Properties

Label 3328.1.t.a
Level 33283328
Weight 11
Character orbit 3328.t
Analytic conductor 1.6611.661
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3328,1,Mod(2049,3328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3328, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3328.2049"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3328=2813 3328 = 2^{8} \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3328.t (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.660888362041.66088836204
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1664)
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.562432.1
Artin image: D4:C42D_4:C_4^2
Artin field: Galois closure of Q[x]/(x32)\mathbb{Q}[x]/(x^{32} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(i1)q5q9q132iq17iq25+2q29+(i1)q37+(i+1)q41+(i+1)q45iq49+(i+1)q65+(i+1)q73+q81+(2i+2)q85++(i1)q97+O(q100) q + (i - 1) q^{5} - q^{9} - q^{13} - 2 i q^{17} - i q^{25} + 2 q^{29} + ( - i - 1) q^{37} + ( - i + 1) q^{41} + ( - i + 1) q^{45} - i q^{49} + ( - i + 1) q^{65} + (i + 1) q^{73} + q^{81} + (2 i + 2) q^{85} + \cdots + (i - 1) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q52q92q13+4q292q37+2q41+2q45+2q65+2q73+2q81+4q852q892q97+O(q100) 2 q - 2 q^{5} - 2 q^{9} - 2 q^{13} + 4 q^{29} - 2 q^{37} + 2 q^{41} + 2 q^{45} + 2 q^{65} + 2 q^{73} + 2 q^{81} + 4 q^{85} - 2 q^{89} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3328Z)×\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times.

nn 261261 769769 15351535
χ(n)\chi(n) 11 i-i 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2049.1
1.00000i
1.00000i
0 0 0 −1.00000 1.00000i 0 0 0 −1.00000 0
3073.1 0 0 0 −1.00000 + 1.00000i 0 0 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
13.d odd 4 1 inner
52.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.1.t.a 2
4.b odd 2 1 CM 3328.1.t.a 2
8.b even 2 1 3328.1.t.b 2
8.d odd 2 1 3328.1.t.b 2
13.d odd 4 1 inner 3328.1.t.a 2
16.e even 4 1 1664.1.j.a 2
16.e even 4 1 1664.1.j.b yes 2
16.f odd 4 1 1664.1.j.a 2
16.f odd 4 1 1664.1.j.b yes 2
52.f even 4 1 inner 3328.1.t.a 2
104.j odd 4 1 3328.1.t.b 2
104.m even 4 1 3328.1.t.b 2
208.l even 4 1 1664.1.j.b yes 2
208.m odd 4 1 1664.1.j.b yes 2
208.r odd 4 1 1664.1.j.a 2
208.s even 4 1 1664.1.j.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1664.1.j.a 2 16.e even 4 1
1664.1.j.a 2 16.f odd 4 1
1664.1.j.a 2 208.r odd 4 1
1664.1.j.a 2 208.s even 4 1
1664.1.j.b yes 2 16.e even 4 1
1664.1.j.b yes 2 16.f odd 4 1
1664.1.j.b yes 2 208.l even 4 1
1664.1.j.b yes 2 208.m odd 4 1
3328.1.t.a 2 1.a even 1 1 trivial
3328.1.t.a 2 4.b odd 2 1 CM
3328.1.t.a 2 13.d odd 4 1 inner
3328.1.t.a 2 52.f even 4 1 inner
3328.1.t.b 2 8.b even 2 1
3328.1.t.b 2 8.d odd 2 1
3328.1.t.b 2 104.j odd 4 1
3328.1.t.b 2 104.m even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3328,[χ])S_{1}^{\mathrm{new}}(3328, [\chi]):

T3 T_{3} Copy content Toggle raw display
T52+2T5+2 T_{5}^{2} + 2T_{5} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
4141 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
9797 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
show more
show less