Properties

Label 3328.1.t.d
Level $3328$
Weight $1$
Character orbit 3328.t
Analytic conductor $1.661$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,1,Mod(2049,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.2049");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3328.t (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1664)
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.70304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + q^{3} - \zeta_{8} q^{5} + \zeta_{8}^{3} q^{7} + (\zeta_{8}^{2} - 1) q^{11} - \zeta_{8} q^{13} - \zeta_{8} q^{15} - \zeta_{8}^{2} q^{17} + \zeta_{8}^{3} q^{21} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{23} + \cdots + ( - \zeta_{8}^{2} - 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{11} - 4 q^{27} - 4 q^{33} + 4 q^{35} - 4 q^{67} - 4 q^{81} + 4 q^{83} + 4 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(1\) \(\zeta_{8}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2049.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0 1.00000 0 −0.707107 0.707107i 0 −0.707107 + 0.707107i 0 0 0
2049.2 0 1.00000 0 0.707107 + 0.707107i 0 0.707107 0.707107i 0 0 0
3073.1 0 1.00000 0 −0.707107 + 0.707107i 0 −0.707107 0.707107i 0 0 0
3073.2 0 1.00000 0 0.707107 0.707107i 0 0.707107 + 0.707107i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
13.d odd 4 1 inner
104.m even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.1.t.d 4
4.b odd 2 1 3328.1.t.c 4
8.b even 2 1 3328.1.t.c 4
8.d odd 2 1 inner 3328.1.t.d 4
13.d odd 4 1 inner 3328.1.t.d 4
16.e even 4 1 1664.1.j.c 4
16.e even 4 1 1664.1.j.d yes 4
16.f odd 4 1 1664.1.j.c 4
16.f odd 4 1 1664.1.j.d yes 4
52.f even 4 1 3328.1.t.c 4
104.j odd 4 1 3328.1.t.c 4
104.m even 4 1 inner 3328.1.t.d 4
208.l even 4 1 1664.1.j.d yes 4
208.m odd 4 1 1664.1.j.c 4
208.r odd 4 1 1664.1.j.d yes 4
208.s even 4 1 1664.1.j.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1664.1.j.c 4 16.e even 4 1
1664.1.j.c 4 16.f odd 4 1
1664.1.j.c 4 208.m odd 4 1
1664.1.j.c 4 208.s even 4 1
1664.1.j.d yes 4 16.e even 4 1
1664.1.j.d yes 4 16.f odd 4 1
1664.1.j.d yes 4 208.l even 4 1
1664.1.j.d yes 4 208.r odd 4 1
3328.1.t.c 4 4.b odd 2 1
3328.1.t.c 4 8.b even 2 1
3328.1.t.c 4 52.f even 4 1
3328.1.t.c 4 104.j odd 4 1
3328.1.t.d 4 1.a even 1 1 trivial
3328.1.t.d 4 8.d odd 2 1 inner
3328.1.t.d 4 13.d odd 4 1 inner
3328.1.t.d 4 104.m even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3328, [\chi])\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{4} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 1 \) Copy content Toggle raw display
$17$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 1 \) Copy content Toggle raw display
$53$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 1 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
show more
show less