Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3276,2,Mod(1,3276)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3276, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3276.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3276.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(26.1589917022\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{10})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x - 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 1092) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(-0.618034\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3276.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.23607 | 0.552786 | 0.276393 | − | 0.961045i | \(-0.410861\pi\) | ||||
0.276393 | + | 0.961045i | \(0.410861\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000 | 0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.23607 | −0.975711 | −0.487856 | − | 0.872924i | \(-0.662221\pi\) | ||||
−0.487856 | + | 0.872924i | \(0.662221\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.47214 | 0.599581 | 0.299791 | − | 0.954005i | \(-0.403083\pi\) | ||||
0.299791 | + | 0.954005i | \(0.403083\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −6.47214 | −1.48481 | −0.742405 | − | 0.669951i | \(-0.766315\pi\) | ||||
−0.742405 | + | 0.669951i | \(0.766315\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −4.47214 | −0.932505 | −0.466252 | − | 0.884652i | \(-0.654396\pi\) | ||||
−0.466252 | + | 0.884652i | \(0.654396\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −3.47214 | −0.694427 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.47214 | −1.57324 | −0.786618 | − | 0.617440i | \(-0.788170\pi\) | ||||
−0.786618 | + | 0.617440i | \(0.788170\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 1.23607 | 0.208934 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 4.47214 | 0.735215 | 0.367607 | − | 0.929981i | \(-0.380177\pi\) | ||||
0.367607 | + | 0.929981i | \(0.380177\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −5.23607 | −0.817736 | −0.408868 | − | 0.912593i | \(-0.634076\pi\) | ||||
−0.408868 | + | 0.912593i | \(0.634076\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −7.70820 | −1.12436 | −0.562179 | − | 0.827016i | \(-0.690037\pi\) | ||||
−0.562179 | + | 0.827016i | \(0.690037\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −10.0000 | −1.37361 | −0.686803 | − | 0.726844i | \(-0.740986\pi\) | ||||
−0.686803 | + | 0.726844i | \(0.740986\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −4.00000 | −0.539360 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −9.23607 | −1.20243 | −0.601217 | − | 0.799086i | \(-0.705317\pi\) | ||||
−0.601217 | + | 0.799086i | \(0.705317\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 14.9443 | 1.91342 | 0.956709 | − | 0.291046i | \(-0.0940034\pi\) | ||||
0.956709 | + | 0.291046i | \(0.0940034\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 1.23607 | 0.153315 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −2.47214 | −0.302019 | −0.151010 | − | 0.988532i | \(-0.548252\pi\) | ||||
−0.151010 | + | 0.988532i | \(0.548252\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 5.70820 | 0.677439 | 0.338720 | − | 0.940887i | \(-0.390006\pi\) | ||||
0.338720 | + | 0.940887i | \(0.390006\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 4.47214 | 0.523424 | 0.261712 | − | 0.965146i | \(-0.415713\pi\) | ||||
0.261712 | + | 0.965146i | \(0.415713\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −3.23607 | −0.368784 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −10.4721 | −1.17821 | −0.589104 | − | 0.808057i | \(-0.700519\pi\) | ||||
−0.589104 | + | 0.808057i | \(0.700519\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −2.76393 | −0.303381 | −0.151690 | − | 0.988428i | \(-0.548472\pi\) | ||||
−0.151690 | + | 0.988428i | \(0.548472\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 3.05573 | 0.331440 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 10.1803 | 1.07911 | 0.539557 | − | 0.841949i | \(-0.318592\pi\) | ||||
0.539557 | + | 0.841949i | \(0.318592\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 1.00000 | 0.104828 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −8.00000 | −0.820783 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 6.94427 | 0.705084 | 0.352542 | − | 0.935796i | \(-0.385317\pi\) | ||||
0.352542 | + | 0.935796i | \(0.385317\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 8.94427 | 0.889988 | 0.444994 | − | 0.895533i | \(-0.353206\pi\) | ||||
0.444994 | + | 0.895533i | \(0.353206\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −16.9443 | −1.66957 | −0.834784 | − | 0.550577i | \(-0.814408\pi\) | ||||
−0.834784 | + | 0.550577i | \(0.814408\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 3.52786 | 0.341051 | 0.170526 | − | 0.985353i | \(-0.445453\pi\) | ||||
0.170526 | + | 0.985353i | \(0.445453\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 3.52786 | 0.337908 | 0.168954 | − | 0.985624i | \(-0.445961\pi\) | ||||
0.168954 | + | 0.985624i | \(0.445961\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −20.4721 | −1.92586 | −0.962928 | − | 0.269758i | \(-0.913056\pi\) | ||||
−0.962928 | + | 0.269758i | \(0.913056\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −5.52786 | −0.515476 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 2.47214 | 0.226620 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −0.527864 | −0.0479876 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −10.4721 | −0.936656 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −2.47214 | −0.219367 | −0.109683 | − | 0.993967i | \(-0.534984\pi\) | ||||
−0.109683 | + | 0.993967i | \(0.534984\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 1.52786 | 0.133490 | 0.0667451 | − | 0.997770i | \(-0.478739\pi\) | ||||
0.0667451 | + | 0.997770i | \(0.478739\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −6.47214 | −0.561205 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −15.2361 | −1.30171 | −0.650853 | − | 0.759204i | \(-0.725588\pi\) | ||||
−0.650853 | + | 0.759204i | \(0.725588\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 17.8885 | 1.51729 | 0.758643 | − | 0.651506i | \(-0.225863\pi\) | ||||
0.758643 | + | 0.651506i | \(0.225863\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −3.23607 | −0.270614 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −10.4721 | −0.869664 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 12.7639 | 1.04566 | 0.522831 | − | 0.852436i | \(-0.324876\pi\) | ||||
0.522831 | + | 0.852436i | \(0.324876\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −3.05573 | −0.248672 | −0.124336 | − | 0.992240i | \(-0.539680\pi\) | ||||
−0.124336 | + | 0.992240i | \(0.539680\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −18.0000 | −1.43656 | −0.718278 | − | 0.695756i | \(-0.755069\pi\) | ||||
−0.718278 | + | 0.695756i | \(0.755069\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −4.47214 | −0.352454 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −2.47214 | −0.193633 | −0.0968163 | − | 0.995302i | \(-0.530866\pi\) | ||||
−0.0968163 | + | 0.995302i | \(0.530866\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 18.1803 | 1.40684 | 0.703418 | − | 0.710776i | \(-0.251656\pi\) | ||||
0.703418 | + | 0.710776i | \(0.251656\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −12.0000 | −0.912343 | −0.456172 | − | 0.889892i | \(-0.650780\pi\) | ||||
−0.456172 | + | 0.889892i | \(0.650780\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −3.47214 | −0.262469 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 6.94427 | 0.519039 | 0.259520 | − | 0.965738i | \(-0.416436\pi\) | ||||
0.259520 | + | 0.965738i | \(0.416436\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 19.8885 | 1.47830 | 0.739152 | − | 0.673539i | \(-0.235227\pi\) | ||||
0.739152 | + | 0.673539i | \(0.235227\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 5.52786 | 0.406417 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −8.00000 | −0.585018 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 6.94427 | 0.502470 | 0.251235 | − | 0.967926i | \(-0.419163\pi\) | ||||
0.251235 | + | 0.967926i | \(0.419163\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 18.3607 | 1.32163 | 0.660815 | − | 0.750549i | \(-0.270211\pi\) | ||||
0.660815 | + | 0.750549i | \(0.270211\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −0.763932 | −0.0544279 | −0.0272140 | − | 0.999630i | \(-0.508664\pi\) | ||||
−0.0272140 | + | 0.999630i | \(0.508664\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −8.47214 | −0.594627 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −6.47214 | −0.452034 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 20.9443 | 1.44875 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.3607 | 1.40169 | 0.700844 | − | 0.713315i | \(-0.252807\pi\) | ||||
0.700844 | + | 0.713315i | \(0.252807\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 4.94427 | 0.337197 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 2.47214 | 0.166294 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −10.4721 | −0.701266 | −0.350633 | − | 0.936513i | \(-0.614034\pi\) | ||||
−0.350633 | + | 0.936513i | \(0.614034\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 6.76393 | 0.448938 | 0.224469 | − | 0.974481i | \(-0.427935\pi\) | ||||
0.224469 | + | 0.974481i | \(0.427935\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −25.4164 | −1.67956 | −0.839782 | − | 0.542924i | \(-0.817317\pi\) | ||||
−0.839782 | + | 0.542924i | \(0.817317\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −5.41641 | −0.354841 | −0.177420 | − | 0.984135i | \(-0.556775\pi\) | ||||
−0.177420 | + | 0.984135i | \(0.556775\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −9.52786 | −0.621529 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −21.1246 | −1.36644 | −0.683219 | − | 0.730214i | \(-0.739420\pi\) | ||||
−0.683219 | + | 0.730214i | \(0.739420\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −16.4721 | −1.06106 | −0.530532 | − | 0.847665i | \(-0.678008\pi\) | ||||
−0.530532 | + | 0.847665i | \(0.678008\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 1.23607 | 0.0789695 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −6.47214 | −0.411812 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −5.52786 | −0.348916 | −0.174458 | − | 0.984665i | \(-0.555817\pi\) | ||||
−0.174458 | + | 0.984665i | \(0.555817\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 14.4721 | 0.909855 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −26.8328 | −1.67379 | −0.836893 | − | 0.547367i | \(-0.815630\pi\) | ||||
−0.836893 | + | 0.547367i | \(0.815630\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 4.47214 | 0.277885 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0.472136 | 0.0291132 | 0.0145566 | − | 0.999894i | \(-0.495366\pi\) | ||||
0.0145566 | + | 0.999894i | \(0.495366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −12.3607 | −0.759311 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −4.94427 | −0.301458 | −0.150729 | − | 0.988575i | \(-0.548162\pi\) | ||||
−0.150729 | + | 0.988575i | \(0.548162\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −23.4164 | −1.42245 | −0.711223 | − | 0.702967i | \(-0.751858\pi\) | ||||
−0.711223 | + | 0.702967i | \(0.751858\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 11.2361 | 0.677560 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −15.8885 | −0.954650 | −0.477325 | − | 0.878727i | \(-0.658394\pi\) | ||||
−0.477325 | + | 0.878727i | \(0.658394\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 18.6525 | 1.11271 | 0.556357 | − | 0.830944i | \(-0.312199\pi\) | ||||
0.556357 | + | 0.830944i | \(0.312199\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000 | 0.237775 | 0.118888 | − | 0.992908i | \(-0.462067\pi\) | ||||
0.118888 | + | 0.992908i | \(0.462067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −5.23607 | −0.309075 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −10.8885 | −0.640503 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −5.23607 | −0.305894 | −0.152947 | − | 0.988234i | \(-0.548876\pi\) | ||||
−0.152947 | + | 0.988234i | \(0.548876\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −11.4164 | −0.664689 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4.47214 | −0.258630 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 4.00000 | 0.230556 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 18.4721 | 1.05771 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −5.88854 | −0.336077 | −0.168038 | − | 0.985780i | \(-0.553743\pi\) | ||||
−0.168038 | + | 0.985780i | \(0.553743\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 1.52786 | 0.0866372 | 0.0433186 | − | 0.999061i | \(-0.486207\pi\) | ||||
0.0433186 | + | 0.999061i | \(0.486207\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 20.8328 | 1.17754 | 0.588770 | − | 0.808300i | \(-0.299612\pi\) | ||||
0.588770 | + | 0.808300i | \(0.299612\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 28.1803 | 1.58277 | 0.791383 | − | 0.611321i | \(-0.209362\pi\) | ||||
0.791383 | + | 0.611321i | \(0.209362\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 27.4164 | 1.53502 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −16.0000 | −0.890264 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −3.47214 | −0.192599 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −7.70820 | −0.424967 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −34.8328 | −1.91458 | −0.957292 | − | 0.289122i | \(-0.906637\pi\) | ||||
−0.957292 | + | 0.289122i | \(0.906637\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −3.05573 | −0.166952 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −22.3607 | −1.21806 | −0.609032 | − | 0.793146i | \(-0.708442\pi\) | ||||
−0.609032 | + | 0.793146i | \(0.708442\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 1.00000 | 0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −22.0000 | −1.18102 | −0.590511 | − | 0.807030i | \(-0.701074\pi\) | ||||
−0.590511 | + | 0.807030i | \(0.701074\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 1.41641 | 0.0758186 | 0.0379093 | − | 0.999281i | \(-0.487930\pi\) | ||||
0.0379093 | + | 0.999281i | \(0.487930\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 16.6525 | 0.886322 | 0.443161 | − | 0.896442i | \(-0.353857\pi\) | ||||
0.443161 | + | 0.896442i | \(0.353857\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 7.05573 | 0.374479 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −4.18034 | −0.220630 | −0.110315 | − | 0.993897i | \(-0.535186\pi\) | ||||
−0.110315 | + | 0.993897i | \(0.535186\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 22.8885 | 1.20466 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 5.52786 | 0.289342 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −24.9443 | −1.30208 | −0.651040 | − | 0.759043i | \(-0.725667\pi\) | ||||
−0.651040 | + | 0.759043i | \(0.725667\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −10.0000 | −0.519174 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 36.4721 | 1.88846 | 0.944228 | − | 0.329293i | \(-0.106810\pi\) | ||||
0.944228 | + | 0.329293i | \(0.106810\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −8.47214 | −0.436337 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 13.8885 | 0.713407 | 0.356703 | − | 0.934218i | \(-0.383901\pi\) | ||||
0.356703 | + | 0.934218i | \(0.383901\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 1.81966 | 0.0929803 | 0.0464901 | − | 0.998919i | \(-0.485196\pi\) | ||||
0.0464901 | + | 0.998919i | \(0.485196\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −4.00000 | −0.203859 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −14.0000 | −0.709828 | −0.354914 | − | 0.934899i | \(-0.615490\pi\) | ||||
−0.354914 | + | 0.934899i | \(0.615490\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −11.0557 | −0.559112 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −12.9443 | −0.651297 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 35.8885 | 1.80119 | 0.900597 | − | 0.434655i | \(-0.143130\pi\) | ||||
0.900597 | + | 0.434655i | \(0.143130\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 19.2361 | 0.960603 | 0.480302 | − | 0.877103i | \(-0.340527\pi\) | ||||
0.480302 | + | 0.877103i | \(0.340527\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −14.4721 | −0.717357 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −17.0557 | −0.843351 | −0.421676 | − | 0.906747i | \(-0.638558\pi\) | ||||
−0.421676 | + | 0.906747i | \(0.638558\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −9.23607 | −0.454477 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −3.41641 | −0.167705 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 23.4164 | 1.14397 | 0.571983 | − | 0.820265i | \(-0.306174\pi\) | ||||
0.571983 | + | 0.820265i | \(0.306174\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 0.111456 | 0.00543204 | 0.00271602 | − | 0.999996i | \(-0.499135\pi\) | ||||
0.00271602 | + | 0.999996i | \(0.499135\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −8.58359 | −0.416365 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 14.9443 | 0.723204 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −1.70820 | −0.0822813 | −0.0411406 | − | 0.999153i | \(-0.513099\pi\) | ||||
−0.0411406 | + | 0.999153i | \(0.513099\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 22.0000 | 1.05725 | 0.528626 | − | 0.848855i | \(-0.322707\pi\) | ||||
0.528626 | + | 0.848855i | \(0.322707\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 28.9443 | 1.38459 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −15.0557 | −0.718571 | −0.359285 | − | 0.933228i | \(-0.616980\pi\) | ||||
−0.359285 | + | 0.933228i | \(0.616980\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 17.4164 | 0.827479 | 0.413739 | − | 0.910395i | \(-0.364223\pi\) | ||||
0.413739 | + | 0.910395i | \(0.364223\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 12.5836 | 0.596519 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 33.1246 | 1.56325 | 0.781624 | − | 0.623750i | \(-0.214392\pi\) | ||||
0.781624 | + | 0.623750i | \(0.214392\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 16.9443 | 0.797875 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 1.23607 | 0.0579478 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −3.52786 | −0.165027 | −0.0825133 | − | 0.996590i | \(-0.526295\pi\) | ||||
−0.0825133 | + | 0.996590i | \(0.526295\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 16.2918 | 0.758785 | 0.379392 | − | 0.925236i | \(-0.376133\pi\) | ||||
0.379392 | + | 0.925236i | \(0.376133\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −11.4164 | −0.530565 | −0.265283 | − | 0.964171i | \(-0.585465\pi\) | ||||
−0.265283 | + | 0.964171i | \(0.585465\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 2.47214 | 0.114397 | 0.0571984 | − | 0.998363i | \(-0.481783\pi\) | ||||
0.0571984 | + | 0.998363i | \(0.481783\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −2.47214 | −0.114153 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −12.9443 | −0.595178 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 22.4721 | 1.03109 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −28.0689 | −1.28250 | −0.641250 | − | 0.767332i | \(-0.721584\pi\) | ||||
−0.641250 | + | 0.767332i | \(0.721584\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 4.47214 | 0.203912 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 8.58359 | 0.389761 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 30.8328 | 1.39717 | 0.698584 | − | 0.715528i | \(-0.253814\pi\) | ||||
0.698584 | + | 0.715528i | \(0.253814\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −16.4721 | −0.743377 | −0.371689 | − | 0.928357i | \(-0.621221\pi\) | ||||
−0.371689 | + | 0.928357i | \(0.621221\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −20.9443 | −0.943283 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 5.70820 | 0.256048 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 21.8885 | 0.979866 | 0.489933 | − | 0.871760i | \(-0.337021\pi\) | ||||
0.489933 | + | 0.871760i | \(0.337021\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −10.4721 | −0.466929 | −0.233465 | − | 0.972365i | \(-0.575006\pi\) | ||||
−0.233465 | + | 0.972365i | \(0.575006\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 11.0557 | 0.491973 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −21.5967 | −0.957259 | −0.478630 | − | 0.878017i | \(-0.658866\pi\) | ||||
−0.478630 | + | 0.878017i | \(0.658866\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 4.47214 | 0.197836 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −20.9443 | −0.922915 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 24.9443 | 1.09705 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 20.9443 | 0.917585 | 0.458793 | − | 0.888543i | \(-0.348282\pi\) | ||||
0.458793 | + | 0.888543i | \(0.348282\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 33.8885 | 1.48184 | 0.740921 | − | 0.671592i | \(-0.234389\pi\) | ||||
0.740921 | + | 0.671592i | \(0.234389\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −3.00000 | −0.130435 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −5.23607 | −0.226799 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 4.36068 | 0.188529 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −3.23607 | −0.139387 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 6.94427 | 0.298558 | 0.149279 | − | 0.988795i | \(-0.452305\pi\) | ||||
0.149279 | + | 0.988795i | \(0.452305\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 4.36068 | 0.186791 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −19.0557 | −0.814764 | −0.407382 | − | 0.913258i | \(-0.633558\pi\) | ||||
−0.407382 | + | 0.913258i | \(0.633558\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 54.8328 | 2.33596 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −10.4721 | −0.445321 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 28.7639 | 1.21877 | 0.609383 | − | 0.792876i | \(-0.291417\pi\) | ||||
0.609383 | + | 0.792876i | \(0.291417\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 4.00000 | 0.169182 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −19.0557 | −0.803103 | −0.401552 | − | 0.915836i | \(-0.631529\pi\) | ||||
−0.401552 | + | 0.915836i | \(0.631529\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −25.3050 | −1.06459 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 17.4164 | 0.730134 | 0.365067 | − | 0.930981i | \(-0.381046\pi\) | ||||
0.365067 | + | 0.930981i | \(0.381046\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −0.360680 | −0.0150940 | −0.00754699 | − | 0.999972i | \(-0.502402\pi\) | ||||
−0.00754699 | + | 0.999972i | \(0.502402\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 15.5279 | 0.647557 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.9443 | 0.788660 | 0.394330 | − | 0.918969i | \(-0.370977\pi\) | ||||
0.394330 | + | 0.918969i | \(0.370977\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −2.76393 | −0.114667 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 32.3607 | 1.34024 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −21.5967 | −0.891393 | −0.445697 | − | 0.895184i | \(-0.647044\pi\) | ||||
−0.445697 | + | 0.895184i | \(0.647044\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −17.8197 | −0.731766 | −0.365883 | − | 0.930661i | \(-0.619233\pi\) | ||||
−0.365883 | + | 0.930661i | \(0.619233\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 3.05573 | 0.125273 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 27.3050 | 1.11565 | 0.557825 | − | 0.829959i | \(-0.311636\pi\) | ||||
0.557825 | + | 0.829959i | \(0.311636\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 9.05573 | 0.369391 | 0.184695 | − | 0.982796i | \(-0.440870\pi\) | ||||
0.184695 | + | 0.982796i | \(0.440870\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −0.652476 | −0.0265269 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −21.8885 | −0.888429 | −0.444214 | − | 0.895921i | \(-0.646517\pi\) | ||||
−0.444214 | + | 0.895921i | \(0.646517\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −7.70820 | −0.311841 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −29.7771 | −1.20269 | −0.601343 | − | 0.798991i | \(-0.705367\pi\) | ||||
−0.601343 | + | 0.798991i | \(0.705367\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 40.7639 | 1.64109 | 0.820547 | − | 0.571579i | \(-0.193669\pi\) | ||||
0.820547 | + | 0.571579i | \(0.193669\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −37.3050 | −1.49941 | −0.749706 | − | 0.661771i | \(-0.769805\pi\) | ||||
−0.749706 | + | 0.661771i | \(0.769805\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 10.1803 | 0.407867 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 4.41641 | 0.176656 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 11.0557 | 0.440821 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14.4721 | 0.576127 | 0.288063 | − | 0.957611i | \(-0.406989\pi\) | ||||
0.288063 | + | 0.957611i | \(0.406989\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −3.05573 | −0.121263 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 1.00000 | 0.0396214 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −41.7771 | −1.65010 | −0.825048 | − | 0.565063i | \(-0.808852\pi\) | ||||
−0.825048 | + | 0.565063i | \(0.808852\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −10.8328 | −0.427205 | −0.213602 | − | 0.976921i | \(-0.568520\pi\) | ||||
−0.213602 | + | 0.976921i | \(0.568520\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 10.8328 | 0.425882 | 0.212941 | − | 0.977065i | \(-0.431696\pi\) | ||||
0.212941 | + | 0.977065i | \(0.431696\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 29.8885 | 1.17323 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 38.3607 | 1.50117 | 0.750585 | − | 0.660774i | \(-0.229772\pi\) | ||||
0.750585 | + | 0.660774i | \(0.229772\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 1.88854 | 0.0737915 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −0.111456 | −0.00434172 | −0.00217086 | − | 0.999998i | \(-0.500691\pi\) | ||||
−0.00217086 | + | 0.999998i | \(0.500691\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −13.4164 | −0.521838 | −0.260919 | − | 0.965361i | \(-0.584026\pi\) | ||||
−0.260919 | + | 0.965361i | \(0.584026\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −8.00000 | −0.310227 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 37.8885 | 1.46705 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −48.3607 | −1.86694 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 39.8885 | 1.53759 | 0.768795 | − | 0.639495i | \(-0.220857\pi\) | ||||
0.768795 | + | 0.639495i | \(0.220857\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −4.58359 | −0.176162 | −0.0880809 | − | 0.996113i | \(-0.528073\pi\) | ||||
−0.0880809 | + | 0.996113i | \(0.528073\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 6.94427 | 0.266497 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −47.2361 | −1.80744 | −0.903719 | − | 0.428126i | \(-0.859174\pi\) | ||||
−0.903719 | + | 0.428126i | \(0.859174\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −18.8328 | −0.719565 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −10.0000 | −0.380970 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −7.63932 | −0.290613 | −0.145307 | − | 0.989387i | \(-0.546417\pi\) | ||||
−0.145307 | + | 0.989387i | \(0.546417\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 22.1115 | 0.838735 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −12.9443 | −0.490299 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −33.7771 | −1.27574 | −0.637871 | − | 0.770143i | \(-0.720185\pi\) | ||||
−0.637871 | + | 0.770143i | \(0.720185\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −28.9443 | −1.09165 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 8.94427 | 0.336384 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 18.3607 | 0.689550 | 0.344775 | − | 0.938685i | \(-0.387955\pi\) | ||||
0.344775 | + | 0.938685i | \(0.387955\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −4.00000 | −0.149592 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 9.30495 | 0.347016 | 0.173508 | − | 0.984832i | \(-0.444490\pi\) | ||||
0.173508 | + | 0.984832i | \(0.444490\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −16.9443 | −0.631038 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 29.4164 | 1.09250 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 30.8328 | 1.14353 | 0.571763 | − | 0.820419i | \(-0.306260\pi\) | ||||
0.571763 | + | 0.820419i | \(0.306260\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 9.88854 | 0.365741 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 16.4721 | 0.608412 | 0.304206 | − | 0.952606i | \(-0.401609\pi\) | ||||
0.304206 | + | 0.952606i | \(0.401609\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 8.00000 | 0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −31.4164 | −1.15567 | −0.577836 | − | 0.816153i | \(-0.696103\pi\) | ||||
−0.577836 | + | 0.816153i | \(0.696103\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 42.6525 | 1.56477 | 0.782384 | − | 0.622797i | \(-0.214004\pi\) | ||||
0.782384 | + | 0.622797i | \(0.214004\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 15.7771 | 0.578028 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 3.52786 | 0.128905 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 19.0557 | 0.695353 | 0.347677 | − | 0.937614i | \(-0.386971\pi\) | ||||
0.347677 | + | 0.937614i | \(0.386971\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −3.77709 | −0.137462 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 41.4164 | 1.50530 | 0.752652 | − | 0.658418i | \(-0.228774\pi\) | ||||
0.752652 | + | 0.658418i | \(0.228774\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −26.1803 | −0.949037 | −0.474518 | − | 0.880246i | \(-0.657378\pi\) | ||||
−0.474518 | + | 0.880246i | \(0.657378\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 3.52786 | 0.127717 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −9.23607 | −0.333495 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −7.52786 | −0.271462 | −0.135731 | − | 0.990746i | \(-0.543338\pi\) | ||||
−0.135731 | + | 0.990746i | \(0.543338\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −7.12461 | −0.256254 | −0.128127 | − | 0.991758i | \(-0.540897\pi\) | ||||
−0.128127 | + | 0.991758i | \(0.540897\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 33.8885 | 1.21418 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −18.4721 | −0.660985 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −22.2492 | −0.794109 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 7.63932 | 0.272312 | 0.136156 | − | 0.990687i | \(-0.456525\pi\) | ||||
0.136156 | + | 0.990687i | \(0.456525\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −20.4721 | −0.727905 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 14.9443 | 0.530687 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 30.4721 | 1.07938 | 0.539689 | − | 0.841864i | \(-0.318542\pi\) | ||||
0.539689 | + | 0.841864i | \(0.318542\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −19.0557 | −0.674143 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −14.4721 | −0.510711 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −5.52786 | −0.194832 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −12.4721 | −0.438497 | −0.219248 | − | 0.975669i | \(-0.570361\pi\) | ||||
−0.219248 | + | 0.975669i | \(0.570361\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 36.0000 | 1.26413 | 0.632065 | − | 0.774915i | \(-0.282207\pi\) | ||||
0.632065 | + | 0.774915i | \(0.282207\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −3.05573 | −0.107037 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −25.8885 | −0.905725 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 46.6525 | 1.62818 | 0.814091 | − | 0.580737i | \(-0.197235\pi\) | ||||
0.814091 | + | 0.580737i | \(0.197235\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 47.7771 | 1.66540 | 0.832702 | − | 0.553721i | \(-0.186793\pi\) | ||||
0.832702 | + | 0.553721i | \(0.186793\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 37.4853 | 1.30349 | 0.651746 | − | 0.758438i | \(-0.274037\pi\) | ||||
0.651746 | + | 0.758438i | \(0.274037\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 6.00000 | 0.208389 | 0.104194 | − | 0.994557i | \(-0.466774\pi\) | ||||
0.104194 | + | 0.994557i | \(0.466774\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 2.47214 | 0.0856544 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 22.4721 | 0.777680 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 29.8197 | 1.02949 | 0.514744 | − | 0.857344i | \(-0.327887\pi\) | ||||
0.514744 | + | 0.857344i | \(0.327887\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 42.7771 | 1.47507 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 1.23607 | 0.0425220 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −0.527864 | −0.0181376 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −20.0000 | −0.685591 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −20.8328 | −0.713302 | −0.356651 | − | 0.934238i | \(-0.616081\pi\) | ||||
−0.356651 | + | 0.934238i | \(0.616081\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −40.9443 | −1.39863 | −0.699315 | − | 0.714814i | \(-0.746511\pi\) | ||||
−0.699315 | + | 0.714814i | \(0.746511\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −10.1115 | −0.344998 | −0.172499 | − | 0.985010i | \(-0.555184\pi\) | ||||
−0.172499 | + | 0.985010i | \(0.555184\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 52.1803 | 1.77624 | 0.888120 | − | 0.459612i | \(-0.152012\pi\) | ||||
0.888120 | + | 0.459612i | \(0.152012\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −14.8328 | −0.504331 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 33.8885 | 1.14959 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −2.47214 | −0.0837651 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −10.4721 | −0.354023 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 7.88854 | 0.266377 | 0.133189 | − | 0.991091i | \(-0.457478\pi\) | ||||
0.133189 | + | 0.991091i | \(0.457478\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −30.8328 | −1.03878 | −0.519392 | − | 0.854536i | \(-0.673842\pi\) | ||||
−0.519392 | + | 0.854536i | \(0.673842\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −15.4164 | −0.518803 | −0.259402 | − | 0.965770i | \(-0.583525\pi\) | ||||
−0.259402 | + | 0.965770i | \(0.583525\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 5.16718 | 0.173497 | 0.0867485 | − | 0.996230i | \(-0.472352\pi\) | ||||
0.0867485 | + | 0.996230i | \(0.472352\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −2.47214 | −0.0829128 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 49.8885 | 1.66946 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 8.58359 | 0.286918 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −24.7214 | −0.823588 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 24.5836 | 0.817186 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −28.3607 | −0.941701 | −0.470850 | − | 0.882213i | \(-0.656053\pi\) | ||||
−0.470850 | + | 0.882213i | \(0.656053\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −31.8885 | −1.05651 | −0.528257 | − | 0.849084i | \(-0.677154\pi\) | ||||
−0.528257 | + | 0.849084i | \(0.677154\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 8.94427 | 0.296012 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 1.52786 | 0.0504545 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 1.52786 | 0.0503996 | 0.0251998 | − | 0.999682i | \(-0.491978\pi\) | ||||
0.0251998 | + | 0.999682i | \(0.491978\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 5.70820 | 0.187888 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −15.5279 | −0.510553 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 44.6525 | 1.46500 | 0.732500 | − | 0.680767i | \(-0.238353\pi\) | ||||
0.732500 | + | 0.680767i | \(0.238353\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −6.47214 | −0.212116 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −9.88854 | −0.323390 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −22.9443 | −0.749557 | −0.374778 | − | 0.927114i | \(-0.622281\pi\) | ||||
−0.374778 | + | 0.927114i | \(0.622281\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 50.5410 | 1.64759 | 0.823795 | − | 0.566888i | \(-0.191853\pi\) | ||||
0.823795 | + | 0.566888i | \(0.191853\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 23.4164 | 0.762543 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −7.59675 | −0.246861 | −0.123431 | − | 0.992353i | \(-0.539390\pi\) | ||||
−0.123431 | + | 0.992353i | \(0.539390\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 4.47214 | 0.145172 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 41.1935 | 1.33439 | 0.667194 | − | 0.744884i | \(-0.267495\pi\) | ||||
0.667194 | + | 0.744884i | \(0.267495\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 8.58359 | 0.277759 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −15.2361 | −0.491998 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 22.6950 | 0.730579 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −40.3607 | −1.29791 | −0.648956 | − | 0.760826i | \(-0.724794\pi\) | ||||
−0.648956 | + | 0.760826i | \(0.724794\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −29.8885 | −0.959169 | −0.479585 | − | 0.877496i | \(-0.659213\pi\) | ||||
−0.479585 | + | 0.877496i | \(0.659213\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 17.8885 | 0.573480 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 19.2361 | 0.615416 | 0.307708 | − | 0.951481i | \(-0.400438\pi\) | ||||
0.307708 | + | 0.951481i | \(0.400438\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −32.9443 | −1.05290 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −59.1246 | −1.88578 | −0.942891 | − | 0.333101i | \(-0.891905\pi\) | ||||
−0.942891 | + | 0.333101i | \(0.891905\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −0.944272 | −0.0300870 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −17.8885 | −0.568823 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 6.11146 | 0.194137 | 0.0970684 | − | 0.995278i | \(-0.469053\pi\) | ||||
0.0970684 | + | 0.995278i | \(0.469053\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −19.7771 | −0.626976 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 17.7771 | 0.563006 | 0.281503 | − | 0.959560i | \(-0.409167\pi\) | ||||
0.281503 | + | 0.959560i | \(0.409167\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3276.2.a.l.1.2 | 2 | ||
3.2 | odd | 2 | 1092.2.a.f.1.1 | ✓ | 2 | ||
12.11 | even | 2 | 4368.2.a.bl.1.1 | 2 | |||
21.20 | even | 2 | 7644.2.a.p.1.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1092.2.a.f.1.1 | ✓ | 2 | 3.2 | odd | 2 | ||
3276.2.a.l.1.2 | 2 | 1.1 | even | 1 | trivial | ||
4368.2.a.bl.1.1 | 2 | 12.11 | even | 2 | |||
7644.2.a.p.1.2 | 2 | 21.20 | even | 2 |