Properties

Label 3276.2.hi.g
Level 32763276
Weight 22
Character orbit 3276.hi
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 1414
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1297,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1297");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.hi (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 1414
Relative dimension: 77 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x143x13+10x12+x11171x10+105x9+1781x8+6966x7+16542x6++1251 x^{14} - 3 x^{13} + 10 x^{12} + x^{11} - 171 x^{10} + 105 x^{9} + 1781 x^{8} + 6966 x^{7} + 16542 x^{6} + \cdots + 1251 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β131,\beta_1,\ldots,\beta_{13} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ13q5+(β10+β8+β4++1)q7+(β11β10++β3)q11+(β13β8+β2)q13+(β11+β10)q17++(3β13+4β12+1)q97+O(q100) q - \beta_{13} q^{5} + ( - \beta_{10} + \beta_{8} + \beta_{4} + \cdots + 1) q^{7} + ( - \beta_{11} - \beta_{10} + \cdots + \beta_{3}) q^{11} + (\beta_{13} - \beta_{8} + \cdots - \beta_{2}) q^{13} + (\beta_{11} + \beta_{10}) q^{17}+ \cdots + (3 \beta_{13} + 4 \beta_{12} + \cdots - 1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 14q+4q76q11+10q13+12q1718q198q23+17q25+q29+3q314q35+27q4115q474q49+4q53+13q557q61+16q65+12q67+12q97+O(q100) 14 q + 4 q^{7} - 6 q^{11} + 10 q^{13} + 12 q^{17} - 18 q^{19} - 8 q^{23} + 17 q^{25} + q^{29} + 3 q^{31} - 4 q^{35} + 27 q^{41} - 15 q^{47} - 4 q^{49} + 4 q^{53} + 13 q^{55} - 7 q^{61} + 16 q^{65} + 12 q^{67}+ \cdots - 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x143x13+10x12+x11171x10+105x9+1781x8+6966x7+16542x6++1251 x^{14} - 3 x^{13} + 10 x^{12} + x^{11} - 171 x^{10} + 105 x^{9} + 1781 x^{8} + 6966 x^{7} + 16542 x^{6} + \cdots + 1251 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (33 ⁣ ⁣39ν13++11 ⁣ ⁣46)/57 ⁣ ⁣14 ( 33\!\cdots\!39 \nu^{13} + \cdots + 11\!\cdots\!46 ) / 57\!\cdots\!14 Copy content Toggle raw display
β3\beta_{3}== (28 ⁣ ⁣56ν13++19 ⁣ ⁣62)/13 ⁣ ⁣66 ( 28\!\cdots\!56 \nu^{13} + \cdots + 19\!\cdots\!62 ) / 13\!\cdots\!66 Copy content Toggle raw display
β4\beta_{4}== (13 ⁣ ⁣34ν13+18 ⁣ ⁣01)/40 ⁣ ⁣98 ( - 13\!\cdots\!34 \nu^{13} + \cdots - 18\!\cdots\!01 ) / 40\!\cdots\!98 Copy content Toggle raw display
β5\beta_{5}== (17 ⁣ ⁣89ν13+10 ⁣ ⁣76)/40 ⁣ ⁣98 ( - 17\!\cdots\!89 \nu^{13} + \cdots - 10\!\cdots\!76 ) / 40\!\cdots\!98 Copy content Toggle raw display
β6\beta_{6}== (65 ⁣ ⁣66ν13+80 ⁣ ⁣59)/13 ⁣ ⁣66 ( - 65\!\cdots\!66 \nu^{13} + \cdots - 80\!\cdots\!59 ) / 13\!\cdots\!66 Copy content Toggle raw display
β7\beta_{7}== (21533854618238ν13+82305414388808ν12282696080660293ν11+39 ⁣ ⁣67)/41 ⁣ ⁣38 ( - 21533854618238 \nu^{13} + 82305414388808 \nu^{12} - 282696080660293 \nu^{11} + \cdots - 39\!\cdots\!67 ) / 41\!\cdots\!38 Copy content Toggle raw display
β8\beta_{8}== (31182611013817ν13+115081687659689ν12394131524526978ν11+63 ⁣ ⁣10)/41 ⁣ ⁣38 ( - 31182611013817 \nu^{13} + 115081687659689 \nu^{12} - 394131524526978 \nu^{11} + \cdots - 63\!\cdots\!10 ) / 41\!\cdots\!38 Copy content Toggle raw display
β9\beta_{9}== (12 ⁣ ⁣37ν13+20 ⁣ ⁣31)/13 ⁣ ⁣66 ( - 12\!\cdots\!37 \nu^{13} + \cdots - 20\!\cdots\!31 ) / 13\!\cdots\!66 Copy content Toggle raw display
β10\beta_{10}== (22 ⁣ ⁣49ν13++43 ⁣ ⁣70)/20 ⁣ ⁣99 ( 22\!\cdots\!49 \nu^{13} + \cdots + 43\!\cdots\!70 ) / 20\!\cdots\!99 Copy content Toggle raw display
β11\beta_{11}== (27 ⁣ ⁣42ν13+54 ⁣ ⁣68)/20 ⁣ ⁣99 ( - 27\!\cdots\!42 \nu^{13} + \cdots - 54\!\cdots\!68 ) / 20\!\cdots\!99 Copy content Toggle raw display
β12\beta_{12}== (19 ⁣ ⁣28ν13+29 ⁣ ⁣81)/13 ⁣ ⁣66 ( - 19\!\cdots\!28 \nu^{13} + \cdots - 29\!\cdots\!81 ) / 13\!\cdots\!66 Copy content Toggle raw display
β13\beta_{13}== (26 ⁣ ⁣31ν13++43 ⁣ ⁣82)/13 ⁣ ⁣66 ( 26\!\cdots\!31 \nu^{13} + \cdots + 43\!\cdots\!82 ) / 13\!\cdots\!66 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β114β10β9+β82β7+β5+3β4++1 - 3 \beta_{11} - 4 \beta_{10} - \beta_{9} + \beta_{8} - 2 \beta_{7} + \beta_{5} + 3 \beta_{4} + \cdots + 1 Copy content Toggle raw display
ν3\nu^{3}== β132β1218β1113β10β9+18β817β7++6 - \beta_{13} - 2 \beta_{12} - 18 \beta_{11} - 13 \beta_{10} - \beta_{9} + 18 \beta_{8} - 17 \beta_{7} + \cdots + 6 Copy content Toggle raw display
ν4\nu^{4}== 2β1226β11+2β109β9+90β874β7+16β6++76 - 2 \beta_{12} - 26 \beta_{11} + 2 \beta_{10} - 9 \beta_{9} + 90 \beta_{8} - 74 \beta_{7} + 16 \beta_{6} + \cdots + 76 Copy content Toggle raw display
ν5\nu^{5}== 60β13+15β12+131β11+55β1035β9+105β8++145 60 \beta_{13} + 15 \beta_{12} + 131 \beta_{11} + 55 \beta_{10} - 35 \beta_{9} + 105 \beta_{8} + \cdots + 145 Copy content Toggle raw display
ν6\nu^{6}== 248β1371β12+161β11578β1076β9286β8+846 248 \beta_{13} - 71 \beta_{12} + 161 \beta_{11} - 578 \beta_{10} - 76 \beta_{9} - 286 \beta_{8} + \cdots - 846 Copy content Toggle raw display
ν7\nu^{7}== 155β131340β123804β113873β10+665β9+1563β8+6077 - 155 \beta_{13} - 1340 \beta_{12} - 3804 \beta_{11} - 3873 \beta_{10} + 665 \beta_{9} + 1563 \beta_{8} + \cdots - 6077 Copy content Toggle raw display
ν8\nu^{8}== 3299β134927β1211076β11+3716β10+4830β9+20418β8+7639 - 3299 \beta_{13} - 4927 \beta_{12} - 11076 \beta_{11} + 3716 \beta_{10} + 4830 \beta_{9} + 20418 \beta_{8} + \cdots - 7639 Copy content Toggle raw display
ν9\nu^{9}== 2637β13+3399β12+81374β11+112330β10+13965β9++24275 2637 \beta_{13} + 3399 \beta_{12} + 81374 \beta_{11} + 112330 \beta_{10} + 13965 \beta_{9} + \cdots + 24275 Copy content Toggle raw display
ν10\nu^{10}== 83383β13+63420β12+592171β11+354097β10+25464β9+215822 83383 \beta_{13} + 63420 \beta_{12} + 592171 \beta_{11} + 354097 \beta_{10} + 25464 \beta_{9} + \cdots - 215822 Copy content Toggle raw display
ν11\nu^{11}== 83469β1340939β12+622166β11466458β10+220603β9+2760396 83469 \beta_{13} - 40939 \beta_{12} + 622166 \beta_{11} - 466458 \beta_{10} + 220603 \beta_{9} + \cdots - 2760396 Copy content Toggle raw display
ν12\nu^{12}== 1970212β131359828β125892349β112979929β10+1728787β9+7756273 - 1970212 \beta_{13} - 1359828 \beta_{12} - 5892349 \beta_{11} - 2979929 \beta_{10} + 1728787 \beta_{9} + \cdots - 7756273 Copy content Toggle raw display
ν13\nu^{13}== 8448626β13+99309β124758205β11+24594061β10+5023298β9++21825281 - 8448626 \beta_{13} + 99309 \beta_{12} - 4758205 \beta_{11} + 24594061 \beta_{10} + 5023298 \beta_{9} + \cdots + 21825281 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 1+β81 + \beta_{8} 1β8-1 - \beta_{8} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1297.1
−0.715832 + 0.0321480i
1.01424 + 4.42940i
−0.0617823 1.05131i
3.90955 1.59252i
−2.04761 + 0.151491i
−0.455169 1.74670i
−0.143399 + 0.643509i
−0.715832 0.0321480i
1.01424 4.42940i
−0.0617823 + 1.05131i
3.90955 + 1.59252i
−2.04761 0.151491i
−0.455169 + 1.74670i
−0.143399 0.643509i
0 0 0 −2.94714 1.70153i 0 −0.0930505 2.64411i 0 0 0
1297.2 0 0 0 −2.54554 1.46967i 0 −2.28666 + 1.33086i 0 0 0
1297.3 0 0 0 −2.09200 1.20782i 0 2.52468 + 0.791199i 0 0 0
1297.4 0 0 0 0.983604 + 0.567884i 0 1.92982 1.80991i 0 0 0
1297.5 0 0 0 1.05101 + 0.606802i 0 1.21552 2.35000i 0 0 0
1297.6 0 0 0 1.77894 + 1.02707i 0 1.06574 + 2.42161i 0 0 0
1297.7 0 0 0 3.77112 + 2.17726i 0 −2.35606 1.20374i 0 0 0
1369.1 0 0 0 −2.94714 + 1.70153i 0 −0.0930505 + 2.64411i 0 0 0
1369.2 0 0 0 −2.54554 + 1.46967i 0 −2.28666 1.33086i 0 0 0
1369.3 0 0 0 −2.09200 + 1.20782i 0 2.52468 0.791199i 0 0 0
1369.4 0 0 0 0.983604 0.567884i 0 1.92982 + 1.80991i 0 0 0
1369.5 0 0 0 1.05101 0.606802i 0 1.21552 + 2.35000i 0 0 0
1369.6 0 0 0 1.77894 1.02707i 0 1.06574 2.42161i 0 0 0
1369.7 0 0 0 3.77112 2.17726i 0 −2.35606 + 1.20374i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1297.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.k even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.hi.g 14
3.b odd 2 1 1092.2.cx.d yes 14
7.c even 3 1 3276.2.fe.g 14
13.e even 6 1 3276.2.fe.g 14
21.h odd 6 1 1092.2.cf.d 14
39.h odd 6 1 1092.2.cf.d 14
91.k even 6 1 inner 3276.2.hi.g 14
273.bp odd 6 1 1092.2.cx.d yes 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.cf.d 14 21.h odd 6 1
1092.2.cf.d 14 39.h odd 6 1
1092.2.cx.d yes 14 3.b odd 2 1
1092.2.cx.d yes 14 273.bp odd 6 1
3276.2.fe.g 14 7.c even 3 1
3276.2.fe.g 14 13.e even 6 1
3276.2.hi.g 14 1.a even 1 1 trivial
3276.2.hi.g 14 91.k even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]):

T51426T512+494T510+294T593887T582154T57++88752 T_{5}^{14} - 26 T_{5}^{12} + 494 T_{5}^{10} + 294 T_{5}^{9} - 3887 T_{5}^{8} - 2154 T_{5}^{7} + \cdots + 88752 Copy content Toggle raw display
T1914+18T1913+95T1912234T19112853T1910+14358T199++143883 T_{19}^{14} + 18 T_{19}^{13} + 95 T_{19}^{12} - 234 T_{19}^{11} - 2853 T_{19}^{10} + 14358 T_{19}^{9} + \cdots + 143883 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T14 T^{14} Copy content Toggle raw display
33 T14 T^{14} Copy content Toggle raw display
55 T1426T12++88752 T^{14} - 26 T^{12} + \cdots + 88752 Copy content Toggle raw display
77 T144T13++823543 T^{14} - 4 T^{13} + \cdots + 823543 Copy content Toggle raw display
1111 T14+6T13++23232 T^{14} + 6 T^{13} + \cdots + 23232 Copy content Toggle raw display
1313 T1410T13++62748517 T^{14} - 10 T^{13} + \cdots + 62748517 Copy content Toggle raw display
1717 (T76T6++1626)2 (T^{7} - 6 T^{6} + \cdots + 1626)^{2} Copy content Toggle raw display
1919 T14+18T13++143883 T^{14} + 18 T^{13} + \cdots + 143883 Copy content Toggle raw display
2323 (T7+4T6+16344)2 (T^{7} + 4 T^{6} + \cdots - 16344)^{2} Copy content Toggle raw display
2929 T14++1984702500 T^{14} + \cdots + 1984702500 Copy content Toggle raw display
3131 T143T13++53868 T^{14} - 3 T^{13} + \cdots + 53868 Copy content Toggle raw display
3737 T14+303T12++5250987 T^{14} + 303 T^{12} + \cdots + 5250987 Copy content Toggle raw display
4141 T14++797070000 T^{14} + \cdots + 797070000 Copy content Toggle raw display
4343 T14+96T12++1890625 T^{14} + 96 T^{12} + \cdots + 1890625 Copy content Toggle raw display
4747 T14++4380012300 T^{14} + \cdots + 4380012300 Copy content Toggle raw display
5353 T14++1208794700304 T^{14} + \cdots + 1208794700304 Copy content Toggle raw display
5959 T14++1159898258412 T^{14} + \cdots + 1159898258412 Copy content Toggle raw display
6161 T14+7T13++5593225 T^{14} + 7 T^{13} + \cdots + 5593225 Copy content Toggle raw display
6767 T14++2106078410700 T^{14} + \cdots + 2106078410700 Copy content Toggle raw display
7171 T14++4340544367500 T^{14} + \cdots + 4340544367500 Copy content Toggle raw display
7373 T14++8265915243 T^{14} + \cdots + 8265915243 Copy content Toggle raw display
7979 T14++60397977600 T^{14} + \cdots + 60397977600 Copy content Toggle raw display
8383 T14+340T12++1080000 T^{14} + 340 T^{12} + \cdots + 1080000 Copy content Toggle raw display
8989 T14++36318923597232 T^{14} + \cdots + 36318923597232 Copy content Toggle raw display
9797 T14++42203904094323 T^{14} + \cdots + 42203904094323 Copy content Toggle raw display
show more
show less