Properties

Label 33.4.e.b
Level $33$
Weight $4$
Character orbit 33.e
Analytic conductor $1.947$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,4,Mod(4,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.4");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 33.e (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94706303019\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} + \beta_{5} + \beta_{3} + \cdots - \beta_1) q^{2} + 3 \beta_{3} q^{3} + ( - 4 \beta_{7} - 3 \beta_{6} + \cdots + 2) q^{4} + ( - 2 \beta_{6} + 3 \beta_{5} + \cdots + 4) q^{5} + ( - 3 \beta_{6} - 3 \beta_{3} + \cdots - 3) q^{6}+ \cdots + (198 \beta_{7} - 18 \beta_{6} + \cdots - 99) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - 6 q^{3} - 16 q^{4} + 9 q^{5} - 18 q^{6} + 3 q^{7} + 36 q^{8} - 18 q^{9} + 8 q^{10} - 87 q^{11} - 18 q^{12} + 171 q^{13} + 12 q^{14} - 63 q^{15} + 44 q^{16} + 36 q^{17} + 81 q^{18} + 324 q^{19}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 528 \nu^{7} + 2098 \nu^{6} - 15725 \nu^{5} + 33439 \nu^{4} + 71401 \nu^{3} - 332708 \nu^{2} + \cdots + 440220 ) / 1168519 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5794 \nu^{7} - 9973 \nu^{6} - 30517 \nu^{5} + 195125 \nu^{4} - 61888 \nu^{3} + 104068 \nu^{2} + \cdots + 528473 ) / 1168519 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 7409 \nu^{7} - 59487 \nu^{6} + 183537 \nu^{5} - 171974 \nu^{4} - 58164 \nu^{3} - 77439 \nu^{2} + \cdots - 701074 ) / 1168519 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 8817 \nu^{7} + 16927 \nu^{6} - 106264 \nu^{5} + 200474 \nu^{4} + 521745 \nu^{3} + 380907 \nu^{2} + \cdots + 2809884 ) / 1168519 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 11971 \nu^{7} + 3536 \nu^{6} + 58156 \nu^{5} - 228404 \nu^{4} - 102852 \nu^{3} - 979996 \nu^{2} + \cdots - 2305776 ) / 1168519 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 13790 \nu^{7} + 57068 \nu^{6} - 113608 \nu^{5} + 65418 \nu^{4} - 266949 \nu^{3} + 6060 \nu^{2} + \cdots + 665808 ) / 1168519 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{3} - 5\beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 6\beta_{6} + 6\beta_{5} + 2\beta_{4} + 4\beta_{3} - 10\beta_{2} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{7} + 10\beta_{6} + 13\beta_{5} + 13\beta_{4} + 14\beta_{3} - 13\beta_{2} - 10\beta _1 - 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 43\beta_{7} + 25\beta_{5} + 49\beta_{4} + 18\beta_{2} - 25\beta _1 - 62 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 97\beta_{7} - 92\beta_{6} + 92\beta_{4} - 97\beta_{3} + 221\beta_{2} - 44\beta _1 - 221 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -449\beta_{6} - 260\beta_{5} - 412\beta_{3} + 896\beta_{2} - 412 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(-1 + \beta_{2} - \beta_{3} + \beta_{7}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1
0.581882 + 1.79085i
−0.390899 1.20306i
2.51217 1.82520i
−1.20316 + 0.874145i
0.581882 1.79085i
−0.390899 + 1.20306i
2.51217 + 1.82520i
−1.20316 0.874145i
−2.02339 1.47008i 0.927051 2.85317i −0.539165 1.65938i −8.44146 + 6.13308i −6.07016 + 4.41023i −10.1220 31.1524i −7.53140 + 23.1793i −7.28115 5.29007i 26.0964
4.2 0.523388 + 0.380264i 0.927051 2.85317i −2.34280 7.21040i 9.01441 6.54935i 1.57016 1.14079i 8.07696 + 24.8583i 3.11499 9.58696i −7.28115 5.29007i 7.20851
16.1 −1.45957 4.49208i −2.42705 1.76336i −11.5763 + 8.41069i 1.86000 5.72450i −4.37870 + 13.4762i −8.05785 + 5.85437i 24.1083 + 17.5157i 2.78115 + 8.55951i −28.4297
16.2 −0.0404346 0.124445i −2.42705 1.76336i 6.45828 4.69222i 2.06705 6.36172i −0.121304 + 0.373335i 11.6029 8.43002i −1.69194 1.22926i 2.78115 + 8.55951i −0.875265
25.1 −2.02339 + 1.47008i 0.927051 + 2.85317i −0.539165 + 1.65938i −8.44146 6.13308i −6.07016 4.41023i −10.1220 + 31.1524i −7.53140 23.1793i −7.28115 + 5.29007i 26.0964
25.2 0.523388 0.380264i 0.927051 + 2.85317i −2.34280 + 7.21040i 9.01441 + 6.54935i 1.57016 + 1.14079i 8.07696 24.8583i 3.11499 + 9.58696i −7.28115 + 5.29007i 7.20851
31.1 −1.45957 + 4.49208i −2.42705 + 1.76336i −11.5763 8.41069i 1.86000 + 5.72450i −4.37870 13.4762i −8.05785 5.85437i 24.1083 17.5157i 2.78115 8.55951i −28.4297
31.2 −0.0404346 + 0.124445i −2.42705 + 1.76336i 6.45828 + 4.69222i 2.06705 + 6.36172i −0.121304 0.373335i 11.6029 + 8.43002i −1.69194 + 1.22926i 2.78115 8.55951i −0.875265
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.4.e.b 8
3.b odd 2 1 99.4.f.b 8
11.c even 5 1 inner 33.4.e.b 8
11.c even 5 1 363.4.a.p 4
11.d odd 10 1 363.4.a.t 4
33.f even 10 1 1089.4.a.z 4
33.h odd 10 1 99.4.f.b 8
33.h odd 10 1 1089.4.a.bg 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.e.b 8 1.a even 1 1 trivial
33.4.e.b 8 11.c even 5 1 inner
99.4.f.b 8 3.b odd 2 1
99.4.f.b 8 33.h odd 10 1
363.4.a.p 4 11.c even 5 1
363.4.a.t 4 11.d odd 10 1
1089.4.a.z 4 33.f even 10 1
1089.4.a.bg 4 33.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 6T_{2}^{7} + 34T_{2}^{6} + 72T_{2}^{5} + 49T_{2}^{4} - 96T_{2}^{3} + 51T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{4}^{\mathrm{new}}(33, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 6 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{4} + 3 T^{3} + 9 T^{2} + \cdots + 81)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} - 9 T^{7} + \cdots + 21911761 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 14957045401 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 3138428376721 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 153370490192656 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 16499324068096 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 23\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( (T^{4} + 42 T^{3} + \cdots - 46471644)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 26\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 2860289355121 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 19\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( (T^{4} + 322 T^{3} + \cdots + 5520039844)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 20\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 27\!\cdots\!21 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 36\!\cdots\!61 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( (T^{4} + 259 T^{3} + \cdots + 1798706704)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 27\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 11\!\cdots\!81 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 82\!\cdots\!21 \) Copy content Toggle raw display
$89$ \( (T^{4} - 894 T^{3} + \cdots - 245710544796)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 98\!\cdots\!81 \) Copy content Toggle raw display
show more
show less