Properties

Label 3267.1.l.a.2998.3
Level 32673267
Weight 11
Character 3267.2998
Analytic conductor 1.6301.630
Analytic rank 00
Dimension 1616
Projective image D12D_{12}
CM discriminant -3
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,1,Mod(838,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.838");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3267=33112 3267 = 3^{3} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3267.l (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.630445396271.63044539627
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 16.0.6879707136000000000000.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x14+15x1256x10+209x856x6+15x44x2+1 x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D12D_{12}
Projective field: Galois closure of Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)

Embedding invariants

Embedding label 2998.3
Root 0.4923030.159959i0.492303 - 0.159959i of defining polynomial
Character χ\chi == 3267.2998
Dual form 3267.1.l.a.838.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.809017+0.587785i)q4+(0.304260+0.418778i)q7+(1.837300.596975i)q13+(0.3090170.951057i)q16+(0.831254+1.14412i)q19+(0.809017+0.587785i)q25+(0.4923030.159959i)q28+(0.5352331.64728i)q31+1.41421iq43+(0.2262160.696222i)q49+(1.13551+1.56290i)q52+(1.34500+0.437016i)q61+(0.309017+0.951057i)q64+1.73205q67+(1.13551+1.56290i)q731.41421iq76+(1.83730+0.596975i)q79+(0.809017+0.587785i)q91+(0.309017+0.951057i)q97+O(q100)q+(-0.809017 + 0.587785i) q^{4} +(0.304260 + 0.418778i) q^{7} +(1.83730 - 0.596975i) q^{13} +(0.309017 - 0.951057i) q^{16} +(-0.831254 + 1.14412i) q^{19} +(0.809017 + 0.587785i) q^{25} +(-0.492303 - 0.159959i) q^{28} +(-0.535233 - 1.64728i) q^{31} +1.41421i q^{43} +(0.226216 - 0.696222i) q^{49} +(-1.13551 + 1.56290i) q^{52} +(1.34500 + 0.437016i) q^{61} +(0.309017 + 0.951057i) q^{64} +1.73205 q^{67} +(1.13551 + 1.56290i) q^{73} -1.41421i q^{76} +(-1.83730 + 0.596975i) q^{79} +(0.809017 + 0.587785i) q^{91} +(0.309017 + 0.951057i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q44q16+4q25+4q494q64+4q914q97+O(q100) 16 q - 4 q^{4} - 4 q^{16} + 4 q^{25} + 4 q^{49} - 4 q^{64} + 4 q^{91} - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3267Z)×\left(\mathbb{Z}/3267\mathbb{Z}\right)^\times.

nn 244244 30263026
χ(n)\chi(n) e(910)e\left(\frac{9}{10}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
33 0 0
44 −0.809017 + 0.587785i −0.809017 + 0.587785i
55 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
66 0 0
77 0.304260 + 0.418778i 0.304260 + 0.418778i 0.933580 0.358368i 0.116667π-0.116667\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
88 0 0
99 0 0
1010 0 0
1111 0 0
1212 0 0
1313 1.83730 0.596975i 1.83730 0.596975i 0.838671 0.544639i 0.183333π-0.183333\pi
0.998630 0.0523360i 0.0166667π-0.0166667\pi
1414 0 0
1515 0 0
1616 0.309017 0.951057i 0.309017 0.951057i
1717 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1818 0 0
1919 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 0.809017 + 0.587785i 0.809017 + 0.587785i
2626 0 0
2727 0 0
2828 −0.492303 0.159959i −0.492303 0.159959i
2929 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
3030 0 0
3131 −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i 0.766667π-0.766667\pi
0.207912 0.978148i 0.433333π-0.433333\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4242 0 0
4343 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
4848 0 0
4949 0.226216 0.696222i 0.226216 0.696222i
5050 0 0
5151 0 0
5252 −1.13551 + 1.56290i −1.13551 + 1.56290i
5353 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
6060 0 0
6161 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
6262 0 0
6363 0 0
6464 0.309017 + 0.951057i 0.309017 + 0.951057i
6565 0 0
6666 0 0
6767 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
7272 0 0
7373 1.13551 + 1.56290i 1.13551 + 1.56290i 0.777146 + 0.629320i 0.216667π0.216667\pi
0.358368 + 0.933580i 0.383333π0.383333\pi
7474 0 0
7575 0 0
7676 1.41421i 1.41421i
7777 0 0
7878 0 0
7979 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0.809017 + 0.587785i 0.809017 + 0.587785i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
9898 0 0
9999 0 0
100100 −1.00000 −1.00000
101101 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
102102 0 0
103103 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
108108 0 0
109109 1.93185i 1.93185i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
110110 0 0
111111 0 0
112112 0.492303 0.159959i 0.492303 0.159959i
113113 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 1.40126 + 1.01807i 1.40126 + 1.01807i
125125 0 0
126126 0 0
127127 0.492303 + 0.159959i 0.492303 + 0.159959i 0.544639 0.838671i 0.316667π-0.316667\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 −0.732051 −0.732051
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
138138 0 0
139139 −0.304260 0.418778i −0.304260 0.418778i 0.629320 0.777146i 0.283333π-0.283333\pi
−0.933580 + 0.358368i 0.883333π0.883333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
150150 0 0
151151 0.304260 0.418778i 0.304260 0.418778i −0.629320 0.777146i 0.716667π-0.716667\pi
0.933580 + 0.358368i 0.116667π0.116667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −1.40126 1.01807i −1.40126 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
−0.406737 0.913545i 0.633333π-0.633333\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
168168 0 0
169169 2.21028 1.60586i 2.21028 1.60586i
170170 0 0
171171 0 0
172172 −0.831254 1.14412i −0.831254 1.14412i
173173 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
174174 0 0
175175 0.517638i 0.517638i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
180180 0 0
181181 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
192192 0 0
193193 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
194194 0 0
195195 0 0
196196 0.226216 + 0.696222i 0.226216 + 0.696222i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.93185i 1.93185i
209209 0 0
210210 0 0
211211 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i 0.350000π-0.350000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0.526994 0.725345i 0.526994 0.725345i
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
228228 0 0
229229 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
240240 0 0
241241 0.517638i 0.517638i −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
242242 0 0
243243 0 0
244244 −1.34500 + 0.437016i −1.34500 + 0.437016i
245245 0 0
246246 0 0
247247 −0.844250 + 2.59833i −0.844250 + 2.59833i
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.809017 0.587785i −0.809017 0.587785i
257257 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −1.40126 + 1.01807i −1.40126 + 1.01807i
269269 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
270270 0 0
271271 −1.13551 1.56290i −1.13551 1.56290i −0.777146 0.629320i 0.783333π-0.783333\pi
−0.358368 0.933580i 0.616667π-0.616667\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −0.492303 + 0.159959i −0.492303 + 0.159959i −0.544639 0.838671i 0.683333π-0.683333\pi
0.0523360 + 0.998630i 0.483333π0.483333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
282282 0 0
283283 1.13551 1.56290i 1.13551 1.56290i 0.358368 0.933580i 0.383333π-0.383333\pi
0.777146 0.629320i 0.216667π-0.216667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.809017 0.587785i −0.809017 0.587785i
290290 0 0
291291 0 0
292292 −1.83730 0.596975i −1.83730 0.596975i
293293 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −0.592242 + 0.430289i −0.592242 + 0.430289i
302302 0 0
303303 0 0
304304 0.831254 + 1.14412i 0.831254 + 1.14412i
305305 0 0
306306 0 0
307307 0.517638i 0.517638i −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
312312 0 0
313313 −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i 0.433333π0.433333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
314314 0 0
315315 0 0
316316 1.13551 1.56290i 1.13551 1.56290i
317317 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 1.83730 + 0.596975i 1.83730 + 0.596975i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0.852694 0.277057i 0.852694 0.277057i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
348348 0 0
349349 0.831254 1.14412i 0.831254 1.14412i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
360360 0 0
361361 −0.309017 0.951057i −0.309017 0.951057i
362362 0 0
363363 0 0
364364 −1.00000 −1.00000
365365 0 0
366366 0 0
367367 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 1.93185i 1.93185i −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 0.965926i 0.416667π-0.416667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 −0.809017 0.587785i −0.809017 0.587785i
389389 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 0 0
400400 0.809017 0.587785i 0.809017 0.587785i
401401 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
402402 0 0
403403 −1.96677 2.70702i −1.96677 2.70702i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
410410 0 0
411411 0 0
412412 0.309017 0.951057i 0.309017 0.951057i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −1.40126 1.01807i −1.40126 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
−0.406737 0.913545i 0.633333π-0.633333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0.226216 + 0.696222i 0.226216 + 0.696222i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
432432 0 0
433433 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
434434 0 0
435435 0 0
436436 −1.13551 1.56290i −1.13551 1.56290i
437437 0 0
438438 0 0
439439 0.517638i 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.304260 + 0.418778i −0.304260 + 0.418778i
449449 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
468468 0 0
469469 0.526994 + 0.725345i 0.526994 + 0.725345i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −1.34500 + 0.437016i −1.34500 + 0.437016i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −1.73205 −1.73205
497497 0 0
498498 0 0
499499 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i 0.366667π-0.366667\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 −0.492303 + 0.159959i −0.492303 + 0.159959i
509509 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
510510 0 0
511511 −0.309017 + 0.951057i −0.309017 + 0.951057i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
522522 0 0
523523 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0.592242 0.430289i 0.592242 0.430289i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.492303 0.159959i 0.492303 0.159959i −0.0523360 0.998630i 0.516667π-0.516667\pi
0.544639 + 0.838671i 0.316667π0.316667\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 1.13551 1.56290i 1.13551 1.56290i 0.358368 0.933580i 0.383333π-0.383333\pi
0.777146 0.629320i 0.216667π-0.216667\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 −0.809017 0.587785i −0.809017 0.587785i
554554 0 0
555555 0 0
556556 0.492303 + 0.159959i 0.492303 + 0.159959i
557557 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
558558 0 0
559559 0.844250 + 2.59833i 0.844250 + 2.59833i
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
570570 0 0
571571 1.93185i 1.93185i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
588588 0 0
589589 2.32960 + 0.756934i 2.32960 + 0.756934i
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
600600 0 0
601601 1.13551 + 1.56290i 1.13551 + 1.56290i 0.777146 + 0.629320i 0.216667π0.216667\pi
0.358368 + 0.933580i 0.383333π0.383333\pi
602602 0 0
603603 0 0
604604 0.517638i 0.517638i
605605 0 0
606606 0 0
607607 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0.304260 0.418778i 0.304260 0.418778i −0.629320 0.777146i 0.716667π-0.716667\pi
0.933580 + 0.358368i 0.116667π0.116667\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.309017 + 0.951057i 0.309017 + 0.951057i
626626 0 0
627627 0 0
628628 1.73205 1.73205
629629 0 0
630630 0 0
631631 −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i 0.633333π0.633333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 1.41421i 1.41421i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
642642 0 0
643643 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0.809017 + 0.587785i 0.809017 + 0.587785i
653653 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.492303 0.159959i 0.492303 0.159959i −0.0523360 0.998630i 0.516667π-0.516667\pi
0.544639 + 0.838671i 0.316667π0.316667\pi
674674 0 0
675675 0 0
676676 −0.844250 + 2.59833i −0.844250 + 2.59833i
677677 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
678678 0 0
679679 −0.304260 + 0.418778i −0.304260 + 0.418778i
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 1.34500 + 0.437016i 1.34500 + 0.437016i
689689 0 0
690690 0 0
691691 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −0.304260 0.418778i −0.304260 0.418778i
701701 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i 0.566667π-0.566667\pi
0.743145 0.669131i 0.233333π-0.233333\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
720720 0 0
721721 −0.492303 0.159959i −0.492303 0.159959i
722722 0 0
723723 0 0
724724 0.309017 + 0.951057i 0.309017 + 0.951057i
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i 0.950000π-0.950000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i 0.766667π-0.766667\pi
0.207912 0.978148i 0.433333π-0.433333\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
762762 0 0
763763 −0.809017 + 0.587785i −0.809017 + 0.587785i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0.517638i 0.517638i −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
770770 0 0
771771 0 0
772772 1.34500 0.437016i 1.34500 0.437016i
773773 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
774774 0 0
775775 0.535233 1.64728i 0.535233 1.64728i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.592242 0.430289i −0.592242 0.430289i
785785 0 0
786786 0 0
787787 −0.492303 0.159959i −0.492303 0.159959i 0.0523360 0.998630i 0.483333π-0.483333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 2.73205 2.73205
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
810810 0 0
811811 −1.13551 + 1.56290i −1.13551 + 1.56290i −0.358368 + 0.933580i 0.616667π0.616667\pi
−0.777146 + 0.629320i 0.783333π0.783333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −1.61803 1.17557i −1.61803 1.17557i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
822822 0 0
823823 −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
828828 0 0
829829 1.61803 1.17557i 1.61803 1.17557i 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
830830 0 0
831831 0 0
832832 1.13551 + 1.56290i 1.13551 + 1.56290i
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
840840 0 0
841841 0.309017 0.951057i 0.309017 0.951057i
842842 0 0
843843 0 0
844844 −0.831254 + 1.14412i −0.831254 + 1.14412i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −0.492303 0.159959i −0.492303 0.159959i 0.0523360 0.998630i 0.483333π-0.483333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0.896575i 0.896575i
869869 0 0
870870 0 0
871871 3.18230 1.03399i 3.18230 1.03399i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 −1.40126 1.01807i −1.40126 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
−0.406737 0.913545i 0.633333π-0.633333\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
888888 0 0
889889 0.0828009 + 0.254835i 0.0828009 + 0.254835i
890890 0 0
891891 0 0
892892 1.00000 1.00000
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −1.83730 0.596975i −1.83730 0.596975i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.838671 0.544639i 0.816667π-0.816667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
930930 0 0
931931 0.608520 + 0.837556i 0.608520 + 0.837556i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 1.83730 0.596975i 1.83730 0.596975i 0.838671 0.544639i 0.183333π-0.183333\pi
0.998630 0.0523360i 0.0166667π-0.0166667\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 3.01929 + 2.19364i 3.01929 + 2.19364i
950950 0 0
951951 0 0
952952 0 0
953953 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.61803 + 1.17557i −1.61803 + 1.17557i
962962 0 0
963963 0 0
964964 0.304260 + 0.418778i 0.304260 + 0.418778i
965965 0 0
966966 0 0
967967 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
972972 0 0
973973 0.0828009 0.254835i 0.0828009 0.254835i
974974 0 0
975975 0 0
976976 0.831254 1.14412i 0.831254 1.14412i
977977 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 −0.844250 2.59833i −0.844250 2.59833i
989989 0 0
990990 0 0
991991 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.304260 0.418778i −0.304260 0.418778i 0.629320 0.777146i 0.283333π-0.283333\pi
−0.933580 + 0.358368i 0.883333π0.883333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.1.l.a.2998.3 16
3.2 odd 2 CM 3267.1.l.a.2998.3 16
11.2 odd 10 inner 3267.1.l.a.838.3 16
11.3 even 5 3267.1.c.a.2782.2 4
11.4 even 5 inner 3267.1.l.a.2296.2 16
11.5 even 5 inner 3267.1.l.a.2944.3 16
11.6 odd 10 inner 3267.1.l.a.2944.2 16
11.7 odd 10 inner 3267.1.l.a.2296.3 16
11.8 odd 10 3267.1.c.a.2782.3 yes 4
11.9 even 5 inner 3267.1.l.a.838.2 16
11.10 odd 2 inner 3267.1.l.a.2998.2 16
33.2 even 10 inner 3267.1.l.a.838.3 16
33.5 odd 10 inner 3267.1.l.a.2944.3 16
33.8 even 10 3267.1.c.a.2782.3 yes 4
33.14 odd 10 3267.1.c.a.2782.2 4
33.17 even 10 inner 3267.1.l.a.2944.2 16
33.20 odd 10 inner 3267.1.l.a.838.2 16
33.26 odd 10 inner 3267.1.l.a.2296.2 16
33.29 even 10 inner 3267.1.l.a.2296.3 16
33.32 even 2 inner 3267.1.l.a.2998.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3267.1.c.a.2782.2 4 11.3 even 5
3267.1.c.a.2782.2 4 33.14 odd 10
3267.1.c.a.2782.3 yes 4 11.8 odd 10
3267.1.c.a.2782.3 yes 4 33.8 even 10
3267.1.l.a.838.2 16 11.9 even 5 inner
3267.1.l.a.838.2 16 33.20 odd 10 inner
3267.1.l.a.838.3 16 11.2 odd 10 inner
3267.1.l.a.838.3 16 33.2 even 10 inner
3267.1.l.a.2296.2 16 11.4 even 5 inner
3267.1.l.a.2296.2 16 33.26 odd 10 inner
3267.1.l.a.2296.3 16 11.7 odd 10 inner
3267.1.l.a.2296.3 16 33.29 even 10 inner
3267.1.l.a.2944.2 16 11.6 odd 10 inner
3267.1.l.a.2944.2 16 33.17 even 10 inner
3267.1.l.a.2944.3 16 11.5 even 5 inner
3267.1.l.a.2944.3 16 33.5 odd 10 inner
3267.1.l.a.2998.2 16 11.10 odd 2 inner
3267.1.l.a.2998.2 16 33.32 even 2 inner
3267.1.l.a.2998.3 16 1.1 even 1 trivial
3267.1.l.a.2998.3 16 3.2 odd 2 CM