Properties

Label 3328.2.a.x.1.1
Level $3328$
Weight $2$
Character 3328.1
Self dual yes
Analytic conductor $26.574$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1664)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3328.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843 q^{3} +2.00000 q^{5} -4.24264 q^{7} +5.00000 q^{9} -1.41421 q^{11} -1.00000 q^{13} -5.65685 q^{15} -4.00000 q^{17} -1.41421 q^{19} +12.0000 q^{21} +5.65685 q^{23} -1.00000 q^{25} -5.65685 q^{27} -2.00000 q^{29} -9.89949 q^{31} +4.00000 q^{33} -8.48528 q^{35} +2.00000 q^{37} +2.82843 q^{39} -6.00000 q^{41} +11.3137 q^{43} +10.0000 q^{45} -7.07107 q^{47} +11.0000 q^{49} +11.3137 q^{51} +12.0000 q^{53} -2.82843 q^{55} +4.00000 q^{57} -9.89949 q^{59} -12.0000 q^{61} -21.2132 q^{63} -2.00000 q^{65} +9.89949 q^{67} -16.0000 q^{69} -4.24264 q^{71} -14.0000 q^{73} +2.82843 q^{75} +6.00000 q^{77} +8.48528 q^{79} +1.00000 q^{81} +7.07107 q^{83} -8.00000 q^{85} +5.65685 q^{87} +14.0000 q^{89} +4.24264 q^{91} +28.0000 q^{93} -2.82843 q^{95} -2.00000 q^{97} -7.07107 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 10 q^{9} - 2 q^{13} - 8 q^{17} + 24 q^{21} - 2 q^{25} - 4 q^{29} + 8 q^{33} + 4 q^{37} - 12 q^{41} + 20 q^{45} + 22 q^{49} + 24 q^{53} + 8 q^{57} - 24 q^{61} - 4 q^{65} - 32 q^{69} - 28 q^{73}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.82843 −1.63299 −0.816497 0.577350i \(-0.804087\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) −4.24264 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 0 0
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −5.65685 −1.46059
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −1.41421 −0.324443 −0.162221 0.986754i \(-0.551866\pi\)
−0.162221 + 0.986754i \(0.551866\pi\)
\(20\) 0 0
\(21\) 12.0000 2.61861
\(22\) 0 0
\(23\) 5.65685 1.17954 0.589768 0.807573i \(-0.299219\pi\)
0.589768 + 0.807573i \(0.299219\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −9.89949 −1.77800 −0.889001 0.457905i \(-0.848600\pi\)
−0.889001 + 0.457905i \(0.848600\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) −8.48528 −1.43427
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 2.82843 0.452911
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 11.3137 1.72532 0.862662 0.505781i \(-0.168795\pi\)
0.862662 + 0.505781i \(0.168795\pi\)
\(44\) 0 0
\(45\) 10.0000 1.49071
\(46\) 0 0
\(47\) −7.07107 −1.03142 −0.515711 0.856763i \(-0.672472\pi\)
−0.515711 + 0.856763i \(0.672472\pi\)
\(48\) 0 0
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 11.3137 1.58424
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) −2.82843 −0.381385
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) −9.89949 −1.28880 −0.644402 0.764687i \(-0.722894\pi\)
−0.644402 + 0.764687i \(0.722894\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) −21.2132 −2.67261
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 9.89949 1.20942 0.604708 0.796447i \(-0.293290\pi\)
0.604708 + 0.796447i \(0.293290\pi\)
\(68\) 0 0
\(69\) −16.0000 −1.92617
\(70\) 0 0
\(71\) −4.24264 −0.503509 −0.251754 0.967791i \(-0.581008\pi\)
−0.251754 + 0.967791i \(0.581008\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) 2.82843 0.326599
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.07107 0.776151 0.388075 0.921628i \(-0.373140\pi\)
0.388075 + 0.921628i \(0.373140\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) 0 0
\(87\) 5.65685 0.606478
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 4.24264 0.444750
\(92\) 0 0
\(93\) 28.0000 2.90346
\(94\) 0 0
\(95\) −2.82843 −0.290191
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −7.07107 −0.710669
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 24.0000 2.34216
\(106\) 0 0
\(107\) −2.82843 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −5.65685 −0.536925
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 11.3137 1.05501
\(116\) 0 0
\(117\) −5.00000 −0.462250
\(118\) 0 0
\(119\) 16.9706 1.55569
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 16.9706 1.53018
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) 0 0
\(129\) −32.0000 −2.81744
\(130\) 0 0
\(131\) −2.82843 −0.247121 −0.123560 0.992337i \(-0.539431\pi\)
−0.123560 + 0.992337i \(0.539431\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) −11.3137 −0.973729
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 2.82843 0.239904 0.119952 0.992780i \(-0.461726\pi\)
0.119952 + 0.992780i \(0.461726\pi\)
\(140\) 0 0
\(141\) 20.0000 1.68430
\(142\) 0 0
\(143\) 1.41421 0.118262
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) −31.1127 −2.56613
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 12.7279 1.03578 0.517892 0.855446i \(-0.326717\pi\)
0.517892 + 0.855446i \(0.326717\pi\)
\(152\) 0 0
\(153\) −20.0000 −1.61690
\(154\) 0 0
\(155\) −19.7990 −1.59029
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) −33.9411 −2.69171
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) −1.41421 −0.110770 −0.0553849 0.998465i \(-0.517639\pi\)
−0.0553849 + 0.998465i \(0.517639\pi\)
\(164\) 0 0
\(165\) 8.00000 0.622799
\(166\) 0 0
\(167\) −18.3848 −1.42266 −0.711328 0.702860i \(-0.751906\pi\)
−0.711328 + 0.702860i \(0.751906\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −7.07107 −0.540738
\(172\) 0 0
\(173\) 16.0000 1.21646 0.608229 0.793762i \(-0.291880\pi\)
0.608229 + 0.793762i \(0.291880\pi\)
\(174\) 0 0
\(175\) 4.24264 0.320713
\(176\) 0 0
\(177\) 28.0000 2.10461
\(178\) 0 0
\(179\) 22.6274 1.69125 0.845626 0.533775i \(-0.179227\pi\)
0.845626 + 0.533775i \(0.179227\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 0 0
\(183\) 33.9411 2.50900
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 5.65685 0.413670
\(188\) 0 0
\(189\) 24.0000 1.74574
\(190\) 0 0
\(191\) 14.1421 1.02329 0.511645 0.859197i \(-0.329036\pi\)
0.511645 + 0.859197i \(0.329036\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 0 0
\(195\) 5.65685 0.405096
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) 0 0
\(201\) −28.0000 −1.97497
\(202\) 0 0
\(203\) 8.48528 0.595550
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) 0 0
\(207\) 28.2843 1.96589
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) −14.1421 −0.973585 −0.486792 0.873518i \(-0.661833\pi\)
−0.486792 + 0.873518i \(0.661833\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) 22.6274 1.54318
\(216\) 0 0
\(217\) 42.0000 2.85115
\(218\) 0 0
\(219\) 39.5980 2.67578
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 15.5563 1.04173 0.520865 0.853639i \(-0.325609\pi\)
0.520865 + 0.853639i \(0.325609\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) −18.3848 −1.22024 −0.610120 0.792309i \(-0.708879\pi\)
−0.610120 + 0.792309i \(0.708879\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) −16.9706 −1.11658
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −14.1421 −0.922531
\(236\) 0 0
\(237\) −24.0000 −1.55897
\(238\) 0 0
\(239\) −1.41421 −0.0914779 −0.0457389 0.998953i \(-0.514564\pi\)
−0.0457389 + 0.998953i \(0.514564\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 14.1421 0.907218
\(244\) 0 0
\(245\) 22.0000 1.40553
\(246\) 0 0
\(247\) 1.41421 0.0899843
\(248\) 0 0
\(249\) −20.0000 −1.26745
\(250\) 0 0
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 22.6274 1.41698
\(256\) 0 0
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 0 0
\(259\) −8.48528 −0.527250
\(260\) 0 0
\(261\) −10.0000 −0.618984
\(262\) 0 0
\(263\) 8.48528 0.523225 0.261612 0.965173i \(-0.415746\pi\)
0.261612 + 0.965173i \(0.415746\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) 0 0
\(267\) −39.5980 −2.42336
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 26.8701 1.63224 0.816120 0.577883i \(-0.196121\pi\)
0.816120 + 0.577883i \(0.196121\pi\)
\(272\) 0 0
\(273\) −12.0000 −0.726273
\(274\) 0 0
\(275\) 1.41421 0.0852803
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) −49.4975 −2.96334
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 8.00000 0.473879
\(286\) 0 0
\(287\) 25.4558 1.50261
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 5.65685 0.331611
\(292\) 0 0
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) −19.7990 −1.15274
\(296\) 0 0
\(297\) 8.00000 0.464207
\(298\) 0 0
\(299\) −5.65685 −0.327144
\(300\) 0 0
\(301\) −48.0000 −2.76667
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −24.0000 −1.37424
\(306\) 0 0
\(307\) −7.07107 −0.403567 −0.201784 0.979430i \(-0.564674\pi\)
−0.201784 + 0.979430i \(0.564674\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.6274 1.28308 0.641542 0.767088i \(-0.278295\pi\)
0.641542 + 0.767088i \(0.278295\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) 0 0
\(315\) −42.4264 −2.39046
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) 2.82843 0.158362
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 5.65685 0.314756
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) −5.65685 −0.312825
\(328\) 0 0
\(329\) 30.0000 1.65395
\(330\) 0 0
\(331\) −9.89949 −0.544125 −0.272063 0.962280i \(-0.587706\pi\)
−0.272063 + 0.962280i \(0.587706\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 19.7990 1.08173
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.0000 0.758143
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) −32.0000 −1.72282
\(346\) 0 0
\(347\) −2.82843 −0.151838 −0.0759190 0.997114i \(-0.524189\pi\)
−0.0759190 + 0.997114i \(0.524189\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 5.65685 0.301941
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −8.48528 −0.450352
\(356\) 0 0
\(357\) −48.0000 −2.54043
\(358\) 0 0
\(359\) 18.3848 0.970311 0.485156 0.874428i \(-0.338763\pi\)
0.485156 + 0.874428i \(0.338763\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) 25.4558 1.33609
\(364\) 0 0
\(365\) −28.0000 −1.46559
\(366\) 0 0
\(367\) 8.48528 0.442928 0.221464 0.975169i \(-0.428916\pi\)
0.221464 + 0.975169i \(0.428916\pi\)
\(368\) 0 0
\(369\) −30.0000 −1.56174
\(370\) 0 0
\(371\) −50.9117 −2.64320
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) 0 0
\(375\) 33.9411 1.75271
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −9.89949 −0.508503 −0.254251 0.967138i \(-0.581829\pi\)
−0.254251 + 0.967138i \(0.581829\pi\)
\(380\) 0 0
\(381\) −48.0000 −2.45911
\(382\) 0 0
\(383\) −24.0416 −1.22847 −0.614235 0.789123i \(-0.710535\pi\)
−0.614235 + 0.789123i \(0.710535\pi\)
\(384\) 0 0
\(385\) 12.0000 0.611577
\(386\) 0 0
\(387\) 56.5685 2.87554
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) −22.6274 −1.14432
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 0 0
\(395\) 16.9706 0.853882
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) −16.9706 −0.849591
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 9.89949 0.493129
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) −2.82843 −0.140200
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 50.9117 2.51129
\(412\) 0 0
\(413\) 42.0000 2.06668
\(414\) 0 0
\(415\) 14.1421 0.694210
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) 14.1421 0.690889 0.345444 0.938439i \(-0.387728\pi\)
0.345444 + 0.938439i \(0.387728\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 0 0
\(423\) −35.3553 −1.71904
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 50.9117 2.46379
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) −15.5563 −0.749323 −0.374661 0.927162i \(-0.622241\pi\)
−0.374661 + 0.927162i \(0.622241\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 11.3137 0.542451
\(436\) 0 0
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) −16.9706 −0.809961 −0.404980 0.914325i \(-0.632722\pi\)
−0.404980 + 0.914325i \(0.632722\pi\)
\(440\) 0 0
\(441\) 55.0000 2.61905
\(442\) 0 0
\(443\) −19.7990 −0.940678 −0.470339 0.882486i \(-0.655868\pi\)
−0.470339 + 0.882486i \(0.655868\pi\)
\(444\) 0 0
\(445\) 28.0000 1.32733
\(446\) 0 0
\(447\) −16.9706 −0.802680
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 8.48528 0.399556
\(452\) 0 0
\(453\) −36.0000 −1.69143
\(454\) 0 0
\(455\) 8.48528 0.397796
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 22.6274 1.05616
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) 9.89949 0.460069 0.230034 0.973183i \(-0.426116\pi\)
0.230034 + 0.973183i \(0.426116\pi\)
\(464\) 0 0
\(465\) 56.0000 2.59694
\(466\) 0 0
\(467\) −16.9706 −0.785304 −0.392652 0.919687i \(-0.628442\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(468\) 0 0
\(469\) −42.0000 −1.93938
\(470\) 0 0
\(471\) −62.2254 −2.86719
\(472\) 0 0
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 1.41421 0.0648886
\(476\) 0 0
\(477\) 60.0000 2.74721
\(478\) 0 0
\(479\) −21.2132 −0.969256 −0.484628 0.874720i \(-0.661045\pi\)
−0.484628 + 0.874720i \(0.661045\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 67.8823 3.08875
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) 15.5563 0.704925 0.352463 0.935826i \(-0.385344\pi\)
0.352463 + 0.935826i \(0.385344\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 11.3137 0.510581 0.255290 0.966864i \(-0.417829\pi\)
0.255290 + 0.966864i \(0.417829\pi\)
\(492\) 0 0
\(493\) 8.00000 0.360302
\(494\) 0 0
\(495\) −14.1421 −0.635642
\(496\) 0 0
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) 4.24264 0.189927 0.0949633 0.995481i \(-0.469727\pi\)
0.0949633 + 0.995481i \(0.469727\pi\)
\(500\) 0 0
\(501\) 52.0000 2.32319
\(502\) 0 0
\(503\) 2.82843 0.126113 0.0630567 0.998010i \(-0.479915\pi\)
0.0630567 + 0.998010i \(0.479915\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.82843 −0.125615
\(508\) 0 0
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 59.3970 2.62757
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.0000 0.439799
\(518\) 0 0
\(519\) −45.2548 −1.98647
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −42.4264 −1.85518 −0.927589 0.373603i \(-0.878122\pi\)
−0.927589 + 0.373603i \(0.878122\pi\)
\(524\) 0 0
\(525\) −12.0000 −0.523723
\(526\) 0 0
\(527\) 39.5980 1.72492
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) −49.4975 −2.14801
\(532\) 0 0
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) −5.65685 −0.244567
\(536\) 0 0
\(537\) −64.0000 −2.76180
\(538\) 0 0
\(539\) −15.5563 −0.670059
\(540\) 0 0
\(541\) 6.00000 0.257960 0.128980 0.991647i \(-0.458830\pi\)
0.128980 + 0.991647i \(0.458830\pi\)
\(542\) 0 0
\(543\) −73.5391 −3.15587
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) −25.4558 −1.08841 −0.544207 0.838951i \(-0.683169\pi\)
−0.544207 + 0.838951i \(0.683169\pi\)
\(548\) 0 0
\(549\) −60.0000 −2.56074
\(550\) 0 0
\(551\) 2.82843 0.120495
\(552\) 0 0
\(553\) −36.0000 −1.53088
\(554\) 0 0
\(555\) −11.3137 −0.480240
\(556\) 0 0
\(557\) 38.0000 1.61011 0.805056 0.593199i \(-0.202135\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) 0 0
\(559\) −11.3137 −0.478519
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) −16.9706 −0.715224 −0.357612 0.933870i \(-0.616409\pi\)
−0.357612 + 0.933870i \(0.616409\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −4.24264 −0.178174
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 5.65685 0.236732 0.118366 0.992970i \(-0.462234\pi\)
0.118366 + 0.992970i \(0.462234\pi\)
\(572\) 0 0
\(573\) −40.0000 −1.67102
\(574\) 0 0
\(575\) −5.65685 −0.235907
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 0 0
\(579\) −62.2254 −2.58600
\(580\) 0 0
\(581\) −30.0000 −1.24461
\(582\) 0 0
\(583\) −16.9706 −0.702849
\(584\) 0 0
\(585\) −10.0000 −0.413449
\(586\) 0 0
\(587\) 35.3553 1.45927 0.729636 0.683836i \(-0.239690\pi\)
0.729636 + 0.683836i \(0.239690\pi\)
\(588\) 0 0
\(589\) 14.0000 0.576860
\(590\) 0 0
\(591\) −5.65685 −0.232692
\(592\) 0 0
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 33.9411 1.39145
\(596\) 0 0
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) −31.1127 −1.27123 −0.635615 0.772006i \(-0.719253\pi\)
−0.635615 + 0.772006i \(0.719253\pi\)
\(600\) 0 0
\(601\) 16.0000 0.652654 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(602\) 0 0
\(603\) 49.4975 2.01569
\(604\) 0 0
\(605\) −18.0000 −0.731804
\(606\) 0 0
\(607\) 14.1421 0.574012 0.287006 0.957929i \(-0.407340\pi\)
0.287006 + 0.957929i \(0.407340\pi\)
\(608\) 0 0
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) 7.07107 0.286065
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 33.9411 1.36864
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) −24.0416 −0.966315 −0.483157 0.875534i \(-0.660510\pi\)
−0.483157 + 0.875534i \(0.660510\pi\)
\(620\) 0 0
\(621\) −32.0000 −1.28412
\(622\) 0 0
\(623\) −59.3970 −2.37969
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −5.65685 −0.225913
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −9.89949 −0.394093 −0.197046 0.980394i \(-0.563135\pi\)
−0.197046 + 0.980394i \(0.563135\pi\)
\(632\) 0 0
\(633\) 40.0000 1.58986
\(634\) 0 0
\(635\) 33.9411 1.34691
\(636\) 0 0
\(637\) −11.0000 −0.435836
\(638\) 0 0
\(639\) −21.2132 −0.839181
\(640\) 0 0
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) 12.7279 0.501940 0.250970 0.967995i \(-0.419250\pi\)
0.250970 + 0.967995i \(0.419250\pi\)
\(644\) 0 0
\(645\) −64.0000 −2.52000
\(646\) 0 0
\(647\) 33.9411 1.33436 0.667182 0.744895i \(-0.267500\pi\)
0.667182 + 0.744895i \(0.267500\pi\)
\(648\) 0 0
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) −118.794 −4.65590
\(652\) 0 0
\(653\) 22.0000 0.860927 0.430463 0.902608i \(-0.358350\pi\)
0.430463 + 0.902608i \(0.358350\pi\)
\(654\) 0 0
\(655\) −5.65685 −0.221032
\(656\) 0 0
\(657\) −70.0000 −2.73096
\(658\) 0 0
\(659\) −2.82843 −0.110180 −0.0550899 0.998481i \(-0.517545\pi\)
−0.0550899 + 0.998481i \(0.517545\pi\)
\(660\) 0 0
\(661\) 50.0000 1.94477 0.972387 0.233373i \(-0.0749763\pi\)
0.972387 + 0.233373i \(0.0749763\pi\)
\(662\) 0 0
\(663\) −11.3137 −0.439388
\(664\) 0 0
\(665\) 12.0000 0.465340
\(666\) 0 0
\(667\) −11.3137 −0.438069
\(668\) 0 0
\(669\) −44.0000 −1.70114
\(670\) 0 0
\(671\) 16.9706 0.655141
\(672\) 0 0
\(673\) −44.0000 −1.69608 −0.848038 0.529936i \(-0.822216\pi\)
−0.848038 + 0.529936i \(0.822216\pi\)
\(674\) 0 0
\(675\) 5.65685 0.217732
\(676\) 0 0
\(677\) 20.0000 0.768662 0.384331 0.923195i \(-0.374432\pi\)
0.384331 + 0.923195i \(0.374432\pi\)
\(678\) 0 0
\(679\) 8.48528 0.325635
\(680\) 0 0
\(681\) 52.0000 1.99264
\(682\) 0 0
\(683\) −12.7279 −0.487020 −0.243510 0.969898i \(-0.578299\pi\)
−0.243510 + 0.969898i \(0.578299\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) −5.65685 −0.215822
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 38.1838 1.45258 0.726289 0.687389i \(-0.241243\pi\)
0.726289 + 0.687389i \(0.241243\pi\)
\(692\) 0 0
\(693\) 30.0000 1.13961
\(694\) 0 0
\(695\) 5.65685 0.214577
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) −16.9706 −0.641886
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −2.82843 −0.106676
\(704\) 0 0
\(705\) 40.0000 1.50649
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 42.4264 1.59111
\(712\) 0 0
\(713\) −56.0000 −2.09722
\(714\) 0 0
\(715\) 2.82843 0.105777
\(716\) 0 0
\(717\) 4.00000 0.149383
\(718\) 0 0
\(719\) −33.9411 −1.26579 −0.632895 0.774237i \(-0.718134\pi\)
−0.632895 + 0.774237i \(0.718134\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −28.2843 −1.05190
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 22.6274 0.839204 0.419602 0.907708i \(-0.362170\pi\)
0.419602 + 0.907708i \(0.362170\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) −45.2548 −1.67381
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) −62.2254 −2.29522
\(736\) 0 0
\(737\) −14.0000 −0.515697
\(738\) 0 0
\(739\) −4.24264 −0.156068 −0.0780340 0.996951i \(-0.524864\pi\)
−0.0780340 + 0.996951i \(0.524864\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) −9.89949 −0.363177 −0.181589 0.983375i \(-0.558124\pi\)
−0.181589 + 0.983375i \(0.558124\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 0 0
\(747\) 35.3553 1.29358
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −22.6274 −0.825686 −0.412843 0.910802i \(-0.635464\pi\)
−0.412843 + 0.910802i \(0.635464\pi\)
\(752\) 0 0
\(753\) 16.0000 0.583072
\(754\) 0 0
\(755\) 25.4558 0.926433
\(756\) 0 0
\(757\) −44.0000 −1.59921 −0.799604 0.600528i \(-0.794957\pi\)
−0.799604 + 0.600528i \(0.794957\pi\)
\(758\) 0 0
\(759\) 22.6274 0.821323
\(760\) 0 0
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) −8.48528 −0.307188
\(764\) 0 0
\(765\) −40.0000 −1.44620
\(766\) 0 0
\(767\) 9.89949 0.357450
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) −84.8528 −3.05590
\(772\) 0 0
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 9.89949 0.355600
\(776\) 0 0
\(777\) 24.0000 0.860995
\(778\) 0 0
\(779\) 8.48528 0.304017
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) 11.3137 0.404319
\(784\) 0 0
\(785\) 44.0000 1.57043
\(786\) 0 0
\(787\) 21.2132 0.756169 0.378085 0.925771i \(-0.376583\pi\)
0.378085 + 0.925771i \(0.376583\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 12.0000 0.426132
\(794\) 0 0
\(795\) −67.8823 −2.40754
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 28.2843 1.00063
\(800\) 0 0
\(801\) 70.0000 2.47333
\(802\) 0 0
\(803\) 19.7990 0.698691
\(804\) 0 0
\(805\) −48.0000 −1.69178
\(806\) 0 0
\(807\) 39.5980 1.39391
\(808\) 0 0
\(809\) 48.0000 1.68759 0.843795 0.536666i \(-0.180316\pi\)
0.843795 + 0.536666i \(0.180316\pi\)
\(810\) 0 0
\(811\) −18.3848 −0.645577 −0.322788 0.946471i \(-0.604620\pi\)
−0.322788 + 0.946471i \(0.604620\pi\)
\(812\) 0 0
\(813\) −76.0000 −2.66544
\(814\) 0 0
\(815\) −2.82843 −0.0990755
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) 21.2132 0.741249
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) −5.65685 −0.197186 −0.0985928 0.995128i \(-0.531434\pi\)
−0.0985928 + 0.995128i \(0.531434\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 35.3553 1.22943 0.614713 0.788751i \(-0.289272\pi\)
0.614713 + 0.788751i \(0.289272\pi\)
\(828\) 0 0
\(829\) −40.0000 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(830\) 0 0
\(831\) −22.6274 −0.784936
\(832\) 0 0
\(833\) −44.0000 −1.52451
\(834\) 0 0
\(835\) −36.7696 −1.27246
\(836\) 0 0
\(837\) 56.0000 1.93564
\(838\) 0 0
\(839\) 12.7279 0.439417 0.219708 0.975566i \(-0.429489\pi\)
0.219708 + 0.975566i \(0.429489\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 62.2254 2.14316
\(844\) 0 0
\(845\) 2.00000 0.0688021
\(846\) 0 0
\(847\) 38.1838 1.31201
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.3137 0.387829
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) 0 0
\(855\) −14.1421 −0.483651
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 36.7696 1.25456 0.627280 0.778793i \(-0.284168\pi\)
0.627280 + 0.778793i \(0.284168\pi\)
\(860\) 0 0
\(861\) −72.0000 −2.45375
\(862\) 0 0
\(863\) 7.07107 0.240702 0.120351 0.992731i \(-0.461598\pi\)
0.120351 + 0.992731i \(0.461598\pi\)
\(864\) 0 0
\(865\) 32.0000 1.08803
\(866\) 0 0
\(867\) 2.82843 0.0960584
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) −9.89949 −0.335432
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 50.9117 1.72113
\(876\) 0 0
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 0 0
\(879\) −39.5980 −1.33561
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) −33.9411 −1.14221 −0.571105 0.820877i \(-0.693485\pi\)
−0.571105 + 0.820877i \(0.693485\pi\)
\(884\) 0 0
\(885\) 56.0000 1.88242
\(886\) 0 0
\(887\) 31.1127 1.04466 0.522331 0.852743i \(-0.325063\pi\)
0.522331 + 0.852743i \(0.325063\pi\)
\(888\) 0 0
\(889\) −72.0000 −2.41480
\(890\) 0 0
\(891\) −1.41421 −0.0473779
\(892\) 0 0
\(893\) 10.0000 0.334637
\(894\) 0 0
\(895\) 45.2548 1.51270
\(896\) 0 0
\(897\) 16.0000 0.534224
\(898\) 0 0
\(899\) 19.7990 0.660333
\(900\) 0 0
\(901\) −48.0000 −1.59911
\(902\) 0 0
\(903\) 135.765 4.51796
\(904\) 0 0
\(905\) 52.0000 1.72854
\(906\) 0 0
\(907\) −28.2843 −0.939164 −0.469582 0.882889i \(-0.655595\pi\)
−0.469582 + 0.882889i \(0.655595\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −48.0833 −1.59307 −0.796535 0.604593i \(-0.793336\pi\)
−0.796535 + 0.604593i \(0.793336\pi\)
\(912\) 0 0
\(913\) −10.0000 −0.330952
\(914\) 0 0
\(915\) 67.8823 2.24412
\(916\) 0 0
\(917\) 12.0000 0.396275
\(918\) 0 0
\(919\) −36.7696 −1.21292 −0.606458 0.795116i \(-0.707410\pi\)
−0.606458 + 0.795116i \(0.707410\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) 0 0
\(923\) 4.24264 0.139648
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.0000 −0.721797 −0.360898 0.932605i \(-0.617530\pi\)
−0.360898 + 0.932605i \(0.617530\pi\)
\(930\) 0 0
\(931\) −15.5563 −0.509839
\(932\) 0 0
\(933\) −64.0000 −2.09527
\(934\) 0 0
\(935\) 11.3137 0.369998
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) −45.2548 −1.47684
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) −33.9411 −1.10528
\(944\) 0 0
\(945\) 48.0000 1.56144
\(946\) 0 0
\(947\) 41.0122 1.33272 0.666359 0.745631i \(-0.267852\pi\)
0.666359 + 0.745631i \(0.267852\pi\)
\(948\) 0 0
\(949\) 14.0000 0.454459
\(950\) 0 0
\(951\) −62.2254 −2.01780
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 28.2843 0.915258
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) 0 0
\(959\) 76.3675 2.46604
\(960\) 0 0
\(961\) 67.0000 2.16129
\(962\) 0 0
\(963\) −14.1421 −0.455724
\(964\) 0 0
\(965\) 44.0000 1.41641
\(966\) 0 0
\(967\) −9.89949 −0.318346 −0.159173 0.987251i \(-0.550883\pi\)
−0.159173 + 0.987251i \(0.550883\pi\)
\(968\) 0 0
\(969\) −16.0000 −0.513994
\(970\) 0 0
\(971\) 48.0833 1.54307 0.771533 0.636190i \(-0.219490\pi\)
0.771533 + 0.636190i \(0.219490\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) 0 0
\(975\) −2.82843 −0.0905822
\(976\) 0 0
\(977\) −58.0000 −1.85558 −0.927792 0.373097i \(-0.878296\pi\)
−0.927792 + 0.373097i \(0.878296\pi\)
\(978\) 0 0
\(979\) −19.7990 −0.632778
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −35.3553 −1.12766 −0.563830 0.825891i \(-0.690673\pi\)
−0.563830 + 0.825891i \(0.690673\pi\)
\(984\) 0 0
\(985\) 4.00000 0.127451
\(986\) 0 0
\(987\) −84.8528 −2.70089
\(988\) 0 0
\(989\) 64.0000 2.03508
\(990\) 0 0
\(991\) 25.4558 0.808632 0.404316 0.914619i \(-0.367510\pi\)
0.404316 + 0.914619i \(0.367510\pi\)
\(992\) 0 0
\(993\) 28.0000 0.888553
\(994\) 0 0
\(995\) 11.3137 0.358669
\(996\) 0 0
\(997\) −52.0000 −1.64686 −0.823428 0.567420i \(-0.807941\pi\)
−0.823428 + 0.567420i \(0.807941\pi\)
\(998\) 0 0
\(999\) −11.3137 −0.357950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.a.x.1.1 2
4.3 odd 2 inner 3328.2.a.x.1.2 2
8.3 odd 2 3328.2.a.t.1.1 2
8.5 even 2 3328.2.a.t.1.2 2
16.3 odd 4 1664.2.b.f.833.3 yes 4
16.5 even 4 1664.2.b.f.833.4 yes 4
16.11 odd 4 1664.2.b.f.833.2 yes 4
16.13 even 4 1664.2.b.f.833.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.f.833.1 4 16.13 even 4
1664.2.b.f.833.2 yes 4 16.11 odd 4
1664.2.b.f.833.3 yes 4 16.3 odd 4
1664.2.b.f.833.4 yes 4 16.5 even 4
3328.2.a.t.1.1 2 8.3 odd 2
3328.2.a.t.1.2 2 8.5 even 2
3328.2.a.x.1.1 2 1.1 even 1 trivial
3328.2.a.x.1.2 2 4.3 odd 2 inner