Properties

Label 3276.2.a.s.1.4
Level $3276$
Weight $2$
Character 3276.1
Self dual yes
Analytic conductor $26.159$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.04547\) of defining polynomial
Character \(\chi\) \(=\) 3276.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.04547 q^{5} -1.00000 q^{7} +6.09095 q^{11} -1.00000 q^{13} +6.92820 q^{17} +5.27492 q^{19} +3.04547 q^{23} +4.27492 q^{25} -3.88273 q^{29} -1.27492 q^{31} -3.04547 q^{35} -4.54983 q^{37} -6.92820 q^{41} -11.8248 q^{43} -3.04547 q^{47} +1.00000 q^{49} +2.20822 q^{53} +18.5498 q^{55} +0.837253 q^{59} -2.00000 q^{61} -3.04547 q^{65} +14.5498 q^{67} -12.1819 q^{71} +7.27492 q^{73} -6.09095 q^{77} +13.2749 q^{79} +9.13642 q^{83} +21.0997 q^{85} +4.71998 q^{89} +1.00000 q^{91} +16.0646 q^{95} -3.27492 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 4 q^{13} + 6 q^{19} + 2 q^{25} + 10 q^{31} + 12 q^{37} - 2 q^{43} + 4 q^{49} + 44 q^{55} - 8 q^{61} + 28 q^{67} + 14 q^{73} + 38 q^{79} + 24 q^{85} + 4 q^{91} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.04547 1.36198 0.680989 0.732294i \(-0.261550\pi\)
0.680989 + 0.732294i \(0.261550\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.09095 1.83649 0.918245 0.396012i \(-0.129606\pi\)
0.918245 + 0.396012i \(0.129606\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.92820 1.68034 0.840168 0.542326i \(-0.182456\pi\)
0.840168 + 0.542326i \(0.182456\pi\)
\(18\) 0 0
\(19\) 5.27492 1.21015 0.605075 0.796169i \(-0.293143\pi\)
0.605075 + 0.796169i \(0.293143\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.04547 0.635025 0.317513 0.948254i \(-0.397152\pi\)
0.317513 + 0.948254i \(0.397152\pi\)
\(24\) 0 0
\(25\) 4.27492 0.854983
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.88273 −0.721005 −0.360502 0.932758i \(-0.617395\pi\)
−0.360502 + 0.932758i \(0.617395\pi\)
\(30\) 0 0
\(31\) −1.27492 −0.228982 −0.114491 0.993424i \(-0.536524\pi\)
−0.114491 + 0.993424i \(0.536524\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.04547 −0.514779
\(36\) 0 0
\(37\) −4.54983 −0.747988 −0.373994 0.927431i \(-0.622012\pi\)
−0.373994 + 0.927431i \(0.622012\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.92820 −1.08200 −0.541002 0.841021i \(-0.681955\pi\)
−0.541002 + 0.841021i \(0.681955\pi\)
\(42\) 0 0
\(43\) −11.8248 −1.80326 −0.901629 0.432511i \(-0.857628\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.04547 −0.444228 −0.222114 0.975021i \(-0.571296\pi\)
−0.222114 + 0.975021i \(0.571296\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.20822 0.303323 0.151661 0.988433i \(-0.451538\pi\)
0.151661 + 0.988433i \(0.451538\pi\)
\(54\) 0 0
\(55\) 18.5498 2.50126
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.837253 0.109001 0.0545006 0.998514i \(-0.482643\pi\)
0.0545006 + 0.998514i \(0.482643\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.04547 −0.377745
\(66\) 0 0
\(67\) 14.5498 1.77755 0.888773 0.458348i \(-0.151559\pi\)
0.888773 + 0.458348i \(0.151559\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.1819 −1.44573 −0.722863 0.690992i \(-0.757174\pi\)
−0.722863 + 0.690992i \(0.757174\pi\)
\(72\) 0 0
\(73\) 7.27492 0.851465 0.425732 0.904849i \(-0.360017\pi\)
0.425732 + 0.904849i \(0.360017\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.09095 −0.694128
\(78\) 0 0
\(79\) 13.2749 1.49354 0.746772 0.665080i \(-0.231602\pi\)
0.746772 + 0.665080i \(0.231602\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.13642 1.00285 0.501426 0.865200i \(-0.332809\pi\)
0.501426 + 0.865200i \(0.332809\pi\)
\(84\) 0 0
\(85\) 21.0997 2.28858
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.71998 0.500317 0.250159 0.968205i \(-0.419517\pi\)
0.250159 + 0.968205i \(0.419517\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 16.0646 1.64820
\(96\) 0 0
\(97\) −3.27492 −0.332517 −0.166259 0.986082i \(-0.553169\pi\)
−0.166259 + 0.986082i \(0.553169\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.837253 −0.0833098 −0.0416549 0.999132i \(-0.513263\pi\)
−0.0416549 + 0.999132i \(0.513263\pi\)
\(102\) 0 0
\(103\) −17.0997 −1.68488 −0.842440 0.538790i \(-0.818882\pi\)
−0.842440 + 0.538790i \(0.818882\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.837253 0.0809403 0.0404702 0.999181i \(-0.487114\pi\)
0.0404702 + 0.999181i \(0.487114\pi\)
\(108\) 0 0
\(109\) −11.0997 −1.06316 −0.531578 0.847010i \(-0.678401\pi\)
−0.531578 + 0.847010i \(0.678401\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.29917 −0.780720 −0.390360 0.920662i \(-0.627650\pi\)
−0.390360 + 0.920662i \(0.627650\pi\)
\(114\) 0 0
\(115\) 9.27492 0.864890
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.92820 −0.635107
\(120\) 0 0
\(121\) 26.0997 2.37270
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.20822 −0.197509
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.67451 −0.146302 −0.0731512 0.997321i \(-0.523306\pi\)
−0.0731512 + 0.997321i \(0.523306\pi\)
\(132\) 0 0
\(133\) −5.27492 −0.457393
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 5.45017 0.462277 0.231139 0.972921i \(-0.425755\pi\)
0.231139 + 0.972921i \(0.425755\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.09095 −0.509351
\(144\) 0 0
\(145\) −11.8248 −0.981992
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.2728 −1.49697 −0.748485 0.663152i \(-0.769218\pi\)
−0.748485 + 0.663152i \(0.769218\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.88273 −0.311868
\(156\) 0 0
\(157\) −20.5498 −1.64006 −0.820028 0.572324i \(-0.806042\pi\)
−0.820028 + 0.572324i \(0.806042\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.04547 −0.240017
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.13642 0.706998 0.353499 0.935435i \(-0.384992\pi\)
0.353499 + 0.935435i \(0.384992\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.1101 1.45291 0.726457 0.687212i \(-0.241166\pi\)
0.726457 + 0.687212i \(0.241166\pi\)
\(174\) 0 0
\(175\) −4.27492 −0.323153
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.5529 1.01299 0.506494 0.862243i \(-0.330941\pi\)
0.506494 + 0.862243i \(0.330941\pi\)
\(180\) 0 0
\(181\) 15.0997 1.12235 0.561175 0.827697i \(-0.310350\pi\)
0.561175 + 0.827697i \(0.310350\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −13.8564 −1.01874
\(186\) 0 0
\(187\) 42.1993 3.08592
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.837253 −0.0605815 −0.0302908 0.999541i \(-0.509643\pi\)
−0.0302908 + 0.999541i \(0.509643\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.2728 −1.30189 −0.650943 0.759126i \(-0.725626\pi\)
−0.650943 + 0.759126i \(0.725626\pi\)
\(198\) 0 0
\(199\) 17.0997 1.21216 0.606082 0.795402i \(-0.292740\pi\)
0.606082 + 0.795402i \(0.292740\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.88273 0.272514
\(204\) 0 0
\(205\) −21.0997 −1.47366
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 32.1293 2.22243
\(210\) 0 0
\(211\) 14.7251 1.01372 0.506858 0.862029i \(-0.330807\pi\)
0.506858 + 0.862029i \(0.330807\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −36.0120 −2.45600
\(216\) 0 0
\(217\) 1.27492 0.0865470
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.92820 −0.466041
\(222\) 0 0
\(223\) −14.3746 −0.962593 −0.481297 0.876558i \(-0.659834\pi\)
−0.481297 + 0.876558i \(0.659834\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.3446 −0.752971 −0.376485 0.926423i \(-0.622867\pi\)
−0.376485 + 0.926423i \(0.622867\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.3901 −0.942728 −0.471364 0.881939i \(-0.656238\pi\)
−0.471364 + 0.881939i \(0.656238\pi\)
\(234\) 0 0
\(235\) −9.27492 −0.605029
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.8564 0.896296 0.448148 0.893959i \(-0.352084\pi\)
0.448148 + 0.893959i \(0.352084\pi\)
\(240\) 0 0
\(241\) −21.8248 −1.40586 −0.702928 0.711261i \(-0.748124\pi\)
−0.702928 + 0.711261i \(0.748124\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.04547 0.194568
\(246\) 0 0
\(247\) −5.27492 −0.335635
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.41644 0.278763 0.139382 0.990239i \(-0.455489\pi\)
0.139382 + 0.990239i \(0.455489\pi\)
\(252\) 0 0
\(253\) 18.5498 1.16622
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.3446 −0.707660 −0.353830 0.935310i \(-0.615121\pi\)
−0.353830 + 0.935310i \(0.615121\pi\)
\(258\) 0 0
\(259\) 4.54983 0.282713
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.5764 1.14547 0.572735 0.819741i \(-0.305883\pi\)
0.572735 + 0.819741i \(0.305883\pi\)
\(264\) 0 0
\(265\) 6.72508 0.413119
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 29.6175 1.80581 0.902905 0.429840i \(-0.141430\pi\)
0.902905 + 0.429840i \(0.141430\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 26.0383 1.57017
\(276\) 0 0
\(277\) −12.7251 −0.764576 −0.382288 0.924043i \(-0.624864\pi\)
−0.382288 + 0.924043i \(0.624864\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.5983 −0.990174 −0.495087 0.868843i \(-0.664864\pi\)
−0.495087 + 0.868843i \(0.664864\pi\)
\(282\) 0 0
\(283\) 13.0997 0.778694 0.389347 0.921091i \(-0.372701\pi\)
0.389347 + 0.921091i \(0.372701\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.92820 0.408959
\(288\) 0 0
\(289\) 31.0000 1.82353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.04547 −0.177919 −0.0889593 0.996035i \(-0.528354\pi\)
−0.0889593 + 0.996035i \(0.528354\pi\)
\(294\) 0 0
\(295\) 2.54983 0.148457
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.04547 −0.176124
\(300\) 0 0
\(301\) 11.8248 0.681567
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.09095 −0.348767
\(306\) 0 0
\(307\) −7.82475 −0.446582 −0.223291 0.974752i \(-0.571680\pi\)
−0.223291 + 0.974752i \(0.571680\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −32.1293 −1.82188 −0.910941 0.412536i \(-0.864643\pi\)
−0.910941 + 0.412536i \(0.864643\pi\)
\(312\) 0 0
\(313\) −0.900331 −0.0508897 −0.0254449 0.999676i \(-0.508100\pi\)
−0.0254449 + 0.999676i \(0.508100\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.8564 −0.778253 −0.389127 0.921184i \(-0.627223\pi\)
−0.389127 + 0.921184i \(0.627223\pi\)
\(318\) 0 0
\(319\) −23.6495 −1.32412
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 36.5457 2.03346
\(324\) 0 0
\(325\) −4.27492 −0.237130
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.04547 0.167902
\(330\) 0 0
\(331\) 9.45017 0.519428 0.259714 0.965686i \(-0.416372\pi\)
0.259714 + 0.965686i \(0.416372\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 44.3112 2.42098
\(336\) 0 0
\(337\) −34.9244 −1.90245 −0.951227 0.308491i \(-0.900176\pi\)
−0.951227 + 0.308491i \(0.900176\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.76546 −0.420523
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.3446 −0.609013 −0.304506 0.952510i \(-0.598491\pi\)
−0.304506 + 0.952510i \(0.598491\pi\)
\(348\) 0 0
\(349\) 12.3746 0.662396 0.331198 0.943561i \(-0.392547\pi\)
0.331198 + 0.943561i \(0.392547\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.57919 0.190501 0.0952505 0.995453i \(-0.469635\pi\)
0.0952505 + 0.995453i \(0.469635\pi\)
\(354\) 0 0
\(355\) −37.0997 −1.96905
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.7128 −1.46263 −0.731313 0.682042i \(-0.761092\pi\)
−0.731313 + 0.682042i \(0.761092\pi\)
\(360\) 0 0
\(361\) 8.82475 0.464461
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.1556 1.15968
\(366\) 0 0
\(367\) −14.5498 −0.759495 −0.379748 0.925090i \(-0.623989\pi\)
−0.379748 + 0.925090i \(0.623989\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.20822 −0.114645
\(372\) 0 0
\(373\) 11.0997 0.574719 0.287360 0.957823i \(-0.407223\pi\)
0.287360 + 0.957823i \(0.407223\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.88273 0.199971
\(378\) 0 0
\(379\) 14.5498 0.747375 0.373687 0.927555i \(-0.378093\pi\)
0.373687 + 0.927555i \(0.378093\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.3446 −0.579684 −0.289842 0.957074i \(-0.593603\pi\)
−0.289842 + 0.957074i \(0.593603\pi\)
\(384\) 0 0
\(385\) −18.5498 −0.945387
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.7128 1.40510 0.702548 0.711637i \(-0.252046\pi\)
0.702548 + 0.711637i \(0.252046\pi\)
\(390\) 0 0
\(391\) 21.0997 1.06706
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 40.4284 2.03417
\(396\) 0 0
\(397\) −27.2749 −1.36889 −0.684444 0.729065i \(-0.739955\pi\)
−0.684444 + 0.729065i \(0.739955\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.7128 −1.38391 −0.691956 0.721940i \(-0.743251\pi\)
−0.691956 + 0.721940i \(0.743251\pi\)
\(402\) 0 0
\(403\) 1.27492 0.0635082
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.7128 −1.37367
\(408\) 0 0
\(409\) −16.3746 −0.809671 −0.404836 0.914389i \(-0.632671\pi\)
−0.404836 + 0.914389i \(0.632671\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.837253 −0.0411986
\(414\) 0 0
\(415\) 27.8248 1.36586
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.41644 0.215757 0.107879 0.994164i \(-0.465594\pi\)
0.107879 + 0.994164i \(0.465594\pi\)
\(420\) 0 0
\(421\) −0.549834 −0.0267973 −0.0133986 0.999910i \(-0.504265\pi\)
−0.0133986 + 0.999910i \(0.504265\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 29.6175 1.43666
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.43996 0.454707 0.227354 0.973812i \(-0.426993\pi\)
0.227354 + 0.973812i \(0.426993\pi\)
\(432\) 0 0
\(433\) −21.6495 −1.04041 −0.520204 0.854042i \(-0.674144\pi\)
−0.520204 + 0.854042i \(0.674144\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.0646 0.768475
\(438\) 0 0
\(439\) −14.5498 −0.694426 −0.347213 0.937786i \(-0.612872\pi\)
−0.347213 + 0.937786i \(0.612872\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.9928 1.09242 0.546211 0.837648i \(-0.316070\pi\)
0.546211 + 0.837648i \(0.316070\pi\)
\(444\) 0 0
\(445\) 14.3746 0.681421
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.5074 0.495875 0.247937 0.968776i \(-0.420247\pi\)
0.247937 + 0.968776i \(0.420247\pi\)
\(450\) 0 0
\(451\) −42.1993 −1.98709
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.04547 0.142774
\(456\) 0 0
\(457\) 29.6495 1.38695 0.693473 0.720483i \(-0.256080\pi\)
0.693473 + 0.720483i \(0.256080\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.6175 1.37942 0.689712 0.724084i \(-0.257737\pi\)
0.689712 + 0.724084i \(0.257737\pi\)
\(462\) 0 0
\(463\) 23.6495 1.09909 0.549543 0.835466i \(-0.314802\pi\)
0.549543 + 0.835466i \(0.314802\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −28.7802 −1.33179 −0.665895 0.746045i \(-0.731950\pi\)
−0.665895 + 0.746045i \(0.731950\pi\)
\(468\) 0 0
\(469\) −14.5498 −0.671849
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −72.0240 −3.31167
\(474\) 0 0
\(475\) 22.5498 1.03466
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.13642 −0.417454 −0.208727 0.977974i \(-0.566932\pi\)
−0.208727 + 0.977974i \(0.566932\pi\)
\(480\) 0 0
\(481\) 4.54983 0.207455
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.97368 −0.452881
\(486\) 0 0
\(487\) 15.6495 0.709147 0.354573 0.935028i \(-0.384626\pi\)
0.354573 + 0.935028i \(0.384626\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.8756 1.21288 0.606439 0.795130i \(-0.292598\pi\)
0.606439 + 0.795130i \(0.292598\pi\)
\(492\) 0 0
\(493\) −26.9003 −1.21153
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.1819 0.546433
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.09095 0.271582 0.135791 0.990738i \(-0.456642\pi\)
0.135791 + 0.990738i \(0.456642\pi\)
\(504\) 0 0
\(505\) −2.54983 −0.113466
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.5237 1.70753 0.853767 0.520654i \(-0.174312\pi\)
0.853767 + 0.520654i \(0.174312\pi\)
\(510\) 0 0
\(511\) −7.27492 −0.321823
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −52.0766 −2.29477
\(516\) 0 0
\(517\) −18.5498 −0.815821
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.6410 1.51765 0.758825 0.651294i \(-0.225774\pi\)
0.758825 + 0.651294i \(0.225774\pi\)
\(522\) 0 0
\(523\) −7.64950 −0.334489 −0.167245 0.985915i \(-0.553487\pi\)
−0.167245 + 0.985915i \(0.553487\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.83289 −0.384767
\(528\) 0 0
\(529\) −13.7251 −0.596743
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.92820 0.300094
\(534\) 0 0
\(535\) 2.54983 0.110239
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.09095 0.262356
\(540\) 0 0
\(541\) −29.6495 −1.27473 −0.637366 0.770561i \(-0.719976\pi\)
−0.637366 + 0.770561i \(0.719976\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −33.8038 −1.44799
\(546\) 0 0
\(547\) −35.8248 −1.53176 −0.765878 0.642986i \(-0.777695\pi\)
−0.765878 + 0.642986i \(0.777695\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −20.4811 −0.872523
\(552\) 0 0
\(553\) −13.2749 −0.564507
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.6893 0.961376 0.480688 0.876892i \(-0.340387\pi\)
0.480688 + 0.876892i \(0.340387\pi\)
\(558\) 0 0
\(559\) 11.8248 0.500134
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −38.2202 −1.61079 −0.805395 0.592739i \(-0.798047\pi\)
−0.805395 + 0.592739i \(0.798047\pi\)
\(564\) 0 0
\(565\) −25.2749 −1.06332
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.3901 −0.603265 −0.301633 0.953424i \(-0.597532\pi\)
−0.301633 + 0.953424i \(0.597532\pi\)
\(570\) 0 0
\(571\) −27.8248 −1.16443 −0.582215 0.813035i \(-0.697814\pi\)
−0.582215 + 0.813035i \(0.697814\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.0192 0.542936
\(576\) 0 0
\(577\) 36.1993 1.50700 0.753499 0.657449i \(-0.228364\pi\)
0.753499 + 0.657449i \(0.228364\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.13642 −0.379043
\(582\) 0 0
\(583\) 13.4502 0.557049
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.5002 −1.38270 −0.691351 0.722519i \(-0.742984\pi\)
−0.691351 + 0.722519i \(0.742984\pi\)
\(588\) 0 0
\(589\) −6.72508 −0.277102
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −29.0838 −1.19433 −0.597164 0.802119i \(-0.703706\pi\)
−0.597164 + 0.802119i \(0.703706\pi\)
\(594\) 0 0
\(595\) −21.0997 −0.865002
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.7583 −1.25675 −0.628375 0.777911i \(-0.716280\pi\)
−0.628375 + 0.777911i \(0.716280\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 79.4859 3.23156
\(606\) 0 0
\(607\) 19.6495 0.797549 0.398774 0.917049i \(-0.369436\pi\)
0.398774 + 0.917049i \(0.369436\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.04547 0.123207
\(612\) 0 0
\(613\) −20.5498 −0.830000 −0.415000 0.909821i \(-0.636218\pi\)
−0.415000 + 0.909821i \(0.636218\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −44.3112 −1.78390 −0.891950 0.452134i \(-0.850663\pi\)
−0.891950 + 0.452134i \(0.850663\pi\)
\(618\) 0 0
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.71998 −0.189102
\(624\) 0 0
\(625\) −28.0997 −1.12399
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −31.5222 −1.25687
\(630\) 0 0
\(631\) 2.54983 0.101507 0.0507537 0.998711i \(-0.483838\pi\)
0.0507537 + 0.998711i \(0.483838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.1819 0.483424
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.3227 0.526215 0.263107 0.964767i \(-0.415253\pi\)
0.263107 + 0.964767i \(0.415253\pi\)
\(642\) 0 0
\(643\) 41.0997 1.62081 0.810406 0.585868i \(-0.199246\pi\)
0.810406 + 0.585868i \(0.199246\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −30.4547 −1.19730 −0.598650 0.801011i \(-0.704296\pi\)
−0.598650 + 0.801011i \(0.704296\pi\)
\(648\) 0 0
\(649\) 5.09967 0.200180
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.7128 1.08449 0.542243 0.840222i \(-0.317575\pi\)
0.542243 + 0.840222i \(0.317575\pi\)
\(654\) 0 0
\(655\) −5.09967 −0.199261
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −41.2657 −1.60748 −0.803741 0.594979i \(-0.797160\pi\)
−0.803741 + 0.594979i \(0.797160\pi\)
\(660\) 0 0
\(661\) −16.7251 −0.650530 −0.325265 0.945623i \(-0.605454\pi\)
−0.325265 + 0.945623i \(0.605454\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −16.0646 −0.622960
\(666\) 0 0
\(667\) −11.8248 −0.457856
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.1819 −0.470277
\(672\) 0 0
\(673\) 34.9244 1.34624 0.673119 0.739534i \(-0.264954\pi\)
0.673119 + 0.739534i \(0.264954\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.3682 −0.629080 −0.314540 0.949244i \(-0.601850\pi\)
−0.314540 + 0.949244i \(0.601850\pi\)
\(678\) 0 0
\(679\) 3.27492 0.125680
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −39.8947 −1.52653 −0.763264 0.646086i \(-0.776405\pi\)
−0.763264 + 0.646086i \(0.776405\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.20822 −0.0841265
\(690\) 0 0
\(691\) −37.2749 −1.41800 −0.709002 0.705206i \(-0.750854\pi\)
−0.709002 + 0.705206i \(0.750854\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.5983 0.629611
\(696\) 0 0
\(697\) −48.0000 −1.81813
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 52.6103 1.98706 0.993532 0.113550i \(-0.0362222\pi\)
0.993532 + 0.113550i \(0.0362222\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.837253 0.0314882
\(708\) 0 0
\(709\) −19.0997 −0.717303 −0.358652 0.933472i \(-0.616763\pi\)
−0.358652 + 0.933472i \(0.616763\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.88273 −0.145409
\(714\) 0 0
\(715\) −18.5498 −0.693724
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.09095 −0.227154 −0.113577 0.993529i \(-0.536231\pi\)
−0.113577 + 0.993529i \(0.536231\pi\)
\(720\) 0 0
\(721\) 17.0997 0.636825
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −16.5983 −0.616447
\(726\) 0 0
\(727\) −30.5498 −1.13303 −0.566515 0.824051i \(-0.691709\pi\)
−0.566515 + 0.824051i \(0.691709\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −81.9243 −3.03008
\(732\) 0 0
\(733\) −46.9244 −1.73319 −0.866597 0.499010i \(-0.833697\pi\)
−0.866597 + 0.499010i \(0.833697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 88.6223 3.26444
\(738\) 0 0
\(739\) 22.5498 0.829509 0.414755 0.909933i \(-0.363867\pi\)
0.414755 + 0.909933i \(0.363867\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.34901 −0.122863 −0.0614317 0.998111i \(-0.519567\pi\)
−0.0614317 + 0.998111i \(0.519567\pi\)
\(744\) 0 0
\(745\) −55.6495 −2.03884
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.837253 −0.0305926
\(750\) 0 0
\(751\) 50.3746 1.83819 0.919097 0.394030i \(-0.128920\pi\)
0.919097 + 0.394030i \(0.128920\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.92442 −0.251672 −0.125836 0.992051i \(-0.540161\pi\)
−0.125836 + 0.992051i \(0.540161\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.5529 0.491291 0.245646 0.969360i \(-0.421000\pi\)
0.245646 + 0.969360i \(0.421000\pi\)
\(762\) 0 0
\(763\) 11.0997 0.401835
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.837253 −0.0302315
\(768\) 0 0
\(769\) 0.725083 0.0261472 0.0130736 0.999915i \(-0.495838\pi\)
0.0130736 + 0.999915i \(0.495838\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.25370 0.188962 0.0944812 0.995527i \(-0.469881\pi\)
0.0944812 + 0.995527i \(0.469881\pi\)
\(774\) 0 0
\(775\) −5.45017 −0.195776
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −36.5457 −1.30939
\(780\) 0 0
\(781\) −74.1993 −2.65506
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −62.5840 −2.23372
\(786\) 0 0
\(787\) 31.4743 1.12194 0.560968 0.827837i \(-0.310429\pi\)
0.560968 + 0.827837i \(0.310429\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.29917 0.295085
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −52.9139 −1.87431 −0.937153 0.348920i \(-0.886549\pi\)
−0.937153 + 0.348920i \(0.886549\pi\)
\(798\) 0 0
\(799\) −21.0997 −0.746453
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 44.3112 1.56371
\(804\) 0 0
\(805\) −9.27492 −0.326898
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.4811 0.720076 0.360038 0.932938i \(-0.382764\pi\)
0.360038 + 0.932938i \(0.382764\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 60.9095 2.13357
\(816\) 0 0
\(817\) −62.3746 −2.18221
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30.4547 1.06288 0.531439 0.847097i \(-0.321651\pi\)
0.531439 + 0.847097i \(0.321651\pi\)
\(822\) 0 0
\(823\) 9.09967 0.317195 0.158597 0.987343i \(-0.449303\pi\)
0.158597 + 0.987343i \(0.449303\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.6893 0.788984 0.394492 0.918899i \(-0.370921\pi\)
0.394492 + 0.918899i \(0.370921\pi\)
\(828\) 0 0
\(829\) 7.09967 0.246582 0.123291 0.992371i \(-0.460655\pi\)
0.123291 + 0.992371i \(0.460655\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.92820 0.240048
\(834\) 0 0
\(835\) 27.8248 0.962915
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.8520 −0.754416 −0.377208 0.926129i \(-0.623116\pi\)
−0.377208 + 0.926129i \(0.623116\pi\)
\(840\) 0 0
\(841\) −13.9244 −0.480152
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.04547 0.104768
\(846\) 0 0
\(847\) −26.0997 −0.896795
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.8564 −0.474991
\(852\) 0 0
\(853\) −11.6254 −0.398047 −0.199023 0.979995i \(-0.563777\pi\)
−0.199023 + 0.979995i \(0.563777\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.6937 −0.501926 −0.250963 0.967997i \(-0.580747\pi\)
−0.250963 + 0.967997i \(0.580747\pi\)
\(858\) 0 0
\(859\) −5.45017 −0.185957 −0.0929786 0.995668i \(-0.529639\pi\)
−0.0929786 + 0.995668i \(0.529639\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.3638 0.829353 0.414677 0.909969i \(-0.363895\pi\)
0.414677 + 0.909969i \(0.363895\pi\)
\(864\) 0 0
\(865\) 58.1993 1.97884
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 80.8569 2.74288
\(870\) 0 0
\(871\) −14.5498 −0.493002
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.20822 0.0746515
\(876\) 0 0
\(877\) 40.5498 1.36927 0.684635 0.728886i \(-0.259961\pi\)
0.684635 + 0.728886i \(0.259961\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −25.2011 −0.849045 −0.424523 0.905417i \(-0.639558\pi\)
−0.424523 + 0.905417i \(0.639558\pi\)
\(882\) 0 0
\(883\) 13.0997 0.440839 0.220419 0.975405i \(-0.429257\pi\)
0.220419 + 0.975405i \(0.429257\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.5074 0.352804 0.176402 0.984318i \(-0.443554\pi\)
0.176402 + 0.984318i \(0.443554\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.0646 −0.537582
\(894\) 0 0
\(895\) 41.2749 1.37967
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.95016 0.165097
\(900\) 0 0
\(901\) 15.2990 0.509684
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 45.9857 1.52862
\(906\) 0 0
\(907\) −38.3746 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.13642 −0.302703 −0.151352 0.988480i \(-0.548363\pi\)
−0.151352 + 0.988480i \(0.548363\pi\)
\(912\) 0 0
\(913\) 55.6495 1.84173
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.67451 0.0552971
\(918\) 0 0
\(919\) 14.9003 0.491517 0.245758 0.969331i \(-0.420963\pi\)
0.245758 + 0.969331i \(0.420963\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.1819 0.400972
\(924\) 0 0
\(925\) −19.4502 −0.639518
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 50.0986 1.64368 0.821840 0.569718i \(-0.192948\pi\)
0.821840 + 0.569718i \(0.192948\pi\)
\(930\) 0 0
\(931\) 5.27492 0.172878
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 128.517 4.20296
\(936\) 0 0
\(937\) −40.5498 −1.32471 −0.662353 0.749192i \(-0.730442\pi\)
−0.662353 + 0.749192i \(0.730442\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.9402 1.39981 0.699905 0.714236i \(-0.253226\pi\)
0.699905 + 0.714236i \(0.253226\pi\)
\(942\) 0 0
\(943\) −21.0997 −0.687100
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.41644 −0.143515 −0.0717576 0.997422i \(-0.522861\pi\)
−0.0717576 + 0.997422i \(0.522861\pi\)
\(948\) 0 0
\(949\) −7.27492 −0.236154
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −49.2613 −1.59573 −0.797865 0.602836i \(-0.794037\pi\)
−0.797865 + 0.602836i \(0.794037\pi\)
\(954\) 0 0
\(955\) −2.54983 −0.0825107
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.3746 −0.947567
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.09095 0.196075
\(966\) 0 0
\(967\) −23.6495 −0.760517 −0.380258 0.924880i \(-0.624165\pi\)
−0.380258 + 0.924880i \(0.624165\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.2964 0.747616 0.373808 0.927506i \(-0.378052\pi\)
0.373808 + 0.927506i \(0.378052\pi\)
\(972\) 0 0
\(973\) −5.45017 −0.174724
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.2964 0.745317 0.372658 0.927969i \(-0.378446\pi\)
0.372658 + 0.927969i \(0.378446\pi\)
\(978\) 0 0
\(979\) 28.7492 0.918828
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −24.0603 −0.767403 −0.383702 0.923457i \(-0.625351\pi\)
−0.383702 + 0.923457i \(0.625351\pi\)
\(984\) 0 0
\(985\) −55.6495 −1.77314
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −36.0120 −1.14511
\(990\) 0 0
\(991\) 12.0000 0.381193 0.190596 0.981669i \(-0.438958\pi\)
0.190596 + 0.981669i \(0.438958\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 52.0766 1.65094
\(996\) 0 0
\(997\) −44.5498 −1.41091 −0.705454 0.708756i \(-0.749257\pi\)
−0.705454 + 0.708756i \(0.749257\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.a.s.1.4 yes 4
3.2 odd 2 inner 3276.2.a.s.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3276.2.a.s.1.1 4 3.2 odd 2 inner
3276.2.a.s.1.4 yes 4 1.1 even 1 trivial