Defining parameters
Level: | \( N \) | \(=\) | \( 3264 = 2^{6} \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3264.ft (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 136 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Sturm bound: | \(1152\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4800 | 576 | 4224 |
Cusp forms | 4416 | 576 | 3840 |
Eisenstein series | 384 | 0 | 384 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3264, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3264, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(544, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1632, [\chi])\)\(^{\oplus 2}\)