Properties

Label 3276.2.hp.a
Level 32763276
Weight 22
Character orbit 3276.hp
Analytic conductor 26.15926.159
Analytic rank 11
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(2285,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.2285");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.hp (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 11
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2β1q5+(β22)q7+(2β3+4β1)q11+(3β21)q13+(6β33β1)q175q19+(4β34β1)q23+3β2q25+7β2q97+O(q100) q + 2 \beta_1 q^{5} + ( - \beta_{2} - 2) q^{7} + ( - 2 \beta_{3} + 4 \beta_1) q^{11} + ( - 3 \beta_{2} - 1) q^{13} + (6 \beta_{3} - 3 \beta_1) q^{17} - 5 q^{19} + (4 \beta_{3} - 4 \beta_1) q^{23} + 3 \beta_{2} q^{25}+ \cdots - 7 \beta_{2} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q710q1320q19+6q2520q3118q3722q43+22q49+48q55+10q734q7972q85+16q9114q97+O(q100) 4 q - 10 q^{7} - 10 q^{13} - 20 q^{19} + 6 q^{25} - 20 q^{31} - 18 q^{37} - 22 q^{43} + 22 q^{49} + 48 q^{55} + 10 q^{73} - 4 q^{79} - 72 q^{85} + 16 q^{91} - 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 β2\beta_{2} 1β21 - \beta_{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2285.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
0 0 0 −2.44949 + 1.41421i 0 −2.50000 + 0.866025i 0 0 0
2285.2 0 0 0 2.44949 1.41421i 0 −2.50000 + 0.866025i 0 0 0
2357.1 0 0 0 −2.44949 1.41421i 0 −2.50000 0.866025i 0 0 0
2357.2 0 0 0 2.44949 + 1.41421i 0 −2.50000 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
91.p odd 6 1 inner
273.y even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.hp.a yes 4
3.b odd 2 1 inner 3276.2.hp.a yes 4
7.d odd 6 1 3276.2.gj.a 4
13.e even 6 1 3276.2.gj.a 4
21.g even 6 1 3276.2.gj.a 4
39.h odd 6 1 3276.2.gj.a 4
91.p odd 6 1 inner 3276.2.hp.a yes 4
273.y even 6 1 inner 3276.2.hp.a yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3276.2.gj.a 4 7.d odd 6 1
3276.2.gj.a 4 13.e even 6 1
3276.2.gj.a 4 21.g even 6 1
3276.2.gj.a 4 39.h odd 6 1
3276.2.hp.a yes 4 1.a even 1 1 trivial
3276.2.hp.a yes 4 3.b odd 2 1 inner
3276.2.hp.a yes 4 91.p odd 6 1 inner
3276.2.hp.a yes 4 273.y even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T548T52+64 T_{5}^{4} - 8T_{5}^{2} + 64 acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T48T2+64 T^{4} - 8T^{2} + 64 Copy content Toggle raw display
77 (T2+5T+7)2 (T^{2} + 5 T + 7)^{2} Copy content Toggle raw display
1111 (T224)2 (T^{2} - 24)^{2} Copy content Toggle raw display
1313 (T2+5T+13)2 (T^{2} + 5 T + 13)^{2} Copy content Toggle raw display
1717 T4+54T2+2916 T^{4} + 54T^{2} + 2916 Copy content Toggle raw display
1919 (T+5)4 (T + 5)^{4} Copy content Toggle raw display
2323 T432T2+1024 T^{4} - 32T^{2} + 1024 Copy content Toggle raw display
2929 T450T2+2500 T^{4} - 50T^{2} + 2500 Copy content Toggle raw display
3131 (T2+10T+100)2 (T^{2} + 10 T + 100)^{2} Copy content Toggle raw display
3737 (T2+9T+27)2 (T^{2} + 9 T + 27)^{2} Copy content Toggle raw display
4141 T432T2+1024 T^{4} - 32T^{2} + 1024 Copy content Toggle raw display
4343 (T2+11T+121)2 (T^{2} + 11 T + 121)^{2} Copy content Toggle raw display
4747 T450T2+2500 T^{4} - 50T^{2} + 2500 Copy content Toggle raw display
5353 T4128T2+16384 T^{4} - 128 T^{2} + 16384 Copy content Toggle raw display
5959 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
6161 (T2+147)2 (T^{2} + 147)^{2} Copy content Toggle raw display
6767 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
7171 T4+150T2+22500 T^{4} + 150 T^{2} + 22500 Copy content Toggle raw display
7373 (T25T+25)2 (T^{2} - 5 T + 25)^{2} Copy content Toggle raw display
7979 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
8383 (T2+200)2 (T^{2} + 200)^{2} Copy content Toggle raw display
8989 T48T2+64 T^{4} - 8T^{2} + 64 Copy content Toggle raw display
9797 (T2+7T+49)2 (T^{2} + 7 T + 49)^{2} Copy content Toggle raw display
show more
show less