Properties

Label 3264.2.fw
Level $3264$
Weight $2$
Character orbit 3264.fw
Rep. character $\chi_{3264}(35,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $4096$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.fw (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 192 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3264, [\chi])\).

Total New Old
Modular forms 4640 4096 544
Cusp forms 4576 4096 480
Eisenstein series 64 0 64

Trace form

\( 4096 q + 80 q^{30} + 80 q^{36} + 128 q^{55} - 288 q^{58} - 96 q^{64} + 256 q^{67} - 192 q^{70} - 48 q^{78} - 160 q^{82} - 224 q^{84} - 160 q^{88} - 288 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3264, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3264, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)