Properties

Label 3267.1.w.a.1909.1
Level 32673267
Weight 11
Character 3267.1909
Analytic conductor 1.6301.630
Analytic rank 00
Dimension 88
Projective image D3D_{3}
CM discriminant -11
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,1,Mod(118,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.118");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3267=33112 3267 = 3^{3} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3267.w (of order 3030, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.630445396271.63044539627
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 99)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.891.1
Artin image: S3×C30S_3\times C_{30}
Artin field: Galois closure of Q[x]/(x60)\mathbb{Q}[x]/(x^{60} - \cdots)

Embedding invariants

Embedding label 1909.1
Root 0.978148+0.207912i-0.978148 + 0.207912i of defining polynomial
Character χ\chi == 3267.1909
Dual form 3267.1.w.a.1927.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.913545+0.406737i)q4+(0.978148+0.207912i)q5+(0.669131+0.743145i)q16+(0.9781480.207912i)q20+(1.00000+1.73205i)q23+(0.669131+0.743145i)q31+(0.8090170.587785i)q37+(0.9135450.406737i)q47+(0.978148+0.207912i)q49+(0.309017+0.951057i)q53+(0.913545+0.406737i)q59+(0.309017+0.951057i)q64+(0.500000+0.866025i)q67+(0.3090170.951057i)q71+(0.8090170.587785i)q802.00000q89+(0.209057+1.98904i)q92+(0.978148+0.207912i)q97+O(q100)q+(0.913545 + 0.406737i) q^{4} +(-0.978148 + 0.207912i) q^{5} +(0.669131 + 0.743145i) q^{16} +(-0.978148 - 0.207912i) q^{20} +(1.00000 + 1.73205i) q^{23} +(-0.669131 + 0.743145i) q^{31} +(0.809017 - 0.587785i) q^{37} +(0.913545 - 0.406737i) q^{47} +(-0.978148 + 0.207912i) q^{49} +(0.309017 + 0.951057i) q^{53} +(0.913545 + 0.406737i) q^{59} +(0.309017 + 0.951057i) q^{64} +(0.500000 + 0.866025i) q^{67} +(0.309017 - 0.951057i) q^{71} +(-0.809017 - 0.587785i) q^{80} -2.00000 q^{89} +(0.209057 + 1.98904i) q^{92} +(0.978148 + 0.207912i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+q4+q5+q16+q20+8q23q31+2q37+q47+q492q53+q592q64+4q672q712q8016q892q92q97+O(q100) 8 q + q^{4} + q^{5} + q^{16} + q^{20} + 8 q^{23} - q^{31} + 2 q^{37} + q^{47} + q^{49} - 2 q^{53} + q^{59} - 2 q^{64} + 4 q^{67} - 2 q^{71} - 2 q^{80} - 16 q^{89} - 2 q^{92} - q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3267Z)×\left(\mathbb{Z}/3267\mathbb{Z}\right)^\times.

nn 244244 30263026
χ(n)\chi(n) e(910)e\left(\frac{9}{10}\right) e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
33 0 0
44 0.913545 + 0.406737i 0.913545 + 0.406737i
55 −0.978148 + 0.207912i −0.978148 + 0.207912i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
66 0 0
77 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
88 0 0
99 0 0
1010 0 0
1111 0 0
1212 0 0
1313 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
1414 0 0
1515 0 0
1616 0.669131 + 0.743145i 0.669131 + 0.743145i
1717 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1818 0 0
1919 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
2020 −0.978148 0.207912i −0.978148 0.207912i
2121 0 0
2222 0 0
2323 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
3030 0 0
3131 −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
4242 0 0
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 0 0
4646 0 0
4747 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i 0.466667π-0.466667\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4848 0 0
4949 −0.978148 + 0.207912i −0.978148 + 0.207912i
5050 0 0
5151 0 0
5252 0 0
5353 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
6060 0 0
6161 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
6262 0 0
6363 0 0
6464 0.309017 + 0.951057i 0.309017 + 0.951057i
6565 0 0
6666 0 0
6767 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0 0
6969 0 0
7070 0 0
7171 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
7272 0 0
7373 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
8080 −0.809017 0.587785i −0.809017 0.587785i
8181 0 0
8282 0 0
8383 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0.209057 + 1.98904i 0.209057 + 1.98904i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
102102 0 0
103103 −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.104528 + 0.994522i −0.104528 + 0.994522i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
114114 0 0
115115 −1.33826 1.48629i −1.33826 1.48629i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 −0.913545 + 0.406737i −0.913545 + 0.406737i
125125 0.809017 0.587785i 0.809017 0.587785i
126126 0 0
127127 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0.669131 + 0.743145i 0.669131 + 0.743145i 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
138138 0 0
139139 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.978148 0.207912i 0.978148 0.207912i
149149 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
150150 0 0
151151 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0.500000 0.866025i 0.500000 0.866025i
156156 0 0
157157 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
168168 0 0
169169 −0.104528 0.994522i −0.104528 0.994522i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
180180 0 0
181181 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
182182 0 0
183183 0 0
184184 0 0
185185 −0.669131 + 0.743145i −0.669131 + 0.743145i
186186 0 0
187187 0 0
188188 1.00000 1.00000
189189 0 0
190190 0 0
191191 −0.104528 0.994522i −0.104528 0.994522i −0.913545 0.406737i 0.866667π-0.866667\pi
0.809017 0.587785i 0.200000π-0.200000\pi
192192 0 0
193193 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
194194 0 0
195195 0 0
196196 −0.978148 0.207912i −0.978148 0.207912i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
212212 −0.104528 + 0.994522i −0.104528 + 0.994522i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.82709 0.813473i 1.82709 0.813473i 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
228228 0 0
229229 1.33826 1.48629i 1.33826 1.48629i 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
234234 0 0
235235 −0.809017 + 0.587785i −0.809017 + 0.587785i
236236 0.669131 + 0.743145i 0.669131 + 0.743145i
237237 0 0
238238 0 0
239239 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
240240 0 0
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0 0
243243 0 0
244244 0 0
245245 0.913545 0.406737i 0.913545 0.406737i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.104528 + 0.994522i −0.104528 + 0.994522i
257257 −1.82709 0.813473i −1.82709 0.813473i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 0.406737i 0.866667π-0.866667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 −0.500000 0.866025i −0.500000 0.866025i
266266 0 0
267267 0 0
268268 0.104528 + 0.994522i 0.104528 + 0.994522i
269269 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
270270 0 0
271271 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
282282 0 0
283283 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
284284 0.669131 0.743145i 0.669131 0.743145i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.809017 0.587785i −0.809017 0.587785i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
294294 0 0
295295 −0.978148 0.207912i −0.978148 0.207912i
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 −0.104528 + 0.994522i −0.104528 + 0.994522i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
312312 0 0
313313 1.33826 + 1.48629i 1.33826 + 1.48629i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
314314 0 0
315315 0 0
316316 0 0
317317 1.95630 + 0.415823i 1.95630 + 0.415823i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
318318 0 0
319319 0 0
320320 −0.500000 0.866025i −0.500000 0.866025i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
332332 0 0
333333 0 0
334334 0 0
335335 −0.669131 0.743145i −0.669131 0.743145i
336336 0 0
337337 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
348348 0 0
349349 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
354354 0 0
355355 −0.104528 + 0.994522i −0.104528 + 0.994522i
356356 −1.82709 0.813473i −1.82709 0.813473i
357357 0 0
358358 0 0
359359 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
360360 0 0
361361 0.309017 + 0.951057i 0.309017 + 0.951057i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
368368 −0.618034 + 1.90211i −0.618034 + 1.90211i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.669131 0.743145i 0.669131 0.743145i −0.309017 0.951057i 0.600000π-0.600000\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0.809017 + 0.587785i 0.809017 + 0.587785i
389389 −0.104528 0.994522i −0.104528 0.994522i −0.913545 0.406737i 0.866667π-0.866667\pi
0.809017 0.587785i 0.200000π-0.200000\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.978148 + 0.207912i −0.978148 + 0.207912i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
410410 0 0
411411 0 0
412412 −0.669131 0.743145i −0.669131 0.743145i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
420420 0 0
421421 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
432432 0 0
433433 −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i 0.466667π-0.466667\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
444444 0 0
445445 1.95630 0.415823i 1.95630 0.415823i
446446 0 0
447447 0 0
448448 0 0
449449 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
450450 0 0
451451 0 0
452452 −0.500000 + 0.866025i −0.500000 + 0.866025i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
458458 0 0
459459 0 0
460460 −0.618034 1.90211i −0.618034 1.90211i
461461 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
464464 0 0
465465 0 0
466466 0 0
467467 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 −1.00000 −1.00000
486486 0 0
487487 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −1.00000 −1.00000
497497 0 0
498498 0 0
499499 −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
500500 0.978148 0.207912i 0.978148 0.207912i
501501 0 0
502502 0 0
503503 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0.209057 1.98904i 0.209057 1.98904i 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 0.994522i 0.466667π-0.466667\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0.978148 + 0.207912i 0.978148 + 0.207912i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
522522 0 0
523523 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.50000 + 2.59808i −1.50000 + 2.59808i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
548548 0.309017 + 0.951057i 0.309017 + 0.951057i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
564564 0 0
565565 −0.104528 0.994522i −0.104528 0.994522i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
570570 0 0
571571 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −0.104528 0.994522i −0.104528 0.994522i −0.913545 0.406737i 0.866667π-0.866667\pi
0.809017 0.587785i 0.200000π-0.200000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0.978148 + 0.207912i 0.978148 + 0.207912i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 1.95630 0.415823i 1.95630 0.415823i 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
600600 0 0
601601 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
618618 0 0
619619 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
620620 0.809017 0.587785i 0.809017 0.587785i
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.669131 + 0.743145i −0.669131 + 0.743145i
626626 0 0
627627 0 0
628628 0.500000 0.866025i 0.500000 0.866025i
629629 0 0
630630 0 0
631631 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −1.82709 + 0.813473i −1.82709 + 0.813473i −0.913545 + 0.406737i 0.866667π0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
642642 0 0
643643 −1.95630 + 0.415823i −1.95630 + 0.415823i −0.978148 + 0.207912i 0.933333π0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0.104528 0.994522i 0.104528 0.994522i
653653 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
674674 0 0
675675 0 0
676676 0.309017 0.951057i 0.309017 0.951057i
677677 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 0 0
685685 −0.809017 0.587785i −0.809017 0.587785i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
710710 0 0
711711 0 0
712712 0 0
713713 −1.95630 0.415823i −1.95630 0.415823i
714714 0 0
715715 0 0
716716 −0.500000 0.866025i −0.500000 0.866025i
717717 0 0
718718 0 0
719719 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −0.669131 + 0.743145i −0.669131 + 0.743145i
725725 0 0
726726 0 0
727727 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
740740 −0.913545 + 0.406737i −0.913545 + 0.406737i
741741 0 0
742742 0 0
743743 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
752752 0.913545 + 0.406737i 0.913545 + 0.406737i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
762762 0 0
763763 0 0
764764 0.309017 0.951057i 0.309017 0.951057i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 0 0
772772 0 0
773773 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.809017 0.587785i −0.809017 0.587785i
785785 0.104528 + 0.994522i 0.104528 + 0.994522i
786786 0 0
787787 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −0.913545 0.406737i −0.913545 0.406737i
797797 −0.978148 + 0.207912i −0.978148 + 0.207912i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
810810 0 0
811811 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0.500000 + 0.866025i 0.500000 + 0.866025i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
822822 0 0
823823 1.33826 1.48629i 1.33826 1.48629i 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
828828 0 0
829829 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −1.82709 + 0.813473i −1.82709 + 0.813473i −0.913545 + 0.406737i 0.866667π0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
840840 0 0
841841 −0.978148 + 0.207912i −0.978148 + 0.207912i
842842 0 0
843843 0 0
844844 0 0
845845 0.309017 + 0.951057i 0.309017 + 0.951057i
846846 0 0
847847 0 0
848848 −0.500000 + 0.866025i −0.500000 + 0.866025i
849849 0 0
850850 0 0
851851 1.82709 + 0.813473i 1.82709 + 0.813473i
852852 0 0
853853 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
878878 0 0
879879 0 0
880880 0 0
881881 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
882882 0 0
883883 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 2.00000 2.00000
893893 0 0
894894 0 0
895895 0.913545 + 0.406737i 0.913545 + 0.406737i
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0.104528 0.994522i 0.104528 0.994522i
906906 0 0
907907 1.33826 + 1.48629i 1.33826 + 1.48629i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
908908 0 0
909909 0 0
910910 0 0
911911 −0.978148 0.207912i −0.978148 0.207912i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.82709 0.813473i 1.82709 0.813473i
917917 0 0
918918 0 0
919919 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.669131 + 0.743145i 0.669131 + 0.743145i 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
938938 0 0
939939 0 0
940940 −0.978148 + 0.207912i −0.978148 + 0.207912i
941941 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
942942 0 0
943943 0 0
944944 0.309017 + 0.951057i 0.309017 + 0.951057i
945945 0 0
946946 0 0
947947 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
954954 0 0
955955 0.309017 + 0.951057i 0.309017 + 0.951057i
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 0 0
969969 0 0
970970 0 0
971971 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −1.33826 + 1.48629i −1.33826 + 1.48629i −0.669131 + 0.743145i 0.733333π0.733333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
978978 0 0
979979 0 0
980980 1.00000 1.00000
981981 0 0
982982 0 0
983983 −0.104528 0.994522i −0.104528 0.994522i −0.913545 0.406737i 0.866667π-0.866667\pi
0.809017 0.587785i 0.200000π-0.200000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 2.00000 2.00000 1.00000 00
1.00000 00
992992 0 0
993993 0 0
994994 0 0
995995 0.978148 0.207912i 0.978148 0.207912i
996996 0 0
997997 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.1.w.a.1909.1 8
3.2 odd 2 1089.1.s.a.457.1 8
9.4 even 3 inner 3267.1.w.a.820.1 8
9.5 odd 6 1089.1.s.a.94.1 8
11.2 odd 10 inner 3267.1.w.a.3016.1 8
11.3 even 5 297.1.h.a.208.1 2
11.4 even 5 inner 3267.1.w.a.1207.1 8
11.5 even 5 inner 3267.1.w.a.1855.1 8
11.6 odd 10 inner 3267.1.w.a.1855.1 8
11.7 odd 10 inner 3267.1.w.a.1207.1 8
11.8 odd 10 297.1.h.a.208.1 2
11.9 even 5 inner 3267.1.w.a.3016.1 8
11.10 odd 2 CM 3267.1.w.a.1909.1 8
33.2 even 10 1089.1.s.a.475.1 8
33.5 odd 10 1089.1.s.a.403.1 8
33.8 even 10 99.1.h.a.43.1 2
33.14 odd 10 99.1.h.a.43.1 2
33.17 even 10 1089.1.s.a.403.1 8
33.20 odd 10 1089.1.s.a.475.1 8
33.26 odd 10 1089.1.s.a.844.1 8
33.29 even 10 1089.1.s.a.844.1 8
33.32 even 2 1089.1.s.a.457.1 8
99.4 even 15 inner 3267.1.w.a.118.1 8
99.5 odd 30 1089.1.s.a.40.1 8
99.13 odd 30 inner 3267.1.w.a.1927.1 8
99.14 odd 30 99.1.h.a.76.1 yes 2
99.25 even 15 891.1.c.b.406.1 1
99.31 even 15 inner 3267.1.w.a.1927.1 8
99.32 even 6 1089.1.s.a.94.1 8
99.40 odd 30 inner 3267.1.w.a.118.1 8
99.41 even 30 99.1.h.a.76.1 yes 2
99.47 odd 30 891.1.c.a.406.1 1
99.49 even 15 inner 3267.1.w.a.766.1 8
99.50 even 30 1089.1.s.a.40.1 8
99.52 odd 30 891.1.c.b.406.1 1
99.58 even 15 297.1.h.a.10.1 2
99.59 odd 30 1089.1.s.a.481.1 8
99.68 even 30 1089.1.s.a.112.1 8
99.74 even 30 891.1.c.a.406.1 1
99.76 odd 6 inner 3267.1.w.a.820.1 8
99.85 odd 30 297.1.h.a.10.1 2
99.86 odd 30 1089.1.s.a.112.1 8
99.94 odd 30 inner 3267.1.w.a.766.1 8
99.95 even 30 1089.1.s.a.481.1 8
132.47 even 10 1584.1.bf.b.241.1 2
132.107 odd 10 1584.1.bf.b.241.1 2
165.8 odd 20 2475.1.t.a.1924.2 4
165.14 odd 10 2475.1.y.a.1726.1 2
165.47 even 20 2475.1.t.a.1924.1 4
165.74 even 10 2475.1.y.a.1726.1 2
165.107 odd 20 2475.1.t.a.1924.1 4
165.113 even 20 2475.1.t.a.1924.2 4
396.239 odd 30 1584.1.bf.b.769.1 2
396.311 even 30 1584.1.bf.b.769.1 2
495.14 odd 30 2475.1.y.a.76.1 2
495.113 even 60 2475.1.t.a.274.1 4
495.212 even 60 2475.1.t.a.274.2 4
495.239 even 30 2475.1.y.a.76.1 2
495.338 odd 60 2475.1.t.a.274.1 4
495.437 odd 60 2475.1.t.a.274.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.1.h.a.43.1 2 33.8 even 10
99.1.h.a.43.1 2 33.14 odd 10
99.1.h.a.76.1 yes 2 99.14 odd 30
99.1.h.a.76.1 yes 2 99.41 even 30
297.1.h.a.10.1 2 99.58 even 15
297.1.h.a.10.1 2 99.85 odd 30
297.1.h.a.208.1 2 11.3 even 5
297.1.h.a.208.1 2 11.8 odd 10
891.1.c.a.406.1 1 99.47 odd 30
891.1.c.a.406.1 1 99.74 even 30
891.1.c.b.406.1 1 99.25 even 15
891.1.c.b.406.1 1 99.52 odd 30
1089.1.s.a.40.1 8 99.5 odd 30
1089.1.s.a.40.1 8 99.50 even 30
1089.1.s.a.94.1 8 9.5 odd 6
1089.1.s.a.94.1 8 99.32 even 6
1089.1.s.a.112.1 8 99.68 even 30
1089.1.s.a.112.1 8 99.86 odd 30
1089.1.s.a.403.1 8 33.5 odd 10
1089.1.s.a.403.1 8 33.17 even 10
1089.1.s.a.457.1 8 3.2 odd 2
1089.1.s.a.457.1 8 33.32 even 2
1089.1.s.a.475.1 8 33.2 even 10
1089.1.s.a.475.1 8 33.20 odd 10
1089.1.s.a.481.1 8 99.59 odd 30
1089.1.s.a.481.1 8 99.95 even 30
1089.1.s.a.844.1 8 33.26 odd 10
1089.1.s.a.844.1 8 33.29 even 10
1584.1.bf.b.241.1 2 132.47 even 10
1584.1.bf.b.241.1 2 132.107 odd 10
1584.1.bf.b.769.1 2 396.239 odd 30
1584.1.bf.b.769.1 2 396.311 even 30
2475.1.t.a.274.1 4 495.113 even 60
2475.1.t.a.274.1 4 495.338 odd 60
2475.1.t.a.274.2 4 495.212 even 60
2475.1.t.a.274.2 4 495.437 odd 60
2475.1.t.a.1924.1 4 165.47 even 20
2475.1.t.a.1924.1 4 165.107 odd 20
2475.1.t.a.1924.2 4 165.8 odd 20
2475.1.t.a.1924.2 4 165.113 even 20
2475.1.y.a.76.1 2 495.14 odd 30
2475.1.y.a.76.1 2 495.239 even 30
2475.1.y.a.1726.1 2 165.14 odd 10
2475.1.y.a.1726.1 2 165.74 even 10
3267.1.w.a.118.1 8 99.4 even 15 inner
3267.1.w.a.118.1 8 99.40 odd 30 inner
3267.1.w.a.766.1 8 99.49 even 15 inner
3267.1.w.a.766.1 8 99.94 odd 30 inner
3267.1.w.a.820.1 8 9.4 even 3 inner
3267.1.w.a.820.1 8 99.76 odd 6 inner
3267.1.w.a.1207.1 8 11.4 even 5 inner
3267.1.w.a.1207.1 8 11.7 odd 10 inner
3267.1.w.a.1855.1 8 11.5 even 5 inner
3267.1.w.a.1855.1 8 11.6 odd 10 inner
3267.1.w.a.1909.1 8 1.1 even 1 trivial
3267.1.w.a.1909.1 8 11.10 odd 2 CM
3267.1.w.a.1927.1 8 99.13 odd 30 inner
3267.1.w.a.1927.1 8 99.31 even 15 inner
3267.1.w.a.3016.1 8 11.2 odd 10 inner
3267.1.w.a.3016.1 8 11.9 even 5 inner