Properties

Label 33.8.a.d
Level $33$
Weight $8$
Character orbit 33.a
Self dual yes
Analytic conductor $10.309$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,8,Mod(1,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3087058410\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.115512.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 70x - 194 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 3) q^{2} - 27 q^{3} + ( - \beta_{2} + 13 \beta_1 - 5) q^{4} + ( - 6 \beta_{2} + 14 \beta_1 - 148) q^{5} + ( - 27 \beta_1 - 81) q^{6} + (28 \beta_{2} + 84 \beta_1 + 538) q^{7} + ( - 9 \beta_{2} + 5 \beta_1 + 1051) q^{8}+ \cdots - 970299 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{2} - 81 q^{3} - 15 q^{4} - 444 q^{5} - 243 q^{6} + 1614 q^{7} + 3153 q^{8} + 2187 q^{9} + 2880 q^{10} - 3993 q^{11} + 405 q^{12} + 20772 q^{13} + 36258 q^{14} + 11988 q^{15} + 12225 q^{16} - 14538 q^{17}+ \cdots - 2910897 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 70x - 194 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 6\nu - 45 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 6\nu - 92 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 47 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.66999
9.97132
−5.30133
−6.51124 −27.0000 −85.6037 −22.9029 175.804 −1466.13 1390.83 729.000 149.126
1.2 −2.40077 −27.0000 −122.236 −505.769 64.8207 1401.07 600.759 729.000 1214.23
1.3 17.9120 −27.0000 192.840 84.6717 −483.624 1679.06 1161.42 729.000 1516.64
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.8.a.d 3
3.b odd 2 1 99.8.a.e 3
4.b odd 2 1 528.8.a.o 3
11.b odd 2 1 363.8.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.8.a.d 3 1.a even 1 1 trivial
99.8.a.e 3 3.b odd 2 1
363.8.a.e 3 11.b odd 2 1
528.8.a.o 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 9T_{2}^{2} - 144T_{2} - 280 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(33))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 9 T^{2} + \cdots - 280 \) Copy content Toggle raw display
$3$ \( (T + 27)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 444 T^{2} + \cdots - 980800 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 3449053112 \) Copy content Toggle raw display
$11$ \( (T + 1331)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 665759180384 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 11730861043168 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 5608943166816 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 200462606267008 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 61407931779072 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 11\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 12\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 20\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 94\!\cdots\!80 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 29\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 45\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 26\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 81\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 26\!\cdots\!48 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 24\!\cdots\!84 \) Copy content Toggle raw display
show more
show less