.468561i \(0.155227\pi\)
−0.883431 + 0.468561i \(0.844773\pi\)
\(908\) − 2.60755e7i − 1.04959i
\(909\) 4.96662e7 1.99366
\(910\) 0 0
\(911\) −2.42940e6 −0.0969849 −0.0484924 0.998824i \(-0.515442\pi\)
−0.0484924 + 0.998824i \(0.515442\pi\)
\(912\) − 2.54805e6i − 0.101443i
\(913\) − 2.94021e7i − 1.16735i
\(914\) 5.14212e7 2.03599
\(915\) 0 0
\(916\) 5.81874e7 2.29134
\(917\) − 3.45612e6i − 0.135727i
\(918\) − 6.76943e7i − 2.65122i
\(919\) 3.69038e7 1.44139 0.720697 0.693251i \(-0.243822\pi\)
0.720697 + 0.693251i \(0.243822\pi\)
\(920\) 0 0
\(921\) −1.22509e6 −0.0475904
\(922\) − 3.02906e7i − 1.17349i
\(923\) 3.55147e6i 0.137216i
\(924\) −1.88794e8 −7.27458
\(925\) 0 0
\(926\) −5.02314e7 −1.92507
\(927\) − 6.53657e7i − 2.49833i
\(928\) − 3.90751e6i − 0.148947i
\(929\) −2.16356e7 −0.822489 −0.411245 0.911525i \(-0.634906\pi\)
−0.411245 + 0.911525i \(0.634906\pi\)
\(930\) 0 0
\(931\) 2.42806e6 0.0918090
\(932\) 3.12702e7i 1.17921i
\(933\) − 3.91387e7i − 1.47198i
\(934\) −6.39033e7 −2.39693
\(935\) 0 0
\(936\) 2.76245e7 1.03063
\(937\) 1.41082e7i 0.524956i 0.964938 + 0.262478i \(0.0845398\pi\)
−0.964938 + 0.262478i \(0.915460\pi\)
\(938\) 6.04584e7i 2.24362i
\(939\) −6.45945e7 −2.39074
\(940\) 0 0
\(941\) −4.39029e7 −1.61629 −0.808145 0.588983i \(-0.799528\pi\)
−0.808145 + 0.588983i \(0.799528\pi\)
\(942\) 7.66992e7i 2.81620i
\(943\) − 3.89208e6i − 0.142529i
\(944\) 3.38244e7 1.23538
\(945\) 0 0
\(946\) 1.88951e7 0.686471
\(947\) − 4.04056e6i − 0.146409i −0.997317 0.0732044i \(-0.976677\pi\)
0.997317 0.0732044i \(-0.0233225\pi\)
\(948\) 1.31204e8i 4.74162i
\(949\) 1.41025e7 0.508312
\(950\) 0 0
\(951\) −9.41526e7 −3.37583
\(952\) − 3.57291e7i − 1.27770i
\(953\) 2.21804e7i 0.791110i 0.918442 + 0.395555i \(0.129448\pi\)
−0.918442 + 0.395555i \(0.870552\pi\)
\(954\) 8.71563e7 3.10047
\(955\) 0 0
\(956\) −3.46905e7 −1.22762
\(957\) 3.13683e7i 1.10716i
\(958\) 6.50576e7i 2.29026i
\(959\) 2.01752e7 0.708387
\(960\) 0 0
\(961\) 1.46597e7 0.512055
\(962\) − 1.12522e7i − 0.392013i
\(963\) − 3.88935e7i − 1.35148i
\(964\) 5.84975e7 2.02742
\(965\) 0 0
\(966\) −1.84356e8 −6.35643
\(967\) − 2.23431e7i − 0.768383i −0.923253 0.384191i \(-0.874480\pi\)
0.923253 0.384191i \(-0.125520\pi\)
\(968\) 4.39258e7i 1.50672i
\(969\) 2.50429e6 0.0856791
\(970\) 0 0
\(971\) −5.29498e7 −1.80226 −0.901128 0.433554i \(-0.857259\pi\)
−0.901128 + 0.433554i \(0.857259\pi\)
\(972\) − 1.15885e8i − 3.93426i
\(973\) − 6.44919e6i − 0.218385i
\(974\) −1.29345e7 −0.436869
\(975\) 0 0
\(976\) −9.80190e6 −0.329371
\(977\) − 1.28543e7i − 0.430836i −0.976522 0.215418i \(-0.930889\pi\)
0.976522 0.215418i \(-0.0691113\pi\)
\(978\) − 1.48081e7i − 0.495054i
\(979\) 6.94972e7 2.31745
\(980\) 0 0
\(981\) −1.07430e8 −3.56412
\(982\) 7.05343e7i 2.33411i
\(983\) − 2.18478e7i − 0.721149i −0.932730 0.360574i \(-0.882581\pi\)
0.932730 0.360574i \(-0.117419\pi\)
\(984\) 8.87260e6 0.292121
\(985\) 0 0
\(986\) −1.26063e7 −0.412947
\(987\) 4.26541e7i 1.39370i
\(988\) 1.28651e6i 0.0419295i
\(989\) 1.20666e7 0.392279
\(990\) 0 0
\(991\) 1.64896e7 0.533368 0.266684 0.963784i \(-0.414072\pi\)
0.266684 + 0.963784i \(0.414072\pi\)
\(992\) 1.34655e7i 0.434454i
\(993\) 5.24896e7i 1.68927i
\(994\) 3.83964e7 1.23261
\(995\) 0 0
\(996\) 9.08961e7 2.90333
\(997\) − 5.04197e7i − 1.60643i −0.595688 0.803216i \(-0.703121\pi\)
0.595688 0.803216i \(-0.296879\pi\)
\(998\) 4.43391e7i 1.40916i
\(999\) −7.09833e7 −2.25031
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.g.274.2 12
5.2 odd 4 65.6.a.d.1.6 6
5.3 odd 4 325.6.a.g.1.1 6
5.4 even 2 inner 325.6.b.g.274.11 12
15.2 even 4 585.6.a.m.1.1 6
20.7 even 4 1040.6.a.q.1.1 6
65.12 odd 4 845.6.a.h.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.6 6 5.2 odd 4
325.6.a.g.1.1 6 5.3 odd 4
325.6.b.g.274.2 12 1.1 even 1 trivial
325.6.b.g.274.11 12 5.4 even 2 inner
585.6.a.m.1.1 6 15.2 even 4
845.6.a.h.1.1 6 65.12 odd 4
1040.6.a.q.1.1 6 20.7 even 4