Properties

Label 3325.2.a.y
Level $3325$
Weight $2$
Character orbit 3325.a
Self dual yes
Analytic conductor $26.550$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3325,2,Mod(1,3325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3325 = 5^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5502586721\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 24x^{5} + 36x^{4} - 70x^{3} - 20x^{2} + 32x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 665)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{2} q^{3} + (\beta_{3} - \beta_{2} + 1) q^{4} + (\beta_{5} + \beta_{2} - \beta_1 + 2) q^{6} - q^{7} + ( - \beta_{4} + \beta_{2} - 2 \beta_1 + 1) q^{8} + ( - \beta_{7} - \beta_{2}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - \beta_{2} q^{3} + (\beta_{3} - \beta_{2} + 1) q^{4} + (\beta_{5} + \beta_{2} - \beta_1 + 2) q^{6} - q^{7} + ( - \beta_{4} + \beta_{2} - 2 \beta_1 + 1) q^{8} + ( - \beta_{7} - \beta_{2}) q^{9} + ( - \beta_{7} - \beta_{5} + \beta_{3} + \cdots + 1) q^{11}+ \cdots + ( - 3 \beta_{7} + \beta_{6} - \beta_{3} + \cdots + 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 3 q^{3} + 12 q^{4} + 9 q^{6} - 8 q^{7} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 3 q^{3} + 12 q^{4} + 9 q^{6} - 8 q^{7} + 7 q^{9} + 16 q^{11} + 19 q^{12} - 2 q^{13} + 2 q^{14} + 24 q^{16} + 7 q^{17} + 5 q^{18} + 8 q^{19} - 3 q^{21} + 10 q^{22} - 7 q^{23} + q^{24} - 6 q^{26} + 15 q^{27} - 12 q^{28} + 6 q^{29} + 6 q^{31} + 18 q^{32} + 6 q^{33} - 5 q^{34} + q^{36} - 3 q^{37} - 2 q^{38} + 8 q^{39} - 7 q^{41} - 9 q^{42} - 23 q^{43} + 40 q^{44} + 13 q^{46} + 9 q^{48} + 8 q^{49} + 7 q^{51} + 2 q^{52} + 11 q^{53} - 5 q^{54} + 3 q^{57} - 52 q^{58} + 4 q^{59} + 18 q^{61} + 24 q^{62} - 7 q^{63} + 32 q^{64} + 12 q^{66} - 4 q^{67} + 13 q^{68} - 41 q^{69} + 13 q^{71} + 13 q^{72} + q^{73} - 37 q^{74} + 12 q^{76} - 16 q^{77} - 28 q^{78} + 10 q^{79} + 12 q^{81} + 7 q^{82} + 20 q^{83} - 19 q^{84} + 7 q^{86} - 6 q^{87} + 70 q^{88} - 2 q^{89} + 2 q^{91} + 43 q^{92} + 16 q^{93} - 36 q^{94} + 33 q^{96} + 42 q^{97} - 2 q^{98} + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} - 12x^{6} + 24x^{5} + 36x^{4} - 70x^{3} - 20x^{2} + 32x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} - 11\nu^{4} + 27\nu^{2} + 4\nu - 5 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 11\nu^{4} + 31\nu^{2} + 4\nu - 17 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} - 11\nu^{4} + 4\nu^{3} + 27\nu^{2} - 20\nu - 1 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} - \nu^{6} - 11\nu^{5} + 11\nu^{4} + 27\nu^{3} - 23\nu^{2} - 5\nu - 3 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} + 13\nu^{5} + 2\nu^{4} - 47\nu^{3} - 16\nu^{2} + 43\nu + 10 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} - \nu^{6} - 13\nu^{5} + 13\nu^{4} + 47\nu^{3} - 39\nu^{2} - 43\nu + 7 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{2} + 6\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + \beta_{6} + 7\beta_{3} - 6\beta_{2} - \beta _1 + 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{7} + \beta_{6} + 2\beta_{5} + 10\beta_{4} - \beta_{3} - 8\beta_{2} + 40\beta _1 - 11 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 11\beta_{7} + 11\beta_{6} + 50\beta_{3} - 35\beta_{2} - 15\beta _1 + 122 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -11\beta_{7} + 11\beta_{6} + 26\beta_{5} + 83\beta_{4} - 15\beta_{3} - 53\beta_{2} + 279\beta _1 - 98 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66888
2.22346
1.84638
0.777584
−0.0903326
−0.730875
−1.92614
−2.76897
−2.66888 −0.321744 5.12292 0 0.858696 −1.00000 −8.33471 −2.89648 0
1.2 −2.22346 2.66100 2.94379 0 −5.91664 −1.00000 −2.09848 4.08093 0
1.3 −1.84638 −1.55242 1.40913 0 2.86637 −1.00000 1.09097 −0.589984 0
1.4 −0.777584 −2.65879 −1.39536 0 2.06743 −1.00000 2.64018 4.06915 0
1.5 0.0903326 1.28544 −1.99184 0 0.116117 −1.00000 −0.360593 −1.34766 0
1.6 0.730875 −0.878233 −1.46582 0 −0.641878 −1.00000 −2.53308 −2.22871 0
1.7 1.92614 3.21872 1.71000 0 6.19970 −1.00000 −0.558573 7.36017 0
1.8 2.76897 1.24603 5.66718 0 3.45021 −1.00000 10.1543 −1.44742 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3325.2.a.y 8
5.b even 2 1 665.2.a.k 8
15.d odd 2 1 5985.2.a.bq 8
35.c odd 2 1 4655.2.a.bi 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.a.k 8 5.b even 2 1
3325.2.a.y 8 1.a even 1 1 trivial
4655.2.a.bi 8 35.c odd 2 1
5985.2.a.bq 8 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3325))\):

\( T_{2}^{8} + 2T_{2}^{7} - 12T_{2}^{6} - 24T_{2}^{5} + 36T_{2}^{4} + 70T_{2}^{3} - 20T_{2}^{2} - 32T_{2} + 3 \) Copy content Toggle raw display
\( T_{3}^{8} - 3T_{3}^{7} - 11T_{3}^{6} + 31T_{3}^{5} + 32T_{3}^{4} - 76T_{3}^{3} - 32T_{3}^{2} + 48T_{3} + 16 \) Copy content Toggle raw display
\( T_{11}^{8} - 16T_{11}^{7} + 64T_{11}^{6} + 156T_{11}^{5} - 1392T_{11}^{4} + 1408T_{11}^{3} + 3456T_{11}^{2} - 3584T_{11} - 3072 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 2 T^{7} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{8} - 3 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T + 1)^{8} \) Copy content Toggle raw display
$11$ \( T^{8} - 16 T^{7} + \cdots - 3072 \) Copy content Toggle raw display
$13$ \( T^{8} + 2 T^{7} + \cdots - 6912 \) Copy content Toggle raw display
$17$ \( T^{8} - 7 T^{7} + \cdots + 171936 \) Copy content Toggle raw display
$19$ \( (T - 1)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + 7 T^{7} + \cdots - 1294848 \) Copy content Toggle raw display
$29$ \( T^{8} - 6 T^{7} + \cdots + 35712 \) Copy content Toggle raw display
$31$ \( T^{8} - 6 T^{7} + \cdots - 49152 \) Copy content Toggle raw display
$37$ \( T^{8} + 3 T^{7} + \cdots + 5554096 \) Copy content Toggle raw display
$41$ \( T^{8} + 7 T^{7} + \cdots - 207456 \) Copy content Toggle raw display
$43$ \( T^{8} + 23 T^{7} + \cdots - 72704 \) Copy content Toggle raw display
$47$ \( T^{8} - 144 T^{6} + \cdots - 98304 \) Copy content Toggle raw display
$53$ \( T^{8} - 11 T^{7} + \cdots - 92016 \) Copy content Toggle raw display
$59$ \( T^{8} - 4 T^{7} + \cdots + 13154304 \) Copy content Toggle raw display
$61$ \( T^{8} - 18 T^{7} + \cdots + 445312 \) Copy content Toggle raw display
$67$ \( T^{8} + 4 T^{7} + \cdots - 5514688 \) Copy content Toggle raw display
$71$ \( T^{8} - 13 T^{7} + \cdots - 33408 \) Copy content Toggle raw display
$73$ \( T^{8} - T^{7} + \cdots - 32 \) Copy content Toggle raw display
$79$ \( T^{8} - 10 T^{7} + \cdots - 1986048 \) Copy content Toggle raw display
$83$ \( T^{8} - 20 T^{7} + \cdots - 13879296 \) Copy content Toggle raw display
$89$ \( T^{8} + 2 T^{7} + \cdots + 17318016 \) Copy content Toggle raw display
$97$ \( T^{8} - 42 T^{7} + \cdots + 51008 \) Copy content Toggle raw display
show more
show less