Properties

Label 3328.2.a.bm
Level $3328$
Weight $2$
Character orbit 3328.a
Self dual yes
Analytic conductor $26.574$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 832)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_1 q^{5} + (\beta_{3} - \beta_1) q^{7} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{9} - \beta_{3} q^{11} + q^{13} + (\beta_{3} - \beta_{2} - \beta_1 - 4) q^{15} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{17}+ \cdots + (2 \beta_{3} - \beta_{2} - 4 \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{5} + 6 q^{9} - 2 q^{11} + 4 q^{13} - 18 q^{15} - 2 q^{17} - 6 q^{19} - 10 q^{21} - 12 q^{23} - 2 q^{25} + 14 q^{27} + 16 q^{29} - 10 q^{31} - 8 q^{33} + 10 q^{35} - 14 q^{37} + 2 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 7\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 5\nu + 6 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.27743
−0.386509
1.38651
3.27743
0 −2.27743 0 2.27743 0 −0.121816 0 2.18667 0
1.2 0 −0.386509 0 0.386509 0 4.17452 0 −2.85061 0
1.3 0 1.38651 0 −1.38651 0 −2.44247 0 −1.07759 0
1.4 0 3.27743 0 −3.27743 0 −1.61023 0 7.74153 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.2.a.bm 4
4.b odd 2 1 3328.2.a.bi 4
8.b even 2 1 3328.2.a.bj 4
8.d odd 2 1 3328.2.a.bn 4
16.e even 4 2 832.2.b.c 8
16.f odd 4 2 832.2.b.d yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
832.2.b.c 8 16.e even 4 2
832.2.b.d yes 8 16.f odd 4 2
3328.2.a.bi 4 4.b odd 2 1
3328.2.a.bj 4 8.b even 2 1
3328.2.a.bm 4 1.a even 1 1 trivial
3328.2.a.bn 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3328))\):

\( T_{3}^{4} - 2T_{3}^{3} - 7T_{3}^{2} + 8T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{4} + 2T_{5}^{3} - 7T_{5}^{2} - 8T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 13T_{7}^{2} - 18T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} - 13 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots - 104 \) Copy content Toggle raw display
$19$ \( T^{4} + 6 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{4} + 12 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$29$ \( T^{4} - 16 T^{3} + \cdots - 1184 \) Copy content Toggle raw display
$31$ \( T^{4} + 10 T^{3} + \cdots - 1472 \) Copy content Toggle raw display
$37$ \( T^{4} + 14 T^{3} + \cdots - 764 \) Copy content Toggle raw display
$41$ \( T^{4} + 20 T^{3} + \cdots - 368 \) Copy content Toggle raw display
$43$ \( T^{4} + 14 T^{3} + \cdots + 436 \) Copy content Toggle raw display
$47$ \( T^{4} + 20 T^{3} + \cdots - 194 \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$59$ \( T^{4} + 2 T^{3} + \cdots + 184 \) Copy content Toggle raw display
$61$ \( T^{4} - 108 T^{2} + \cdots + 576 \) Copy content Toggle raw display
$67$ \( T^{4} - 6 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$71$ \( T^{4} + 28 T^{3} + \cdots + 1366 \) Copy content Toggle raw display
$73$ \( T^{4} - 8 T^{3} + \cdots + 5584 \) Copy content Toggle raw display
$79$ \( T^{4} + 16 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$83$ \( T^{4} + 22 T^{3} + \cdots - 872 \) Copy content Toggle raw display
$89$ \( T^{4} - 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$97$ \( T^{4} + 20 T^{3} + \cdots - 32 \) Copy content Toggle raw display
show more
show less