Properties

Label 3300.2.a.t
Level $3300$
Weight $2$
Character orbit 3300.a
Self dual yes
Analytic conductor $26.351$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3300,2,Mod(1,3300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3300.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 660)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{13}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta - 1) q^{7} + q^{9} - q^{11} + (\beta - 3) q^{13} + (\beta - 1) q^{17} + 2 q^{19} + (\beta + 1) q^{21} - q^{27} + ( - 2 \beta + 2) q^{29} + ( - 2 \beta - 2) q^{31} + q^{33} - 2 \beta q^{37} + \cdots - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{7} + 2 q^{9} - 2 q^{11} - 6 q^{13} - 2 q^{17} + 4 q^{19} + 2 q^{21} - 2 q^{27} + 4 q^{29} - 4 q^{31} + 2 q^{33} + 6 q^{39} - 4 q^{41} - 2 q^{43} + 4 q^{47} + 14 q^{49} + 2 q^{51} + 12 q^{53}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
0 −1.00000 0 0 0 −4.60555 0 1.00000 0
1.2 0 −1.00000 0 0 0 2.60555 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3300.2.a.t 2
3.b odd 2 1 9900.2.a.bn 2
5.b even 2 1 660.2.a.f 2
5.c odd 4 2 3300.2.c.k 4
15.d odd 2 1 1980.2.a.j 2
15.e even 4 2 9900.2.c.v 4
20.d odd 2 1 2640.2.a.y 2
55.d odd 2 1 7260.2.a.z 2
60.h even 2 1 7920.2.a.bn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
660.2.a.f 2 5.b even 2 1
1980.2.a.j 2 15.d odd 2 1
2640.2.a.y 2 20.d odd 2 1
3300.2.a.t 2 1.a even 1 1 trivial
3300.2.c.k 4 5.c odd 4 2
7260.2.a.z 2 55.d odd 2 1
7920.2.a.bn 2 60.h even 2 1
9900.2.a.bn 2 3.b odd 2 1
9900.2.c.v 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3300))\):

\( T_{7}^{2} + 2T_{7} - 12 \) Copy content Toggle raw display
\( T_{13}^{2} + 6T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 2T_{17} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$37$ \( T^{2} - 52 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$67$ \( T^{2} - 208 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$79$ \( (T - 14)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 26T + 156 \) Copy content Toggle raw display
$89$ \( T^{2} - 4T - 204 \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less