Properties

Label 325.6.b.h.274.13
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.13
Root \(5.30592i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.30592i q^{2} -19.9083i q^{3} +13.4591 q^{4} +85.7235 q^{6} +125.783i q^{7} +195.743i q^{8} -153.341 q^{9} -709.332 q^{11} -267.947i q^{12} -169.000i q^{13} -541.610 q^{14} -412.163 q^{16} -1927.07i q^{17} -660.272i q^{18} +2166.48 q^{19} +2504.12 q^{21} -3054.33i q^{22} +305.642i q^{23} +3896.91 q^{24} +727.700 q^{26} -1784.97i q^{27} +1692.92i q^{28} -4514.28 q^{29} +4078.41 q^{31} +4489.03i q^{32} +14121.6i q^{33} +8297.79 q^{34} -2063.82 q^{36} -12350.6i q^{37} +9328.69i q^{38} -3364.50 q^{39} +14430.4 q^{41} +10782.5i q^{42} -17133.7i q^{43} -9546.95 q^{44} -1316.07 q^{46} -18349.2i q^{47} +8205.47i q^{48} +985.723 q^{49} -38364.6 q^{51} -2274.58i q^{52} +11938.3i q^{53} +7685.93 q^{54} -24621.1 q^{56} -43131.0i q^{57} -19438.1i q^{58} +39854.6 q^{59} +4490.25 q^{61} +17561.3i q^{62} -19287.6i q^{63} -32518.6 q^{64} -60806.5 q^{66} -30488.3i q^{67} -25936.5i q^{68} +6084.82 q^{69} -14561.2 q^{71} -30015.3i q^{72} -59007.3i q^{73} +53180.6 q^{74} +29158.8 q^{76} -89221.7i q^{77} -14487.3i q^{78} +43350.2 q^{79} -72797.4 q^{81} +62136.2i q^{82} +83849.9i q^{83} +33703.1 q^{84} +73776.2 q^{86} +89871.6i q^{87} -138847. i q^{88} -124592. q^{89} +21257.3 q^{91} +4113.66i q^{92} -81194.2i q^{93} +79010.1 q^{94} +89369.1 q^{96} +93842.4i q^{97} +4244.44i q^{98} +108769. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39}+ \cdots + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.30592i 0.761186i 0.924743 + 0.380593i \(0.124280\pi\)
−0.924743 + 0.380593i \(0.875720\pi\)
\(3\) − 19.9083i − 1.27712i −0.769573 0.638559i \(-0.779531\pi\)
0.769573 0.638559i \(-0.220469\pi\)
\(4\) 13.4591 0.420596
\(5\) 0 0
\(6\) 85.7235 0.972125
\(7\) 125.783i 0.970232i 0.874450 + 0.485116i \(0.161223\pi\)
−0.874450 + 0.485116i \(0.838777\pi\)
\(8\) 195.743i 1.08134i
\(9\) −153.341 −0.631031
\(10\) 0 0
\(11\) −709.332 −1.76754 −0.883768 0.467926i \(-0.845001\pi\)
−0.883768 + 0.467926i \(0.845001\pi\)
\(12\) − 267.947i − 0.537151i
\(13\) − 169.000i − 0.277350i
\(14\) −541.610 −0.738527
\(15\) 0 0
\(16\) −412.163 −0.402503
\(17\) − 1927.07i − 1.61724i −0.588332 0.808620i \(-0.700215\pi\)
0.588332 0.808620i \(-0.299785\pi\)
\(18\) − 660.272i − 0.480332i
\(19\) 2166.48 1.37680 0.688400 0.725331i \(-0.258313\pi\)
0.688400 + 0.725331i \(0.258313\pi\)
\(20\) 0 0
\(21\) 2504.12 1.23910
\(22\) − 3054.33i − 1.34542i
\(23\) 305.642i 0.120474i 0.998184 + 0.0602371i \(0.0191857\pi\)
−0.998184 + 0.0602371i \(0.980814\pi\)
\(24\) 3896.91 1.38100
\(25\) 0 0
\(26\) 727.700 0.211115
\(27\) − 1784.97i − 0.471217i
\(28\) 1692.92i 0.408076i
\(29\) −4514.28 −0.996766 −0.498383 0.866957i \(-0.666073\pi\)
−0.498383 + 0.866957i \(0.666073\pi\)
\(30\) 0 0
\(31\) 4078.41 0.762231 0.381116 0.924527i \(-0.375540\pi\)
0.381116 + 0.924527i \(0.375540\pi\)
\(32\) 4489.03i 0.774958i
\(33\) 14121.6i 2.25735i
\(34\) 8297.79 1.23102
\(35\) 0 0
\(36\) −2063.82 −0.265409
\(37\) − 12350.6i − 1.48314i −0.670873 0.741572i \(-0.734080\pi\)
0.670873 0.741572i \(-0.265920\pi\)
\(38\) 9328.69i 1.04800i
\(39\) −3364.50 −0.354209
\(40\) 0 0
\(41\) 14430.4 1.34066 0.670331 0.742062i \(-0.266152\pi\)
0.670331 + 0.742062i \(0.266152\pi\)
\(42\) 10782.5i 0.943187i
\(43\) − 17133.7i − 1.41312i −0.707652 0.706561i \(-0.750246\pi\)
0.707652 0.706561i \(-0.249754\pi\)
\(44\) −9546.95 −0.743418
\(45\) 0 0
\(46\) −1316.07 −0.0917032
\(47\) − 18349.2i − 1.21164i −0.795603 0.605818i \(-0.792846\pi\)
0.795603 0.605818i \(-0.207154\pi\)
\(48\) 8205.47i 0.514044i
\(49\) 985.723 0.0586496
\(50\) 0 0
\(51\) −38364.6 −2.06541
\(52\) − 2274.58i − 0.116652i
\(53\) 11938.3i 0.583785i 0.956451 + 0.291893i \(0.0942850\pi\)
−0.956451 + 0.291893i \(0.905715\pi\)
\(54\) 7685.93 0.358684
\(55\) 0 0
\(56\) −24621.1 −1.04915
\(57\) − 43131.0i − 1.75834i
\(58\) − 19438.1i − 0.758724i
\(59\) 39854.6 1.49056 0.745278 0.666754i \(-0.232317\pi\)
0.745278 + 0.666754i \(0.232317\pi\)
\(60\) 0 0
\(61\) 4490.25 0.154506 0.0772530 0.997012i \(-0.475385\pi\)
0.0772530 + 0.997012i \(0.475385\pi\)
\(62\) 17561.3i 0.580200i
\(63\) − 19287.6i − 0.612247i
\(64\) −32518.6 −0.992390
\(65\) 0 0
\(66\) −60806.5 −1.71826
\(67\) − 30488.3i − 0.829749i −0.909879 0.414874i \(-0.863826\pi\)
0.909879 0.414874i \(-0.136174\pi\)
\(68\) − 25936.5i − 0.680204i
\(69\) 6084.82 0.153860
\(70\) 0 0
\(71\) −14561.2 −0.342808 −0.171404 0.985201i \(-0.554830\pi\)
−0.171404 + 0.985201i \(0.554830\pi\)
\(72\) − 30015.3i − 0.682358i
\(73\) − 59007.3i − 1.29598i −0.761649 0.647990i \(-0.775610\pi\)
0.761649 0.647990i \(-0.224390\pi\)
\(74\) 53180.6 1.12895
\(75\) 0 0
\(76\) 29158.8 0.579076
\(77\) − 89221.7i − 1.71492i
\(78\) − 14487.3i − 0.269619i
\(79\) 43350.2 0.781489 0.390745 0.920499i \(-0.372218\pi\)
0.390745 + 0.920499i \(0.372218\pi\)
\(80\) 0 0
\(81\) −72797.4 −1.23283
\(82\) 62136.2i 1.02049i
\(83\) 83849.9i 1.33600i 0.744160 + 0.668002i \(0.232850\pi\)
−0.744160 + 0.668002i \(0.767150\pi\)
\(84\) 33703.1 0.521161
\(85\) 0 0
\(86\) 73776.2 1.07565
\(87\) 89871.6i 1.27299i
\(88\) − 138847.i − 1.91130i
\(89\) −124592. −1.66731 −0.833656 0.552284i \(-0.813756\pi\)
−0.833656 + 0.552284i \(0.813756\pi\)
\(90\) 0 0
\(91\) 21257.3 0.269094
\(92\) 4113.66i 0.0506709i
\(93\) − 81194.2i − 0.973459i
\(94\) 79010.1 0.922281
\(95\) 0 0
\(96\) 89369.1 0.989713
\(97\) 93842.4i 1.01267i 0.862335 + 0.506337i \(0.169001\pi\)
−0.862335 + 0.506337i \(0.830999\pi\)
\(98\) 4244.44i 0.0446432i
\(99\) 108769. 1.11537
\(100\) 0 0
\(101\) −117081. −1.14205 −0.571023 0.820934i \(-0.693453\pi\)
−0.571023 + 0.820934i \(0.693453\pi\)
\(102\) − 165195.i − 1.57216i
\(103\) − 116464.i − 1.08168i −0.841124 0.540842i \(-0.818106\pi\)
0.841124 0.540842i \(-0.181894\pi\)
\(104\) 33080.6 0.299909
\(105\) 0 0
\(106\) −51405.4 −0.444369
\(107\) 43117.6i 0.364079i 0.983291 + 0.182039i \(0.0582698\pi\)
−0.983291 + 0.182039i \(0.941730\pi\)
\(108\) − 24024.0i − 0.198192i
\(109\) −32460.7 −0.261693 −0.130846 0.991403i \(-0.541769\pi\)
−0.130846 + 0.991403i \(0.541769\pi\)
\(110\) 0 0
\(111\) −245879. −1.89415
\(112\) − 51843.0i − 0.390522i
\(113\) − 73976.7i − 0.545003i −0.962155 0.272501i \(-0.912149\pi\)
0.962155 0.272501i \(-0.0878510\pi\)
\(114\) 185718. 1.33842
\(115\) 0 0
\(116\) −60757.9 −0.419236
\(117\) 25914.5i 0.175017i
\(118\) 171611.i 1.13459i
\(119\) 242392. 1.56910
\(120\) 0 0
\(121\) 342101. 2.12418
\(122\) 19334.6i 0.117608i
\(123\) − 287285.i − 1.71218i
\(124\) 54891.6 0.320591
\(125\) 0 0
\(126\) 83050.7 0.466034
\(127\) − 250540.i − 1.37838i −0.724582 0.689189i \(-0.757967\pi\)
0.724582 0.689189i \(-0.242033\pi\)
\(128\) 3626.46i 0.0195640i
\(129\) −341103. −1.80472
\(130\) 0 0
\(131\) 98431.4 0.501136 0.250568 0.968099i \(-0.419383\pi\)
0.250568 + 0.968099i \(0.419383\pi\)
\(132\) 190064.i 0.949433i
\(133\) 272506.i 1.33582i
\(134\) 131280. 0.631593
\(135\) 0 0
\(136\) 377210. 1.74878
\(137\) − 302938.i − 1.37896i −0.724305 0.689480i \(-0.757839\pi\)
0.724305 0.689480i \(-0.242161\pi\)
\(138\) 26200.7i 0.117116i
\(139\) 215720. 0.947006 0.473503 0.880792i \(-0.342989\pi\)
0.473503 + 0.880792i \(0.342989\pi\)
\(140\) 0 0
\(141\) −365301. −1.54740
\(142\) − 62699.3i − 0.260941i
\(143\) 119877.i 0.490226i
\(144\) 63201.4 0.253992
\(145\) 0 0
\(146\) 254080. 0.986482
\(147\) − 19624.1i − 0.0749024i
\(148\) − 166227.i − 0.623804i
\(149\) 193167. 0.712798 0.356399 0.934334i \(-0.384004\pi\)
0.356399 + 0.934334i \(0.384004\pi\)
\(150\) 0 0
\(151\) −54010.3 −0.192768 −0.0963839 0.995344i \(-0.530728\pi\)
−0.0963839 + 0.995344i \(0.530728\pi\)
\(152\) 424074.i 1.48879i
\(153\) 295497.i 1.02053i
\(154\) 384181. 1.30537
\(155\) 0 0
\(156\) −45283.1 −0.148979
\(157\) 386541.i 1.25155i 0.780006 + 0.625773i \(0.215216\pi\)
−0.780006 + 0.625773i \(0.784784\pi\)
\(158\) 186662.i 0.594859i
\(159\) 237671. 0.745563
\(160\) 0 0
\(161\) −38444.5 −0.116888
\(162\) − 313460.i − 0.938414i
\(163\) − 106816.i − 0.314896i −0.987527 0.157448i \(-0.949673\pi\)
0.987527 0.157448i \(-0.0503267\pi\)
\(164\) 194220. 0.563877
\(165\) 0 0
\(166\) −361051. −1.01695
\(167\) − 371554.i − 1.03093i −0.856909 0.515467i \(-0.827619\pi\)
0.856909 0.515467i \(-0.172381\pi\)
\(168\) 490164.i 1.33989i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −332209. −0.868803
\(172\) − 230603.i − 0.594353i
\(173\) − 274680.i − 0.697769i −0.937166 0.348884i \(-0.886561\pi\)
0.937166 0.348884i \(-0.113439\pi\)
\(174\) −386980. −0.968981
\(175\) 0 0
\(176\) 292361. 0.711439
\(177\) − 793437.i − 1.90362i
\(178\) − 536485.i − 1.26913i
\(179\) −317330. −0.740251 −0.370125 0.928982i \(-0.620685\pi\)
−0.370125 + 0.928982i \(0.620685\pi\)
\(180\) 0 0
\(181\) −241524. −0.547979 −0.273989 0.961733i \(-0.588343\pi\)
−0.273989 + 0.961733i \(0.588343\pi\)
\(182\) 91532.1i 0.204831i
\(183\) − 89393.2i − 0.197322i
\(184\) −59827.3 −0.130273
\(185\) 0 0
\(186\) 349616. 0.740984
\(187\) 1.36693e6i 2.85853i
\(188\) − 246963.i − 0.509609i
\(189\) 224518. 0.457190
\(190\) 0 0
\(191\) 208827. 0.414193 0.207096 0.978321i \(-0.433599\pi\)
0.207096 + 0.978321i \(0.433599\pi\)
\(192\) 647391.i 1.26740i
\(193\) 410293.i 0.792868i 0.918063 + 0.396434i \(0.129752\pi\)
−0.918063 + 0.396434i \(0.870248\pi\)
\(194\) −404078. −0.770834
\(195\) 0 0
\(196\) 13266.9 0.0246678
\(197\) 466919.i 0.857187i 0.903497 + 0.428594i \(0.140991\pi\)
−0.903497 + 0.428594i \(0.859009\pi\)
\(198\) 468352.i 0.849004i
\(199\) −655337. −1.17309 −0.586546 0.809916i \(-0.699513\pi\)
−0.586546 + 0.809916i \(0.699513\pi\)
\(200\) 0 0
\(201\) −606971. −1.05969
\(202\) − 504142.i − 0.869309i
\(203\) − 567818.i − 0.967094i
\(204\) −516352. −0.868701
\(205\) 0 0
\(206\) 501486. 0.823362
\(207\) − 46867.3i − 0.0760229i
\(208\) 69655.6i 0.111634i
\(209\) −1.53676e6 −2.43354
\(210\) 0 0
\(211\) −508536. −0.786350 −0.393175 0.919464i \(-0.628623\pi\)
−0.393175 + 0.919464i \(0.628623\pi\)
\(212\) 160679.i 0.245538i
\(213\) 289889.i 0.437806i
\(214\) −185661. −0.277132
\(215\) 0 0
\(216\) 349395. 0.509545
\(217\) 512993.i 0.739541i
\(218\) − 139773.i − 0.199197i
\(219\) −1.17473e6 −1.65512
\(220\) 0 0
\(221\) −325674. −0.448542
\(222\) − 1.05874e6i − 1.44180i
\(223\) − 97604.2i − 0.131434i −0.997838 0.0657168i \(-0.979067\pi\)
0.997838 0.0657168i \(-0.0209334\pi\)
\(224\) −564643. −0.751889
\(225\) 0 0
\(226\) 318538. 0.414849
\(227\) − 363749.i − 0.468530i −0.972173 0.234265i \(-0.924732\pi\)
0.972173 0.234265i \(-0.0752683\pi\)
\(228\) − 580502.i − 0.739549i
\(229\) −549995. −0.693059 −0.346530 0.938039i \(-0.612640\pi\)
−0.346530 + 0.938039i \(0.612640\pi\)
\(230\) 0 0
\(231\) −1.77625e6 −2.19016
\(232\) − 883638.i − 1.07784i
\(233\) 444960.i 0.536947i 0.963287 + 0.268473i \(0.0865191\pi\)
−0.963287 + 0.268473i \(0.913481\pi\)
\(234\) −111586. −0.133220
\(235\) 0 0
\(236\) 536406. 0.626922
\(237\) − 863028.i − 0.998054i
\(238\) 1.04372e6i 1.19438i
\(239\) −1.06065e6 −1.20110 −0.600549 0.799588i \(-0.705051\pi\)
−0.600549 + 0.799588i \(0.705051\pi\)
\(240\) 0 0
\(241\) 642027. 0.712051 0.356025 0.934476i \(-0.384132\pi\)
0.356025 + 0.934476i \(0.384132\pi\)
\(242\) 1.47306e6i 1.61690i
\(243\) 1.01553e6i 1.10325i
\(244\) 60434.5 0.0649846
\(245\) 0 0
\(246\) 1.23703e6 1.30329
\(247\) − 366135.i − 0.381856i
\(248\) 798320.i 0.824229i
\(249\) 1.66931e6 1.70623
\(250\) 0 0
\(251\) 386423. 0.387149 0.193575 0.981086i \(-0.437992\pi\)
0.193575 + 0.981086i \(0.437992\pi\)
\(252\) − 259593.i − 0.257508i
\(253\) − 216802.i − 0.212942i
\(254\) 1.07881e6 1.04920
\(255\) 0 0
\(256\) −1.05621e6 −1.00728
\(257\) 432043.i 0.408032i 0.978968 + 0.204016i \(0.0653994\pi\)
−0.978968 + 0.204016i \(0.934601\pi\)
\(258\) − 1.46876e6i − 1.37373i
\(259\) 1.55349e6 1.43899
\(260\) 0 0
\(261\) 692222. 0.628990
\(262\) 423837.i 0.381457i
\(263\) − 120603.i − 0.107515i −0.998554 0.0537575i \(-0.982880\pi\)
0.998554 0.0537575i \(-0.0171198\pi\)
\(264\) −2.76421e6 −2.44096
\(265\) 0 0
\(266\) −1.17339e6 −1.01680
\(267\) 2.48043e6i 2.12935i
\(268\) − 410344.i − 0.348989i
\(269\) 2.20375e6 1.85687 0.928436 0.371494i \(-0.121154\pi\)
0.928436 + 0.371494i \(0.121154\pi\)
\(270\) 0 0
\(271\) 599069. 0.495511 0.247756 0.968823i \(-0.420307\pi\)
0.247756 + 0.968823i \(0.420307\pi\)
\(272\) 794266.i 0.650944i
\(273\) − 423196.i − 0.343665i
\(274\) 1.30442e6 1.04965
\(275\) 0 0
\(276\) 81896.0 0.0647127
\(277\) 67945.4i 0.0532060i 0.999646 + 0.0266030i \(0.00846900\pi\)
−0.999646 + 0.0266030i \(0.991531\pi\)
\(278\) 928871.i 0.720847i
\(279\) −625386. −0.480991
\(280\) 0 0
\(281\) 79333.1 0.0599361 0.0299681 0.999551i \(-0.490459\pi\)
0.0299681 + 0.999551i \(0.490459\pi\)
\(282\) − 1.57296e6i − 1.17786i
\(283\) 810998.i 0.601941i 0.953633 + 0.300970i \(0.0973105\pi\)
−0.953633 + 0.300970i \(0.902689\pi\)
\(284\) −195980. −0.144184
\(285\) 0 0
\(286\) −516181. −0.373153
\(287\) 1.81510e6i 1.30075i
\(288\) − 688351.i − 0.489022i
\(289\) −2.29373e6 −1.61546
\(290\) 0 0
\(291\) 1.86824e6 1.29331
\(292\) − 794183.i − 0.545084i
\(293\) 2.31923e6i 1.57825i 0.614236 + 0.789123i \(0.289464\pi\)
−0.614236 + 0.789123i \(0.710536\pi\)
\(294\) 84499.7 0.0570147
\(295\) 0 0
\(296\) 2.41754e6 1.60378
\(297\) 1.26614e6i 0.832893i
\(298\) 831760.i 0.542572i
\(299\) 51653.5 0.0334135
\(300\) 0 0
\(301\) 2.15512e6 1.37106
\(302\) − 232564.i − 0.146732i
\(303\) 2.33089e6i 1.45853i
\(304\) −892944. −0.554167
\(305\) 0 0
\(306\) −1.27239e6 −0.776812
\(307\) − 804892.i − 0.487407i −0.969850 0.243703i \(-0.921638\pi\)
0.969850 0.243703i \(-0.0783624\pi\)
\(308\) − 1.20084e6i − 0.721288i
\(309\) −2.31861e6 −1.38144
\(310\) 0 0
\(311\) −2.49761e6 −1.46428 −0.732139 0.681156i \(-0.761478\pi\)
−0.732139 + 0.681156i \(0.761478\pi\)
\(312\) − 658578.i − 0.383019i
\(313\) − 146716.i − 0.0846480i −0.999104 0.0423240i \(-0.986524\pi\)
0.999104 0.0423240i \(-0.0134762\pi\)
\(314\) −1.66441e6 −0.952659
\(315\) 0 0
\(316\) 583453. 0.328691
\(317\) 2.37920e6i 1.32979i 0.746936 + 0.664896i \(0.231524\pi\)
−0.746936 + 0.664896i \(0.768476\pi\)
\(318\) 1.02339e6i 0.567512i
\(319\) 3.20212e6 1.76182
\(320\) 0 0
\(321\) 858399. 0.464972
\(322\) − 165539.i − 0.0889734i
\(323\) − 4.17495e6i − 2.22662i
\(324\) −979785. −0.518523
\(325\) 0 0
\(326\) 459941. 0.239695
\(327\) 646237.i 0.334212i
\(328\) 2.82466e6i 1.44971i
\(329\) 2.30801e6 1.17557
\(330\) 0 0
\(331\) 2.55669e6 1.28265 0.641324 0.767270i \(-0.278385\pi\)
0.641324 + 0.767270i \(0.278385\pi\)
\(332\) 1.12854e6i 0.561917i
\(333\) 1.89385e6i 0.935910i
\(334\) 1.59988e6 0.784732
\(335\) 0 0
\(336\) −1.03211e6 −0.498742
\(337\) 2.38453e6i 1.14374i 0.820344 + 0.571871i \(0.193782\pi\)
−0.820344 + 0.571871i \(0.806218\pi\)
\(338\) − 122981.i − 0.0585528i
\(339\) −1.47275e6 −0.696033
\(340\) 0 0
\(341\) −2.89295e6 −1.34727
\(342\) − 1.43047e6i − 0.661321i
\(343\) 2.23802e6i 1.02714i
\(344\) 3.35380e6 1.52806
\(345\) 0 0
\(346\) 1.18275e6 0.531132
\(347\) − 427794.i − 0.190727i −0.995443 0.0953633i \(-0.969599\pi\)
0.995443 0.0953633i \(-0.0304013\pi\)
\(348\) 1.20959e6i 0.535413i
\(349\) 3.91198e6 1.71922 0.859612 0.510947i \(-0.170705\pi\)
0.859612 + 0.510947i \(0.170705\pi\)
\(350\) 0 0
\(351\) −301660. −0.130692
\(352\) − 3.18422e6i − 1.36977i
\(353\) − 1.85968e6i − 0.794330i −0.917747 0.397165i \(-0.869994\pi\)
0.917747 0.397165i \(-0.130006\pi\)
\(354\) 3.41648e6 1.44901
\(355\) 0 0
\(356\) −1.67690e6 −0.701264
\(357\) − 4.82560e6i − 2.00392i
\(358\) − 1.36640e6i − 0.563468i
\(359\) −693152. −0.283852 −0.141926 0.989877i \(-0.545330\pi\)
−0.141926 + 0.989877i \(0.545330\pi\)
\(360\) 0 0
\(361\) 2.21754e6 0.895578
\(362\) − 1.03998e6i − 0.417114i
\(363\) − 6.81066e6i − 2.71283i
\(364\) 286103. 0.113180
\(365\) 0 0
\(366\) 384920. 0.150199
\(367\) 2.25998e6i 0.875870i 0.899007 + 0.437935i \(0.144290\pi\)
−0.899007 + 0.437935i \(0.855710\pi\)
\(368\) − 125975.i − 0.0484912i
\(369\) −2.21277e6 −0.846000
\(370\) 0 0
\(371\) −1.50163e6 −0.566407
\(372\) − 1.09280e6i − 0.409433i
\(373\) − 802038.i − 0.298485i −0.988801 0.149243i \(-0.952316\pi\)
0.988801 0.149243i \(-0.0476836\pi\)
\(374\) −5.88589e6 −2.17587
\(375\) 0 0
\(376\) 3.59173e6 1.31019
\(377\) 762913.i 0.276453i
\(378\) 966756.i 0.348007i
\(379\) −1.44664e6 −0.517325 −0.258662 0.965968i \(-0.583282\pi\)
−0.258662 + 0.965968i \(0.583282\pi\)
\(380\) 0 0
\(381\) −4.98783e6 −1.76035
\(382\) 899191.i 0.315278i
\(383\) − 3.55257e6i − 1.23750i −0.785587 0.618751i \(-0.787639\pi\)
0.785587 0.618751i \(-0.212361\pi\)
\(384\) 72196.7 0.0249856
\(385\) 0 0
\(386\) −1.76669e6 −0.603520
\(387\) 2.62729e6i 0.891724i
\(388\) 1.26303e6i 0.425927i
\(389\) 5.57943e6 1.86946 0.934730 0.355359i \(-0.115642\pi\)
0.934730 + 0.355359i \(0.115642\pi\)
\(390\) 0 0
\(391\) 588993. 0.194836
\(392\) 192948.i 0.0634200i
\(393\) − 1.95960e6i − 0.640009i
\(394\) −2.01051e6 −0.652479
\(395\) 0 0
\(396\) 1.46393e6 0.469120
\(397\) − 3.43746e6i − 1.09462i −0.836931 0.547308i \(-0.815653\pi\)
0.836931 0.547308i \(-0.184347\pi\)
\(398\) − 2.82183e6i − 0.892942i
\(399\) 5.42513e6 1.70599
\(400\) 0 0
\(401\) −4.49645e6 −1.39640 −0.698199 0.715904i \(-0.746015\pi\)
−0.698199 + 0.715904i \(0.746015\pi\)
\(402\) − 2.61357e6i − 0.806619i
\(403\) − 689251.i − 0.211405i
\(404\) −1.57580e6 −0.480340
\(405\) 0 0
\(406\) 2.44498e6 0.736139
\(407\) 8.76068e6i 2.62151i
\(408\) − 7.50961e6i − 2.23340i
\(409\) 4.00809e6 1.18476 0.592379 0.805659i \(-0.298189\pi\)
0.592379 + 0.805659i \(0.298189\pi\)
\(410\) 0 0
\(411\) −6.03097e6 −1.76109
\(412\) − 1.56750e6i − 0.454952i
\(413\) 5.01302e6i 1.44619i
\(414\) 201807. 0.0578676
\(415\) 0 0
\(416\) 758647. 0.214935
\(417\) − 4.29461e6i − 1.20944i
\(418\) − 6.61714e6i − 1.85238i
\(419\) 30427.3 0.00846697 0.00423349 0.999991i \(-0.498652\pi\)
0.00423349 + 0.999991i \(0.498652\pi\)
\(420\) 0 0
\(421\) 1.28719e6 0.353946 0.176973 0.984216i \(-0.443369\pi\)
0.176973 + 0.984216i \(0.443369\pi\)
\(422\) − 2.18972e6i − 0.598559i
\(423\) 2.81367e6i 0.764580i
\(424\) −2.33684e6 −0.631269
\(425\) 0 0
\(426\) −1.24824e6 −0.333252
\(427\) 564795.i 0.149907i
\(428\) 580323.i 0.153130i
\(429\) 2.38655e6 0.626077
\(430\) 0 0
\(431\) −3.27469e6 −0.849137 −0.424568 0.905396i \(-0.639574\pi\)
−0.424568 + 0.905396i \(0.639574\pi\)
\(432\) 735699.i 0.189666i
\(433\) 2.56449e6i 0.657327i 0.944447 + 0.328664i \(0.106598\pi\)
−0.944447 + 0.328664i \(0.893402\pi\)
\(434\) −2.20891e6 −0.562928
\(435\) 0 0
\(436\) −436890. −0.110067
\(437\) 662168.i 0.165869i
\(438\) − 5.05831e6i − 1.25985i
\(439\) −973053. −0.240977 −0.120488 0.992715i \(-0.538446\pi\)
−0.120488 + 0.992715i \(0.538446\pi\)
\(440\) 0 0
\(441\) −151151. −0.0370097
\(442\) − 1.40233e6i − 0.341424i
\(443\) − 1.98241e6i − 0.479936i −0.970781 0.239968i \(-0.922863\pi\)
0.970781 0.239968i \(-0.0771369\pi\)
\(444\) −3.30931e6 −0.796672
\(445\) 0 0
\(446\) 420276. 0.100045
\(447\) − 3.84562e6i − 0.910327i
\(448\) − 4.09028e6i − 0.962849i
\(449\) −1.98450e6 −0.464552 −0.232276 0.972650i \(-0.574617\pi\)
−0.232276 + 0.972650i \(0.574617\pi\)
\(450\) 0 0
\(451\) −1.02360e7 −2.36967
\(452\) − 995657.i − 0.229226i
\(453\) 1.07525e6i 0.246187i
\(454\) 1.56627e6 0.356639
\(455\) 0 0
\(456\) 8.44258e6 1.90136
\(457\) − 6.95085e6i − 1.55685i −0.627736 0.778427i \(-0.716018\pi\)
0.627736 0.778427i \(-0.283982\pi\)
\(458\) − 2.36824e6i − 0.527547i
\(459\) −3.43975e6 −0.762071
\(460\) 0 0
\(461\) −2.63571e6 −0.577625 −0.288812 0.957386i \(-0.593260\pi\)
−0.288812 + 0.957386i \(0.593260\pi\)
\(462\) − 7.64840e6i − 1.66712i
\(463\) 6.75578e6i 1.46461i 0.680975 + 0.732306i \(0.261556\pi\)
−0.680975 + 0.732306i \(0.738444\pi\)
\(464\) 1.86062e6 0.401202
\(465\) 0 0
\(466\) −1.91596e6 −0.408716
\(467\) − 7.34426e6i − 1.55832i −0.626826 0.779159i \(-0.715646\pi\)
0.626826 0.779159i \(-0.284354\pi\)
\(468\) 348786.i 0.0736112i
\(469\) 3.83490e6 0.805049
\(470\) 0 0
\(471\) 7.69538e6 1.59837
\(472\) 7.80126e6i 1.61179i
\(473\) 1.21535e7i 2.49774i
\(474\) 3.71613e6 0.759705
\(475\) 0 0
\(476\) 3.26236e6 0.659956
\(477\) − 1.83063e6i − 0.368387i
\(478\) − 4.56708e6i − 0.914259i
\(479\) 6.14073e6 1.22287 0.611436 0.791294i \(-0.290592\pi\)
0.611436 + 0.791294i \(0.290592\pi\)
\(480\) 0 0
\(481\) −2.08725e6 −0.411350
\(482\) 2.76452e6i 0.542003i
\(483\) 765365.i 0.149280i
\(484\) 4.60437e6 0.893422
\(485\) 0 0
\(486\) −4.37277e6 −0.839781
\(487\) 1.73635e6i 0.331752i 0.986147 + 0.165876i \(0.0530452\pi\)
−0.986147 + 0.165876i \(0.946955\pi\)
\(488\) 878934.i 0.167073i
\(489\) −2.12653e6 −0.402160
\(490\) 0 0
\(491\) −1.66007e6 −0.310759 −0.155380 0.987855i \(-0.549660\pi\)
−0.155380 + 0.987855i \(0.549660\pi\)
\(492\) − 3.86659e6i − 0.720138i
\(493\) 8.69931e6i 1.61201i
\(494\) 1.57655e6 0.290663
\(495\) 0 0
\(496\) −1.68097e6 −0.306801
\(497\) − 1.83155e6i − 0.332603i
\(498\) 7.18791e6i 1.29876i
\(499\) −7.82789e6 −1.40732 −0.703660 0.710536i \(-0.748452\pi\)
−0.703660 + 0.710536i \(0.748452\pi\)
\(500\) 0 0
\(501\) −7.39701e6 −1.31662
\(502\) 1.66390e6i 0.294692i
\(503\) 4.93710e6i 0.870066i 0.900415 + 0.435033i \(0.143263\pi\)
−0.900415 + 0.435033i \(0.856737\pi\)
\(504\) 3.77541e6 0.662045
\(505\) 0 0
\(506\) 933531. 0.162089
\(507\) 568601.i 0.0982399i
\(508\) − 3.37204e6i − 0.579740i
\(509\) 8.26567e6 1.41411 0.707056 0.707158i \(-0.250023\pi\)
0.707056 + 0.707158i \(0.250023\pi\)
\(510\) 0 0
\(511\) 7.42209e6 1.25740
\(512\) − 4.43192e6i − 0.747165i
\(513\) − 3.86710e6i − 0.648772i
\(514\) −1.86034e6 −0.310588
\(515\) 0 0
\(516\) −4.59092e6 −0.759059
\(517\) 1.30157e7i 2.14161i
\(518\) 6.68920e6i 1.09534i
\(519\) −5.46841e6 −0.891133
\(520\) 0 0
\(521\) 7.91723e6 1.27785 0.638924 0.769270i \(-0.279380\pi\)
0.638924 + 0.769270i \(0.279380\pi\)
\(522\) 2.98065e6i 0.478779i
\(523\) − 6.02805e6i − 0.963657i −0.876265 0.481829i \(-0.839973\pi\)
0.876265 0.481829i \(-0.160027\pi\)
\(524\) 1.32479e6 0.210776
\(525\) 0 0
\(526\) 519307. 0.0818389
\(527\) − 7.85937e6i − 1.23271i
\(528\) − 5.82041e6i − 0.908592i
\(529\) 6.34293e6 0.985486
\(530\) 0 0
\(531\) −6.11132e6 −0.940587
\(532\) 3.66767e6i 0.561838i
\(533\) − 2.43874e6i − 0.371833i
\(534\) −1.06805e7 −1.62083
\(535\) 0 0
\(536\) 5.96788e6 0.897239
\(537\) 6.31750e6i 0.945388i
\(538\) 9.48917e6i 1.41342i
\(539\) −699205. −0.103665
\(540\) 0 0
\(541\) 9.65945e6 1.41892 0.709462 0.704744i \(-0.248938\pi\)
0.709462 + 0.704744i \(0.248938\pi\)
\(542\) 2.57954e6i 0.377176i
\(543\) 4.80833e6i 0.699834i
\(544\) 8.65067e6 1.25329
\(545\) 0 0
\(546\) 1.82225e6 0.261593
\(547\) − 1.23221e7i − 1.76083i −0.474203 0.880415i \(-0.657264\pi\)
0.474203 0.880415i \(-0.342736\pi\)
\(548\) − 4.07726e6i − 0.579985i
\(549\) −688537. −0.0974981
\(550\) 0 0
\(551\) −9.78009e6 −1.37235
\(552\) 1.19106e6i 0.166374i
\(553\) 5.45270e6i 0.758226i
\(554\) −292567. −0.0404997
\(555\) 0 0
\(556\) 2.90338e6 0.398307
\(557\) 6.45087e6i 0.881009i 0.897750 + 0.440504i \(0.145200\pi\)
−0.897750 + 0.440504i \(0.854800\pi\)
\(558\) − 2.69286e6i − 0.366124i
\(559\) −2.89559e6 −0.391929
\(560\) 0 0
\(561\) 2.72133e7 3.65068
\(562\) 341602.i 0.0456226i
\(563\) − 5.38104e6i − 0.715476i −0.933822 0.357738i \(-0.883548\pi\)
0.933822 0.357738i \(-0.116452\pi\)
\(564\) −4.91661e6 −0.650831
\(565\) 0 0
\(566\) −3.49209e6 −0.458189
\(567\) − 9.15665e6i − 1.19613i
\(568\) − 2.85025e6i − 0.370691i
\(569\) 1.19810e6 0.155136 0.0775680 0.996987i \(-0.475285\pi\)
0.0775680 + 0.996987i \(0.475285\pi\)
\(570\) 0 0
\(571\) −5.65494e6 −0.725834 −0.362917 0.931821i \(-0.618219\pi\)
−0.362917 + 0.931821i \(0.618219\pi\)
\(572\) 1.61343e6i 0.206187i
\(573\) − 4.15739e6i − 0.528973i
\(574\) −7.81566e6 −0.990116
\(575\) 0 0
\(576\) 4.98643e6 0.626229
\(577\) 5.03350e6i 0.629405i 0.949190 + 0.314703i \(0.101905\pi\)
−0.949190 + 0.314703i \(0.898095\pi\)
\(578\) − 9.87661e6i − 1.22967i
\(579\) 8.16823e6 1.01259
\(580\) 0 0
\(581\) −1.05469e7 −1.29623
\(582\) 8.04451e6i 0.984446i
\(583\) − 8.46823e6i − 1.03186i
\(584\) 1.15503e7 1.40139
\(585\) 0 0
\(586\) −9.98641e6 −1.20134
\(587\) − 7.95091e6i − 0.952405i −0.879336 0.476203i \(-0.842013\pi\)
0.879336 0.476203i \(-0.157987\pi\)
\(588\) − 264122.i − 0.0315036i
\(589\) 8.83580e6 1.04944
\(590\) 0 0
\(591\) 9.29556e6 1.09473
\(592\) 5.09046e6i 0.596971i
\(593\) − 3.79733e6i − 0.443447i −0.975110 0.221724i \(-0.928832\pi\)
0.975110 0.221724i \(-0.0711683\pi\)
\(594\) −5.45188e6 −0.633986
\(595\) 0 0
\(596\) 2.59984e6 0.299800
\(597\) 1.30467e7i 1.49818i
\(598\) 222416.i 0.0254339i
\(599\) −1.28647e7 −1.46498 −0.732489 0.680779i \(-0.761641\pi\)
−0.732489 + 0.680779i \(0.761641\pi\)
\(600\) 0 0
\(601\) 5.01991e6 0.566904 0.283452 0.958986i \(-0.408520\pi\)
0.283452 + 0.958986i \(0.408520\pi\)
\(602\) 9.27977e6i 1.04363i
\(603\) 4.67510e6i 0.523597i
\(604\) −726929. −0.0810773
\(605\) 0 0
\(606\) −1.00366e7 −1.11021
\(607\) − 1.26908e7i − 1.39803i −0.715105 0.699017i \(-0.753621\pi\)
0.715105 0.699017i \(-0.246379\pi\)
\(608\) 9.72541e6i 1.06696i
\(609\) −1.13043e7 −1.23509
\(610\) 0 0
\(611\) −3.10101e6 −0.336047
\(612\) 3.97712e6i 0.429230i
\(613\) 1.60182e7i 1.72172i 0.508840 + 0.860861i \(0.330075\pi\)
−0.508840 + 0.860861i \(0.669925\pi\)
\(614\) 3.46580e6 0.371007
\(615\) 0 0
\(616\) 1.74645e7 1.85441
\(617\) − 4.75362e6i − 0.502703i −0.967896 0.251352i \(-0.919125\pi\)
0.967896 0.251352i \(-0.0808751\pi\)
\(618\) − 9.98374e6i − 1.05153i
\(619\) 1.08346e7 1.13655 0.568274 0.822839i \(-0.307611\pi\)
0.568274 + 0.822839i \(0.307611\pi\)
\(620\) 0 0
\(621\) 545562. 0.0567695
\(622\) − 1.07545e7i − 1.11459i
\(623\) − 1.56716e7i − 1.61768i
\(624\) 1.38673e6 0.142570
\(625\) 0 0
\(626\) 631747. 0.0644329
\(627\) 3.05942e7i 3.10792i
\(628\) 5.20248e6i 0.526395i
\(629\) −2.38004e7 −2.39860
\(630\) 0 0
\(631\) −1.16256e7 −1.16236 −0.581182 0.813774i \(-0.697409\pi\)
−0.581182 + 0.813774i \(0.697409\pi\)
\(632\) 8.48549e6i 0.845054i
\(633\) 1.01241e7i 1.00426i
\(634\) −1.02447e7 −1.01222
\(635\) 0 0
\(636\) 3.19884e6 0.313581
\(637\) − 166587.i − 0.0162665i
\(638\) 1.37881e7i 1.34107i
\(639\) 2.23282e6 0.216323
\(640\) 0 0
\(641\) −1.49693e7 −1.43899 −0.719495 0.694498i \(-0.755627\pi\)
−0.719495 + 0.694498i \(0.755627\pi\)
\(642\) 3.69619e6i 0.353930i
\(643\) 1.67965e6i 0.160210i 0.996786 + 0.0801051i \(0.0255256\pi\)
−0.996786 + 0.0801051i \(0.974474\pi\)
\(644\) −517427. −0.0491625
\(645\) 0 0
\(646\) 1.79770e7 1.69487
\(647\) 6.56503e6i 0.616561i 0.951295 + 0.308281i \(0.0997536\pi\)
−0.951295 + 0.308281i \(0.900246\pi\)
\(648\) − 1.42496e7i − 1.33311i
\(649\) −2.82702e7 −2.63461
\(650\) 0 0
\(651\) 1.02128e7 0.944482
\(652\) − 1.43764e6i − 0.132444i
\(653\) 1.78321e7i 1.63652i 0.574850 + 0.818259i \(0.305060\pi\)
−0.574850 + 0.818259i \(0.694940\pi\)
\(654\) −2.78264e6 −0.254398
\(655\) 0 0
\(656\) −5.94769e6 −0.539621
\(657\) 9.04820e6i 0.817804i
\(658\) 9.93810e6i 0.894826i
\(659\) 1.18216e6 0.106038 0.0530190 0.998594i \(-0.483116\pi\)
0.0530190 + 0.998594i \(0.483116\pi\)
\(660\) 0 0
\(661\) 1.20695e7 1.07445 0.537225 0.843439i \(-0.319472\pi\)
0.537225 + 0.843439i \(0.319472\pi\)
\(662\) 1.10089e7i 0.976334i
\(663\) 6.48362e6i 0.572841i
\(664\) −1.64130e7 −1.44467
\(665\) 0 0
\(666\) −8.15475e6 −0.712402
\(667\) − 1.37975e6i − 0.120084i
\(668\) − 5.00077e6i − 0.433606i
\(669\) −1.94313e6 −0.167856
\(670\) 0 0
\(671\) −3.18508e6 −0.273095
\(672\) 1.12411e7i 0.960251i
\(673\) − 1.89473e7i − 1.61254i −0.591548 0.806270i \(-0.701483\pi\)
0.591548 0.806270i \(-0.298517\pi\)
\(674\) −1.02676e7 −0.870600
\(675\) 0 0
\(676\) −384404. −0.0323535
\(677\) 817954.i 0.0685894i 0.999412 + 0.0342947i \(0.0109185\pi\)
−0.999412 + 0.0342947i \(0.989082\pi\)
\(678\) − 6.34154e6i − 0.529811i
\(679\) −1.18038e7 −0.982530
\(680\) 0 0
\(681\) −7.24163e6 −0.598368
\(682\) − 1.24568e7i − 1.02552i
\(683\) 3.54928e6i 0.291131i 0.989349 + 0.145565i \(0.0465001\pi\)
−0.989349 + 0.145565i \(0.953500\pi\)
\(684\) −4.47123e6 −0.365415
\(685\) 0 0
\(686\) −9.63671e6 −0.781841
\(687\) 1.09495e7i 0.885118i
\(688\) 7.06188e6i 0.568786i
\(689\) 2.01757e6 0.161913
\(690\) 0 0
\(691\) 2.39285e6 0.190643 0.0953214 0.995447i \(-0.469612\pi\)
0.0953214 + 0.995447i \(0.469612\pi\)
\(692\) − 3.69693e6i − 0.293479i
\(693\) 1.36813e7i 1.08217i
\(694\) 1.84205e6 0.145178
\(695\) 0 0
\(696\) −1.75917e7 −1.37653
\(697\) − 2.78084e7i − 2.16817i
\(698\) 1.68446e7i 1.30865i
\(699\) 8.85840e6 0.685744
\(700\) 0 0
\(701\) 1.83475e7 1.41020 0.705101 0.709106i \(-0.250901\pi\)
0.705101 + 0.709106i \(0.250901\pi\)
\(702\) − 1.29892e6i − 0.0994810i
\(703\) − 2.67573e7i − 2.04199i
\(704\) 2.30665e7 1.75409
\(705\) 0 0
\(706\) 8.00762e6 0.604633
\(707\) − 1.47268e7i − 1.10805i
\(708\) − 1.06789e7i − 0.800653i
\(709\) 3.07694e6 0.229881 0.114941 0.993372i \(-0.463332\pi\)
0.114941 + 0.993372i \(0.463332\pi\)
\(710\) 0 0
\(711\) −6.64733e6 −0.493144
\(712\) − 2.43881e7i − 1.80293i
\(713\) 1.24653e6i 0.0918291i
\(714\) 2.07787e7 1.52536
\(715\) 0 0
\(716\) −4.27097e6 −0.311346
\(717\) 2.11158e7i 1.53394i
\(718\) − 2.98466e6i − 0.216064i
\(719\) −1.80795e7 −1.30426 −0.652129 0.758108i \(-0.726124\pi\)
−0.652129 + 0.758108i \(0.726124\pi\)
\(720\) 0 0
\(721\) 1.46492e7 1.04948
\(722\) 9.54855e6i 0.681702i
\(723\) − 1.27817e7i − 0.909373i
\(724\) −3.25069e6 −0.230478
\(725\) 0 0
\(726\) 2.93261e7 2.06497
\(727\) 2.35372e7i 1.65165i 0.563925 + 0.825826i \(0.309291\pi\)
−0.563925 + 0.825826i \(0.690709\pi\)
\(728\) 4.16096e6i 0.290981i
\(729\) 2.52763e6 0.176155
\(730\) 0 0
\(731\) −3.30177e7 −2.28536
\(732\) − 1.20315e6i − 0.0829930i
\(733\) 4.96555e6i 0.341356i 0.985327 + 0.170678i \(0.0545957\pi\)
−0.985327 + 0.170678i \(0.945404\pi\)
\(734\) −9.73130e6 −0.666700
\(735\) 0 0
\(736\) −1.37204e6 −0.0933624
\(737\) 2.16264e7i 1.46661i
\(738\) − 9.52800e6i − 0.643963i
\(739\) 2.40104e7 1.61729 0.808646 0.588296i \(-0.200201\pi\)
0.808646 + 0.588296i \(0.200201\pi\)
\(740\) 0 0
\(741\) −7.28913e6 −0.487675
\(742\) − 6.46591e6i − 0.431141i
\(743\) − 1.15136e7i − 0.765140i −0.923927 0.382570i \(-0.875039\pi\)
0.923927 0.382570i \(-0.124961\pi\)
\(744\) 1.58932e7 1.05264
\(745\) 0 0
\(746\) 3.45351e6 0.227203
\(747\) − 1.28576e7i − 0.843060i
\(748\) 1.83976e7i 1.20228i
\(749\) −5.42345e6 −0.353241
\(750\) 0 0
\(751\) −2.24902e7 −1.45510 −0.727552 0.686052i \(-0.759342\pi\)
−0.727552 + 0.686052i \(0.759342\pi\)
\(752\) 7.56286e6i 0.487688i
\(753\) − 7.69302e6i − 0.494435i
\(754\) −3.28504e6 −0.210432
\(755\) 0 0
\(756\) 3.02180e6 0.192292
\(757\) − 788552.i − 0.0500139i −0.999687 0.0250069i \(-0.992039\pi\)
0.999687 0.0250069i \(-0.00796079\pi\)
\(758\) − 6.22913e6i − 0.393780i
\(759\) −4.31616e6 −0.271952
\(760\) 0 0
\(761\) −5.67255e6 −0.355072 −0.177536 0.984114i \(-0.556813\pi\)
−0.177536 + 0.984114i \(0.556813\pi\)
\(762\) − 2.14772e7i − 1.33995i
\(763\) − 4.08299e6i − 0.253903i
\(764\) 2.81061e6 0.174208
\(765\) 0 0
\(766\) 1.52971e7 0.941970
\(767\) − 6.73543e6i − 0.413406i
\(768\) 2.10274e7i 1.28642i
\(769\) 2.85131e6 0.173872 0.0869358 0.996214i \(-0.472293\pi\)
0.0869358 + 0.996214i \(0.472293\pi\)
\(770\) 0 0
\(771\) 8.60124e6 0.521105
\(772\) 5.52216e6i 0.333477i
\(773\) 1.94976e7i 1.17363i 0.809720 + 0.586817i \(0.199619\pi\)
−0.809720 + 0.586817i \(0.800381\pi\)
\(774\) −1.13129e7 −0.678768
\(775\) 0 0
\(776\) −1.83690e7 −1.09504
\(777\) − 3.09274e7i − 1.83777i
\(778\) 2.40246e7i 1.42301i
\(779\) 3.12632e7 1.84582
\(780\) 0 0
\(781\) 1.03287e7 0.605925
\(782\) 2.53616e6i 0.148306i
\(783\) 8.05784e6i 0.469693i
\(784\) −406279. −0.0236066
\(785\) 0 0
\(786\) 8.43788e6 0.487166
\(787\) − 8.39703e6i − 0.483269i −0.970367 0.241634i \(-0.922317\pi\)
0.970367 0.241634i \(-0.0776835\pi\)
\(788\) 6.28429e6i 0.360529i
\(789\) −2.40100e6 −0.137309
\(790\) 0 0
\(791\) 9.30499e6 0.528779
\(792\) 2.12909e7i 1.20609i
\(793\) − 758851.i − 0.0428523i
\(794\) 1.48014e7 0.833206
\(795\) 0 0
\(796\) −8.82023e6 −0.493398
\(797\) − 1.20402e6i − 0.0671411i −0.999436 0.0335705i \(-0.989312\pi\)
0.999436 0.0335705i \(-0.0106878\pi\)
\(798\) 2.33602e7i 1.29858i
\(799\) −3.53601e7 −1.95951
\(800\) 0 0
\(801\) 1.91051e7 1.05213
\(802\) − 1.93614e7i − 1.06292i
\(803\) 4.18558e7i 2.29069i
\(804\) −8.16926e6 −0.445700
\(805\) 0 0
\(806\) 2.96786e6 0.160918
\(807\) − 4.38729e7i − 2.37144i
\(808\) − 2.29178e7i − 1.23494i
\(809\) −8.10437e6 −0.435360 −0.217680 0.976020i \(-0.569849\pi\)
−0.217680 + 0.976020i \(0.569849\pi\)
\(810\) 0 0
\(811\) −4.53486e6 −0.242109 −0.121055 0.992646i \(-0.538628\pi\)
−0.121055 + 0.992646i \(0.538628\pi\)
\(812\) − 7.64230e6i − 0.406756i
\(813\) − 1.19264e7i − 0.632827i
\(814\) −3.77228e7 −1.99546
\(815\) 0 0
\(816\) 1.58125e7 0.831333
\(817\) − 3.71198e7i − 1.94559i
\(818\) 1.72585e7i 0.901821i
\(819\) −3.25960e6 −0.169807
\(820\) 0 0
\(821\) 1.59739e6 0.0827092 0.0413546 0.999145i \(-0.486833\pi\)
0.0413546 + 0.999145i \(0.486833\pi\)
\(822\) − 2.59689e7i − 1.34052i
\(823\) − 2.00928e7i − 1.03405i −0.855971 0.517024i \(-0.827040\pi\)
0.855971 0.517024i \(-0.172960\pi\)
\(824\) 2.27971e7 1.16967
\(825\) 0 0
\(826\) −2.15856e7 −1.10082
\(827\) 1.57246e7i 0.799498i 0.916625 + 0.399749i \(0.130903\pi\)
−0.916625 + 0.399749i \(0.869097\pi\)
\(828\) − 630791.i − 0.0319749i
\(829\) 2.66412e7 1.34638 0.673190 0.739470i \(-0.264924\pi\)
0.673190 + 0.739470i \(0.264924\pi\)
\(830\) 0 0
\(831\) 1.35268e6 0.0679503
\(832\) 5.49565e6i 0.275240i
\(833\) − 1.89955e6i − 0.0948504i
\(834\) 1.84922e7 0.920607
\(835\) 0 0
\(836\) −2.06833e7 −1.02354
\(837\) − 7.27983e6i − 0.359176i
\(838\) 131017.i 0.00644494i
\(839\) 2.06873e7 1.01461 0.507306 0.861766i \(-0.330641\pi\)
0.507306 + 0.861766i \(0.330641\pi\)
\(840\) 0 0
\(841\) −132454. −0.00645768
\(842\) 5.54253e6i 0.269419i
\(843\) − 1.57939e6i − 0.0765455i
\(844\) −6.84442e6 −0.330735
\(845\) 0 0
\(846\) −1.21155e7 −0.581988
\(847\) 4.30304e7i 2.06095i
\(848\) − 4.92054e6i − 0.234976i
\(849\) 1.61456e7 0.768750
\(850\) 0 0
\(851\) 3.77486e6 0.178681
\(852\) 3.90163e6i 0.184140i
\(853\) 706242.i 0.0332339i 0.999862 + 0.0166169i \(0.00528958\pi\)
−0.999862 + 0.0166169i \(0.994710\pi\)
\(854\) −2.43196e6 −0.114107
\(855\) 0 0
\(856\) −8.43997e6 −0.393692
\(857\) 1.54355e7i 0.717908i 0.933355 + 0.358954i \(0.116867\pi\)
−0.933355 + 0.358954i \(0.883133\pi\)
\(858\) 1.02763e7i 0.476561i
\(859\) −2.09391e7 −0.968222 −0.484111 0.875007i \(-0.660857\pi\)
−0.484111 + 0.875007i \(0.660857\pi\)
\(860\) 0 0
\(861\) 3.61355e7 1.66122
\(862\) − 1.41006e7i − 0.646351i
\(863\) − 1.50017e7i − 0.685665i −0.939397 0.342833i \(-0.888614\pi\)
0.939397 0.342833i \(-0.111386\pi\)
\(864\) 8.01278e6 0.365173
\(865\) 0 0
\(866\) −1.10425e7 −0.500348
\(867\) 4.56642e7i 2.06314i
\(868\) 6.90441e6i 0.311048i
\(869\) −3.07497e7 −1.38131
\(870\) 0 0
\(871\) −5.15253e6 −0.230131
\(872\) − 6.35395e6i − 0.282978i
\(873\) − 1.43898e7i − 0.639029i
\(874\) −2.85124e6 −0.126257
\(875\) 0 0
\(876\) −1.58108e7 −0.696136
\(877\) − 2.64018e7i − 1.15914i −0.814923 0.579569i \(-0.803221\pi\)
0.814923 0.579569i \(-0.196779\pi\)
\(878\) − 4.18989e6i − 0.183428i
\(879\) 4.61719e7 2.01561
\(880\) 0 0
\(881\) −3.15138e7 −1.36792 −0.683960 0.729520i \(-0.739744\pi\)
−0.683960 + 0.729520i \(0.739744\pi\)
\(882\) − 650845.i − 0.0281713i
\(883\) − 1.04657e7i − 0.451718i −0.974160 0.225859i \(-0.927481\pi\)
0.974160 0.225859i \(-0.0725189\pi\)
\(884\) −4.38327e6 −0.188655
\(885\) 0 0
\(886\) 8.53607e6 0.365320
\(887\) − 2.29824e7i − 0.980815i −0.871493 0.490408i \(-0.836848\pi\)
0.871493 0.490408i \(-0.163152\pi\)
\(888\) − 4.81292e7i − 2.04822i
\(889\) 3.15136e7 1.33735
\(890\) 0 0
\(891\) 5.16376e7 2.17907
\(892\) − 1.31366e6i − 0.0552804i
\(893\) − 3.97532e7i − 1.66818i
\(894\) 1.65589e7 0.692928
\(895\) 0 0
\(896\) −456146. −0.0189816
\(897\) − 1.02833e6i − 0.0426730i
\(898\) − 8.54508e6i − 0.353610i
\(899\) −1.84111e7 −0.759766
\(900\) 0 0
\(901\) 2.30059e7 0.944121
\(902\) − 4.40752e7i − 1.80376i
\(903\) − 4.29048e7i − 1.75100i
\(904\) 1.44804e7 0.589332
\(905\) 0 0
\(906\) −4.62996e6 −0.187394
\(907\) 3.45508e7i 1.39457i 0.716795 + 0.697284i \(0.245608\pi\)
−0.716795 + 0.697284i \(0.754392\pi\)
\(908\) − 4.89572e6i − 0.197062i
\(909\) 1.79533e7 0.720666
\(910\) 0 0
\(911\) −2.24713e7 −0.897081 −0.448540 0.893763i \(-0.648056\pi\)
−0.448540 + 0.893763i \(0.648056\pi\)
\(912\) 1.77770e7i 0.707736i
\(913\) − 5.94775e7i − 2.36143i
\(914\) 2.99298e7 1.18506
\(915\) 0 0
\(916\) −7.40242e6 −0.291498
\(917\) 1.23810e7i 0.486218i
\(918\) − 1.48113e7i − 0.580078i
\(919\) −1.60273e7 −0.625995 −0.312997 0.949754i \(-0.601333\pi\)
−0.312997 + 0.949754i \(0.601333\pi\)
\(920\) 0 0
\(921\) −1.60240e7 −0.622476
\(922\) − 1.13492e7i − 0.439680i
\(923\) 2.46084e6i 0.0950779i
\(924\) −2.39067e7 −0.921170
\(925\) 0 0
\(926\) −2.90898e7 −1.11484
\(927\) 1.78587e7i 0.682576i
\(928\) − 2.02647e7i − 0.772451i
\(929\) 2.25541e6 0.0857404 0.0428702 0.999081i \(-0.486350\pi\)
0.0428702 + 0.999081i \(0.486350\pi\)
\(930\) 0 0
\(931\) 2.13555e6 0.0807487
\(932\) 5.98875e6i 0.225838i
\(933\) 4.97231e7i 1.87006i
\(934\) 3.16238e7 1.18617
\(935\) 0 0
\(936\) −5.07259e6 −0.189252
\(937\) − 1.45299e7i − 0.540645i −0.962770 0.270323i \(-0.912870\pi\)
0.962770 0.270323i \(-0.0871304\pi\)
\(938\) 1.65128e7i 0.612792i
\(939\) −2.92087e6 −0.108106
\(940\) 0 0
\(941\) −2.81974e7 −1.03809 −0.519046 0.854746i \(-0.673713\pi\)
−0.519046 + 0.854746i \(0.673713\pi\)
\(942\) 3.31357e7i 1.21666i
\(943\) 4.41055e6i 0.161515i
\(944\) −1.64266e7 −0.599954
\(945\) 0 0
\(946\) −5.23319e7 −1.90125
\(947\) 1.11561e7i 0.404238i 0.979361 + 0.202119i \(0.0647828\pi\)
−0.979361 + 0.202119i \(0.935217\pi\)
\(948\) − 1.16155e7i − 0.419777i
\(949\) −9.97223e6 −0.359440
\(950\) 0 0
\(951\) 4.73659e7 1.69830
\(952\) 4.74465e7i 1.69672i
\(953\) − 2.78329e7i − 0.992719i −0.868117 0.496359i \(-0.834670\pi\)
0.868117 0.496359i \(-0.165330\pi\)
\(954\) 7.88253e6 0.280411
\(955\) 0 0
\(956\) −1.42754e7 −0.505177
\(957\) − 6.37488e7i − 2.25005i
\(958\) 2.64415e7i 0.930833i
\(959\) 3.81043e7 1.33791
\(960\) 0 0
\(961\) −1.19957e7 −0.419004
\(962\) − 8.98753e6i − 0.313114i
\(963\) − 6.61168e6i − 0.229745i
\(964\) 8.64109e6 0.299486
\(965\) 0 0
\(966\) −3.29560e6 −0.113630
\(967\) − 2.30836e7i − 0.793847i −0.917852 0.396924i \(-0.870078\pi\)
0.917852 0.396924i \(-0.129922\pi\)
\(968\) 6.69640e7i 2.29696i
\(969\) −8.31162e7 −2.84365
\(970\) 0 0
\(971\) 1.79497e7 0.610955 0.305477 0.952199i \(-0.401184\pi\)
0.305477 + 0.952199i \(0.401184\pi\)
\(972\) 1.36680e7i 0.464024i
\(973\) 2.71338e7i 0.918815i
\(974\) −7.47657e6 −0.252525
\(975\) 0 0
\(976\) −1.85072e6 −0.0621892
\(977\) 5.63392e7i 1.88832i 0.329494 + 0.944158i \(0.393122\pi\)
−0.329494 + 0.944158i \(0.606878\pi\)
\(978\) − 9.15665e6i − 0.306118i
\(979\) 8.83775e7 2.94703
\(980\) 0 0
\(981\) 4.97754e6 0.165136
\(982\) − 7.14815e6i − 0.236545i
\(983\) − 4.50208e6i − 0.148604i −0.997236 0.0743018i \(-0.976327\pi\)
0.997236 0.0743018i \(-0.0236728\pi\)
\(984\) 5.62341e7 1.85145
\(985\) 0 0
\(986\) −3.74585e7 −1.22704
\(987\) − 4.59486e7i − 1.50134i
\(988\) − 4.92784e6i − 0.160607i
\(989\) 5.23678e6 0.170245
\(990\) 0 0
\(991\) 4.18623e7 1.35406 0.677032 0.735954i \(-0.263266\pi\)
0.677032 + 0.735954i \(0.263266\pi\)
\(992\) 1.83081e7i 0.590697i
\(993\) − 5.08993e7i − 1.63809i
\(994\) 7.88649e6 0.253173
\(995\) 0 0
\(996\) 2.24674e7 0.717635
\(997\) 5.44586e7i 1.73512i 0.497337 + 0.867558i \(0.334311\pi\)
−0.497337 + 0.867558i \(0.665689\pi\)
\(998\) − 3.37062e7i − 1.07123i
\(999\) −2.20454e7 −0.698883
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.13 18
5.2 odd 4 325.6.a.i.1.3 yes 9
5.3 odd 4 325.6.a.h.1.7 9
5.4 even 2 inner 325.6.b.h.274.6 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.7 9 5.3 odd 4
325.6.a.i.1.3 yes 9 5.2 odd 4
325.6.b.h.274.6 18 5.4 even 2 inner
325.6.b.h.274.13 18 1.1 even 1 trivial