Defining parameters
Level: | \( N \) | \(=\) | \( 3264 = 2^{6} \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3264.l (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 136 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 600 | 72 | 528 |
Cusp forms | 552 | 72 | 480 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3264, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
3264.2.l.a | $4$ | $26.063$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q-q^{3}-\beta_{2} q^{5}+q^{9}-4 q^{11}+\beta_{2} q^{15}+\cdots\) |
3264.2.l.b | $4$ | $26.063$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+q^{3}-\beta_{2} q^{5}+q^{9}+4 q^{11}-\beta_{2} q^{15}+\cdots\) |
3264.2.l.c | $8$ | $26.063$ | 8.0.303595776.1 | None | \(0\) | \(-8\) | \(0\) | \(0\) | \(q-q^{3}+\beta _{2}q^{5}+(\beta _{1}+\beta _{6})q^{7}+q^{9}+\cdots\) |
3264.2.l.d | $8$ | $26.063$ | 8.0.303595776.1 | None | \(0\) | \(8\) | \(0\) | \(0\) | \(q+q^{3}+\beta _{2}q^{5}+(-\beta _{1}-\beta _{6})q^{7}+q^{9}+\cdots\) |
3264.2.l.e | $24$ | $26.063$ | None | \(0\) | \(-24\) | \(0\) | \(0\) | ||
3264.2.l.f | $24$ | $26.063$ | None | \(0\) | \(24\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(3264, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(544, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1632, [\chi])\)\(^{\oplus 2}\)