Properties

Label 3264.2.ft
Level $3264$
Weight $2$
Character orbit 3264.ft
Rep. character $\chi_{3264}(31,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $576$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.ft (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3264, [\chi])\).

Total New Old
Modular forms 4800 576 4224
Cusp forms 4416 576 3840
Eisenstein series 384 0 384

Trace form

\( 576 q + 192 q^{65} - 192 q^{73}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3264, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3264, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(544, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1632, [\chi])\)\(^{\oplus 2}\)