Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3276,2,Mod(1297,3276)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3276.1297");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3276.hi (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 1092) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1297.1 |
|
0 | 0 | 0 | −2.94714 | − | 1.70153i | 0 | −0.0930505 | − | 2.64411i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.2 | 0 | 0 | 0 | −2.54554 | − | 1.46967i | 0 | −2.28666 | + | 1.33086i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.3 | 0 | 0 | 0 | −2.09200 | − | 1.20782i | 0 | 2.52468 | + | 0.791199i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.4 | 0 | 0 | 0 | 0.983604 | + | 0.567884i | 0 | 1.92982 | − | 1.80991i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.5 | 0 | 0 | 0 | 1.05101 | + | 0.606802i | 0 | 1.21552 | − | 2.35000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.6 | 0 | 0 | 0 | 1.77894 | + | 1.02707i | 0 | 1.06574 | + | 2.42161i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.7 | 0 | 0 | 0 | 3.77112 | + | 2.17726i | 0 | −2.35606 | − | 1.20374i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.1 | 0 | 0 | 0 | −2.94714 | + | 1.70153i | 0 | −0.0930505 | + | 2.64411i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.2 | 0 | 0 | 0 | −2.54554 | + | 1.46967i | 0 | −2.28666 | − | 1.33086i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.3 | 0 | 0 | 0 | −2.09200 | + | 1.20782i | 0 | 2.52468 | − | 0.791199i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.4 | 0 | 0 | 0 | 0.983604 | − | 0.567884i | 0 | 1.92982 | + | 1.80991i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.5 | 0 | 0 | 0 | 1.05101 | − | 0.606802i | 0 | 1.21552 | + | 2.35000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.6 | 0 | 0 | 0 | 1.77894 | − | 1.02707i | 0 | 1.06574 | − | 2.42161i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1369.7 | 0 | 0 | 0 | 3.77112 | − | 2.17726i | 0 | −2.35606 | + | 1.20374i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
91.k | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3276.2.hi.g | 14 | |
3.b | odd | 2 | 1 | 1092.2.cx.d | yes | 14 | |
7.c | even | 3 | 1 | 3276.2.fe.g | 14 | ||
13.e | even | 6 | 1 | 3276.2.fe.g | 14 | ||
21.h | odd | 6 | 1 | 1092.2.cf.d | ✓ | 14 | |
39.h | odd | 6 | 1 | 1092.2.cf.d | ✓ | 14 | |
91.k | even | 6 | 1 | inner | 3276.2.hi.g | 14 | |
273.bp | odd | 6 | 1 | 1092.2.cx.d | yes | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1092.2.cf.d | ✓ | 14 | 21.h | odd | 6 | 1 | |
1092.2.cf.d | ✓ | 14 | 39.h | odd | 6 | 1 | |
1092.2.cx.d | yes | 14 | 3.b | odd | 2 | 1 | |
1092.2.cx.d | yes | 14 | 273.bp | odd | 6 | 1 | |
3276.2.fe.g | 14 | 7.c | even | 3 | 1 | ||
3276.2.fe.g | 14 | 13.e | even | 6 | 1 | ||
3276.2.hi.g | 14 | 1.a | even | 1 | 1 | trivial | |
3276.2.hi.g | 14 | 91.k | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|