Properties

Label 3328.2.b.u.1665.4
Level 33283328
Weight 22
Character 3328.1665
Analytic conductor 26.57426.574
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3328,2,Mod(1665,3328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3328.1665"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3328=2813 3328 = 2^{8} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3328.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-6,0,-6,0,0,0,0,0,14,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.574213792726.5742137927
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1665.4
Root 2.56155i2.56155i of defining polynomial
Character χ\chi == 3328.1665
Dual form 3328.2.b.u.1665.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.56155iq30.561553iq5+0.561553q73.56155q92.00000iq111.00000iq13+1.43845q150.561553q17+6.00000iq19+1.43845iq21+4.68466q251.43845iq278.24621iq29+7.12311q31+5.12311q330.315342iq35+9.68466iq37+2.56155q397.12311q41+8.80776iq43+2.00000iq45+1.68466q476.68466q491.43845iq51+4.87689iq531.12311q5515.3693q57+6.00000iq59+13.3693iq612.00000q630.561553q65+6.00000iq67+1.68466q7110.0000q73+12.0000iq751.12311iq77+12.0000q797.00000q8117.3693iq83+0.315342iq85+21.1231q87+8.24621q890.561553iq91+18.2462iq93+3.36932q956.00000q97+7.12311iq99+O(q100)q+2.56155i q^{3} -0.561553i q^{5} +0.561553 q^{7} -3.56155 q^{9} -2.00000i q^{11} -1.00000i q^{13} +1.43845 q^{15} -0.561553 q^{17} +6.00000i q^{19} +1.43845i q^{21} +4.68466 q^{25} -1.43845i q^{27} -8.24621i q^{29} +7.12311 q^{31} +5.12311 q^{33} -0.315342i q^{35} +9.68466i q^{37} +2.56155 q^{39} -7.12311 q^{41} +8.80776i q^{43} +2.00000i q^{45} +1.68466 q^{47} -6.68466 q^{49} -1.43845i q^{51} +4.87689i q^{53} -1.12311 q^{55} -15.3693 q^{57} +6.00000i q^{59} +13.3693i q^{61} -2.00000 q^{63} -0.561553 q^{65} +6.00000i q^{67} +1.68466 q^{71} -10.0000 q^{73} +12.0000i q^{75} -1.12311i q^{77} +12.0000 q^{79} -7.00000 q^{81} -17.3693i q^{83} +0.315342i q^{85} +21.1231 q^{87} +8.24621 q^{89} -0.561553i q^{91} +18.2462i q^{93} +3.36932 q^{95} -6.00000 q^{97} +7.12311i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q76q9+14q15+6q176q25+12q31+4q33+2q3912q4118q472q49+12q5512q578q63+6q6518q7140q73+48q79+24q97+O(q100) 4 q - 6 q^{7} - 6 q^{9} + 14 q^{15} + 6 q^{17} - 6 q^{25} + 12 q^{31} + 4 q^{33} + 2 q^{39} - 12 q^{41} - 18 q^{47} - 2 q^{49} + 12 q^{55} - 12 q^{57} - 8 q^{63} + 6 q^{65} - 18 q^{71} - 40 q^{73} + 48 q^{79}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3328Z)×\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times.

nn 261261 769769 15351535
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.56155i 1.47891i 0.673204 + 0.739457i 0.264917π0.264917\pi
−0.673204 + 0.739457i 0.735083π0.735083\pi
44 0 0
55 − 0.561553i − 0.251134i −0.992085 0.125567i 0.959925π-0.959925\pi
0.992085 0.125567i 0.0400750π-0.0400750\pi
66 0 0
77 0.561553 0.212247 0.106124 0.994353i 0.466156π-0.466156\pi
0.106124 + 0.994353i 0.466156π0.466156\pi
88 0 0
99 −3.56155 −1.18718
1010 0 0
1111 − 2.00000i − 0.603023i −0.953463 0.301511i 0.902509π-0.902509\pi
0.953463 0.301511i 0.0974911π-0.0974911\pi
1212 0 0
1313 − 1.00000i − 0.277350i
1414 0 0
1515 1.43845 0.371405
1616 0 0
1717 −0.561553 −0.136197 −0.0680983 0.997679i 0.521693π-0.521693\pi
−0.0680983 + 0.997679i 0.521693π0.521693\pi
1818 0 0
1919 6.00000i 1.37649i 0.725476 + 0.688247i 0.241620π0.241620\pi
−0.725476 + 0.688247i 0.758380π0.758380\pi
2020 0 0
2121 1.43845i 0.313895i
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 4.68466 0.936932
2626 0 0
2727 − 1.43845i − 0.276829i
2828 0 0
2929 − 8.24621i − 1.53128i −0.643268 0.765641i 0.722422π-0.722422\pi
0.643268 0.765641i 0.277578π-0.277578\pi
3030 0 0
3131 7.12311 1.27935 0.639674 0.768647i 0.279069π-0.279069\pi
0.639674 + 0.768647i 0.279069π0.279069\pi
3232 0 0
3333 5.12311 0.891818
3434 0 0
3535 − 0.315342i − 0.0533025i
3636 0 0
3737 9.68466i 1.59215i 0.605199 + 0.796074i 0.293093π0.293093\pi
−0.605199 + 0.796074i 0.706907π0.706907\pi
3838 0 0
3939 2.56155 0.410177
4040 0 0
4141 −7.12311 −1.11244 −0.556221 0.831034i 0.687749π-0.687749\pi
−0.556221 + 0.831034i 0.687749π0.687749\pi
4242 0 0
4343 8.80776i 1.34317i 0.740927 + 0.671586i 0.234386π0.234386\pi
−0.740927 + 0.671586i 0.765614π0.765614\pi
4444 0 0
4545 2.00000i 0.298142i
4646 0 0
4747 1.68466 0.245733 0.122866 0.992423i 0.460791π-0.460791\pi
0.122866 + 0.992423i 0.460791π0.460791\pi
4848 0 0
4949 −6.68466 −0.954951
5050 0 0
5151 − 1.43845i − 0.201423i
5252 0 0
5353 4.87689i 0.669893i 0.942237 + 0.334946i 0.108718π0.108718\pi
−0.942237 + 0.334946i 0.891282π0.891282\pi
5454 0 0
5555 −1.12311 −0.151440
5656 0 0
5757 −15.3693 −2.03572
5858 0 0
5959 6.00000i 0.781133i 0.920575 + 0.390567i 0.127721π0.127721\pi
−0.920575 + 0.390567i 0.872279π0.872279\pi
6060 0 0
6161 13.3693i 1.71177i 0.517170 + 0.855883i 0.326986π0.326986\pi
−0.517170 + 0.855883i 0.673014π0.673014\pi
6262 0 0
6363 −2.00000 −0.251976
6464 0 0
6565 −0.561553 −0.0696521
6666 0 0
6767 6.00000i 0.733017i 0.930415 + 0.366508i 0.119447π0.119447\pi
−0.930415 + 0.366508i 0.880553π0.880553\pi
6868 0 0
6969 0 0
7070 0 0
7171 1.68466 0.199932 0.0999661 0.994991i 0.468127π-0.468127\pi
0.0999661 + 0.994991i 0.468127π0.468127\pi
7272 0 0
7373 −10.0000 −1.17041 −0.585206 0.810885i 0.698986π-0.698986\pi
−0.585206 + 0.810885i 0.698986π0.698986\pi
7474 0 0
7575 12.0000i 1.38564i
7676 0 0
7777 − 1.12311i − 0.127990i
7878 0 0
7979 12.0000 1.35011 0.675053 0.737769i 0.264121π-0.264121\pi
0.675053 + 0.737769i 0.264121π0.264121\pi
8080 0 0
8181 −7.00000 −0.777778
8282 0 0
8383 − 17.3693i − 1.90653i −0.302135 0.953265i 0.597699π-0.597699\pi
0.302135 0.953265i 0.402301π-0.402301\pi
8484 0 0
8585 0.315342i 0.0342036i
8686 0 0
8787 21.1231 2.26463
8888 0 0
8989 8.24621 0.874097 0.437048 0.899438i 0.356024π-0.356024\pi
0.437048 + 0.899438i 0.356024π0.356024\pi
9090 0 0
9191 − 0.561553i − 0.0588667i
9292 0 0
9393 18.2462i 1.89204i
9494 0 0
9595 3.36932 0.345685
9696 0 0
9797 −6.00000 −0.609208 −0.304604 0.952479i 0.598524π-0.598524\pi
−0.304604 + 0.952479i 0.598524π0.598524\pi
9898 0 0
9999 7.12311i 0.715899i
100100 0 0
101101 7.12311i 0.708776i 0.935099 + 0.354388i 0.115311π0.115311\pi
−0.935099 + 0.354388i 0.884689π0.884689\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0.807764 0.0788297
106106 0 0
107107 12.0000i 1.16008i 0.814587 + 0.580042i 0.196964π0.196964\pi
−0.814587 + 0.580042i 0.803036π0.803036\pi
108108 0 0
109109 − 1.68466i − 0.161361i −0.996740 0.0806805i 0.974291π-0.974291\pi
0.996740 0.0806805i 0.0257093π-0.0257093\pi
110110 0 0
111111 −24.8078 −2.35465
112112 0 0
113113 8.24621 0.775738 0.387869 0.921714i 0.373211π-0.373211\pi
0.387869 + 0.921714i 0.373211π0.373211\pi
114114 0 0
115115 0 0
116116 0 0
117117 3.56155i 0.329266i
118118 0 0
119119 −0.315342 −0.0289073
120120 0 0
121121 7.00000 0.636364
122122 0 0
123123 − 18.2462i − 1.64521i
124124 0 0
125125 − 5.43845i − 0.486430i
126126 0 0
127127 2.24621 0.199319 0.0996595 0.995022i 0.468225π-0.468225\pi
0.0996595 + 0.995022i 0.468225π0.468225\pi
128128 0 0
129129 −22.5616 −1.98643
130130 0 0
131131 15.6847i 1.37037i 0.728367 + 0.685187i 0.240280π0.240280\pi
−0.728367 + 0.685187i 0.759720π0.759720\pi
132132 0 0
133133 3.36932i 0.292157i
134134 0 0
135135 −0.807764 −0.0695213
136136 0 0
137137 −4.87689 −0.416661 −0.208331 0.978058i 0.566803π-0.566803\pi
−0.208331 + 0.978058i 0.566803π0.566803\pi
138138 0 0
139139 − 7.68466i − 0.651804i −0.945404 0.325902i 0.894332π-0.894332\pi
0.945404 0.325902i 0.105668π-0.105668\pi
140140 0 0
141141 4.31534i 0.363417i
142142 0 0
143143 −2.00000 −0.167248
144144 0 0
145145 −4.63068 −0.384557
146146 0 0
147147 − 17.1231i − 1.41229i
148148 0 0
149149 8.24621i 0.675556i 0.941226 + 0.337778i 0.109675π0.109675\pi
−0.941226 + 0.337778i 0.890325π0.890325\pi
150150 0 0
151151 −10.3153 −0.839451 −0.419725 0.907651i 0.637874π-0.637874\pi
−0.419725 + 0.907651i 0.637874π0.637874\pi
152152 0 0
153153 2.00000 0.161690
154154 0 0
155155 − 4.00000i − 0.321288i
156156 0 0
157157 2.00000i 0.159617i 0.996810 + 0.0798087i 0.0254309π0.0254309\pi
−0.996810 + 0.0798087i 0.974569π0.974569\pi
158158 0 0
159159 −12.4924 −0.990714
160160 0 0
161161 0 0
162162 0 0
163163 9.36932i 0.733862i 0.930248 + 0.366931i 0.119591π0.119591\pi
−0.930248 + 0.366931i 0.880409π0.880409\pi
164164 0 0
165165 − 2.87689i − 0.223966i
166166 0 0
167167 9.36932 0.725020 0.362510 0.931980i 0.381920π-0.381920\pi
0.362510 + 0.931980i 0.381920π0.381920\pi
168168 0 0
169169 −1.00000 −0.0769231
170170 0 0
171171 − 21.3693i − 1.63415i
172172 0 0
173173 21.3693i 1.62468i 0.583185 + 0.812340i 0.301806π0.301806\pi
−0.583185 + 0.812340i 0.698194π0.698194\pi
174174 0 0
175175 2.63068 0.198861
176176 0 0
177177 −15.3693 −1.15523
178178 0 0
179179 − 19.0540i − 1.42416i −0.702098 0.712080i 0.747753π-0.747753\pi
0.702098 0.712080i 0.252247π-0.252247\pi
180180 0 0
181181 − 17.3693i − 1.29105i −0.763739 0.645526i 0.776638π-0.776638\pi
0.763739 0.645526i 0.223362π-0.223362\pi
182182 0 0
183183 −34.2462 −2.53155
184184 0 0
185185 5.43845 0.399843
186186 0 0
187187 1.12311i 0.0821296i
188188 0 0
189189 − 0.807764i − 0.0587562i
190190 0 0
191191 −19.3693 −1.40151 −0.700757 0.713400i 0.747154π-0.747154\pi
−0.700757 + 0.713400i 0.747154π0.747154\pi
192192 0 0
193193 1.36932 0.0985656 0.0492828 0.998785i 0.484306π-0.484306\pi
0.0492828 + 0.998785i 0.484306π0.484306\pi
194194 0 0
195195 − 1.43845i − 0.103009i
196196 0 0
197197 − 13.6847i − 0.974992i −0.873125 0.487496i 0.837910π-0.837910\pi
0.873125 0.487496i 0.162090π-0.162090\pi
198198 0 0
199199 −15.3693 −1.08950 −0.544751 0.838598i 0.683376π-0.683376\pi
−0.544751 + 0.838598i 0.683376π0.683376\pi
200200 0 0
201201 −15.3693 −1.08407
202202 0 0
203203 − 4.63068i − 0.325010i
204204 0 0
205205 4.00000i 0.279372i
206206 0 0
207207 0 0
208208 0 0
209209 12.0000 0.830057
210210 0 0
211211 3.19224i 0.219763i 0.993945 + 0.109881i 0.0350471π0.0350471\pi
−0.993945 + 0.109881i 0.964953π0.964953\pi
212212 0 0
213213 4.31534i 0.295682i
214214 0 0
215215 4.94602 0.337316
216216 0 0
217217 4.00000 0.271538
218218 0 0
219219 − 25.6155i − 1.73094i
220220 0 0
221221 0.561553i 0.0377741i
222222 0 0
223223 26.8078 1.79518 0.897590 0.440831i 0.145316π-0.145316\pi
0.897590 + 0.440831i 0.145316π0.145316\pi
224224 0 0
225225 −16.6847 −1.11231
226226 0 0
227227 21.3693i 1.41833i 0.705042 + 0.709166i 0.250928π0.250928\pi
−0.705042 + 0.709166i 0.749072π0.749072\pi
228228 0 0
229229 − 13.6847i − 0.904308i −0.891940 0.452154i 0.850656π-0.850656\pi
0.891940 0.452154i 0.149344π-0.149344\pi
230230 0 0
231231 2.87689 0.189286
232232 0 0
233233 −13.6847 −0.896512 −0.448256 0.893905i 0.647955π-0.647955\pi
−0.448256 + 0.893905i 0.647955π0.647955\pi
234234 0 0
235235 − 0.946025i − 0.0617118i
236236 0 0
237237 30.7386i 1.99669i
238238 0 0
239239 21.6847 1.40266 0.701332 0.712835i 0.252589π-0.252589\pi
0.701332 + 0.712835i 0.252589π0.252589\pi
240240 0 0
241241 2.00000 0.128831 0.0644157 0.997923i 0.479482π-0.479482\pi
0.0644157 + 0.997923i 0.479482π0.479482\pi
242242 0 0
243243 − 22.2462i − 1.42710i
244244 0 0
245245 3.75379i 0.239821i
246246 0 0
247247 6.00000 0.381771
248248 0 0
249249 44.4924 2.81959
250250 0 0
251251 16.0000i 1.00991i 0.863145 + 0.504956i 0.168491π0.168491\pi
−0.863145 + 0.504956i 0.831509π0.831509\pi
252252 0 0
253253 0 0
254254 0 0
255255 −0.807764 −0.0505841
256256 0 0
257257 15.9309 0.993740 0.496870 0.867825i 0.334483π-0.334483\pi
0.496870 + 0.867825i 0.334483π0.334483\pi
258258 0 0
259259 5.43845i 0.337929i
260260 0 0
261261 29.3693i 1.81792i
262262 0 0
263263 −26.7386 −1.64877 −0.824387 0.566026i 0.808480π-0.808480\pi
−0.824387 + 0.566026i 0.808480π0.808480\pi
264264 0 0
265265 2.73863 0.168233
266266 0 0
267267 21.1231i 1.29271i
268268 0 0
269269 − 21.3693i − 1.30291i −0.758687 0.651455i 0.774159π-0.774159\pi
0.758687 0.651455i 0.225841π-0.225841\pi
270270 0 0
271271 1.68466 0.102336 0.0511679 0.998690i 0.483706π-0.483706\pi
0.0511679 + 0.998690i 0.483706π0.483706\pi
272272 0 0
273273 1.43845 0.0870588
274274 0 0
275275 − 9.36932i − 0.564991i
276276 0 0
277277 1.36932i 0.0822743i 0.999154 + 0.0411371i 0.0130981π0.0130981\pi
−0.999154 + 0.0411371i 0.986902π0.986902\pi
278278 0 0
279279 −25.3693 −1.51882
280280 0 0
281281 −20.2462 −1.20779 −0.603894 0.797065i 0.706385π-0.706385\pi
−0.603894 + 0.797065i 0.706385π0.706385\pi
282282 0 0
283283 − 2.24621i − 0.133523i −0.997769 0.0667617i 0.978733π-0.978733\pi
0.997769 0.0667617i 0.0212667π-0.0212667\pi
284284 0 0
285285 8.63068i 0.511238i
286286 0 0
287287 −4.00000 −0.236113
288288 0 0
289289 −16.6847 −0.981450
290290 0 0
291291 − 15.3693i − 0.900965i
292292 0 0
293293 23.4384i 1.36929i 0.728877 + 0.684644i 0.240042π0.240042\pi
−0.728877 + 0.684644i 0.759958π0.759958\pi
294294 0 0
295295 3.36932 0.196169
296296 0 0
297297 −2.87689 −0.166934
298298 0 0
299299 0 0
300300 0 0
301301 4.94602i 0.285084i
302302 0 0
303303 −18.2462 −1.04822
304304 0 0
305305 7.50758 0.429883
306306 0 0
307307 − 6.00000i − 0.342438i −0.985233 0.171219i 0.945229π-0.945229\pi
0.985233 0.171219i 0.0547706π-0.0547706\pi
308308 0 0
309309 0 0
310310 0 0
311311 15.3693 0.871514 0.435757 0.900064i 0.356481π-0.356481\pi
0.435757 + 0.900064i 0.356481π0.356481\pi
312312 0 0
313313 −17.0540 −0.963948 −0.481974 0.876186i 0.660080π-0.660080\pi
−0.481974 + 0.876186i 0.660080π0.660080\pi
314314 0 0
315315 1.12311i 0.0632798i
316316 0 0
317317 − 32.2462i − 1.81113i −0.424210 0.905564i 0.639448π-0.639448\pi
0.424210 0.905564i 0.360552π-0.360552\pi
318318 0 0
319319 −16.4924 −0.923398
320320 0 0
321321 −30.7386 −1.71566
322322 0 0
323323 − 3.36932i − 0.187474i
324324 0 0
325325 − 4.68466i − 0.259858i
326326 0 0
327327 4.31534 0.238639
328328 0 0
329329 0.946025 0.0521560
330330 0 0
331331 − 21.3693i − 1.17456i −0.809382 0.587282i 0.800198π-0.800198\pi
0.809382 0.587282i 0.199802π-0.199802\pi
332332 0 0
333333 − 34.4924i − 1.89017i
334334 0 0
335335 3.36932 0.184085
336336 0 0
337337 1.05398 0.0574137 0.0287068 0.999588i 0.490861π-0.490861\pi
0.0287068 + 0.999588i 0.490861π0.490861\pi
338338 0 0
339339 21.1231i 1.14725i
340340 0 0
341341 − 14.2462i − 0.771476i
342342 0 0
343343 −7.68466 −0.414933
344344 0 0
345345 0 0
346346 0 0
347347 16.3153i 0.875853i 0.899011 + 0.437927i 0.144287π0.144287\pi
−0.899011 + 0.437927i 0.855713π0.855713\pi
348348 0 0
349349 29.0540i 1.55522i 0.628745 + 0.777612i 0.283569π0.283569\pi
−0.628745 + 0.777612i 0.716431π0.716431\pi
350350 0 0
351351 −1.43845 −0.0767786
352352 0 0
353353 −25.8617 −1.37648 −0.688241 0.725482i 0.741617π-0.741617\pi
−0.688241 + 0.725482i 0.741617π0.741617\pi
354354 0 0
355355 − 0.946025i − 0.0502098i
356356 0 0
357357 − 0.807764i − 0.0427514i
358358 0 0
359359 17.3693 0.916717 0.458359 0.888767i 0.348437π-0.348437\pi
0.458359 + 0.888767i 0.348437π0.348437\pi
360360 0 0
361361 −17.0000 −0.894737
362362 0 0
363363 17.9309i 0.941127i
364364 0 0
365365 5.61553i 0.293930i
366366 0 0
367367 −27.3693 −1.42867 −0.714333 0.699806i 0.753270π-0.753270\pi
−0.714333 + 0.699806i 0.753270π0.753270\pi
368368 0 0
369369 25.3693 1.32067
370370 0 0
371371 2.73863i 0.142183i
372372 0 0
373373 13.3693i 0.692237i 0.938191 + 0.346118i 0.112500π0.112500\pi
−0.938191 + 0.346118i 0.887500π0.887500\pi
374374 0 0
375375 13.9309 0.719387
376376 0 0
377377 −8.24621 −0.424701
378378 0 0
379379 − 16.8769i − 0.866908i −0.901176 0.433454i 0.857295π-0.857295\pi
0.901176 0.433454i 0.142705π-0.142705\pi
380380 0 0
381381 5.75379i 0.294776i
382382 0 0
383383 −1.68466 −0.0860820 −0.0430410 0.999073i 0.513705π-0.513705\pi
−0.0430410 + 0.999073i 0.513705π0.513705\pi
384384 0 0
385385 −0.630683 −0.0321426
386386 0 0
387387 − 31.3693i − 1.59459i
388388 0 0
389389 − 20.2462i − 1.02652i −0.858232 0.513262i 0.828437π-0.828437\pi
0.858232 0.513262i 0.171563π-0.171563\pi
390390 0 0
391391 0 0
392392 0 0
393393 −40.1771 −2.02667
394394 0 0
395395 − 6.73863i − 0.339057i
396396 0 0
397397 − 6.00000i − 0.301131i −0.988600 0.150566i 0.951890π-0.951890\pi
0.988600 0.150566i 0.0481095π-0.0481095\pi
398398 0 0
399399 −8.63068 −0.432075
400400 0 0
401401 31.1231 1.55421 0.777107 0.629369i 0.216686π-0.216686\pi
0.777107 + 0.629369i 0.216686π0.216686\pi
402402 0 0
403403 − 7.12311i − 0.354827i
404404 0 0
405405 3.93087i 0.195326i
406406 0 0
407407 19.3693 0.960101
408408 0 0
409409 6.63068 0.327866 0.163933 0.986471i 0.447582π-0.447582\pi
0.163933 + 0.986471i 0.447582π0.447582\pi
410410 0 0
411411 − 12.4924i − 0.616206i
412412 0 0
413413 3.36932i 0.165793i
414414 0 0
415415 −9.75379 −0.478795
416416 0 0
417417 19.6847 0.963962
418418 0 0
419419 15.0540i 0.735435i 0.929938 + 0.367717i 0.119861π0.119861\pi
−0.929938 + 0.367717i 0.880139π0.880139\pi
420420 0 0
421421 33.6847i 1.64169i 0.571151 + 0.820845i 0.306497π0.306497\pi
−0.571151 + 0.820845i 0.693503π0.693503\pi
422422 0 0
423423 −6.00000 −0.291730
424424 0 0
425425 −2.63068 −0.127607
426426 0 0
427427 7.50758i 0.363317i
428428 0 0
429429 − 5.12311i − 0.247346i
430430 0 0
431431 5.68466 0.273820 0.136910 0.990583i 0.456283π-0.456283\pi
0.136910 + 0.990583i 0.456283π0.456283\pi
432432 0 0
433433 14.3153 0.687951 0.343976 0.938979i 0.388226π-0.388226\pi
0.343976 + 0.938979i 0.388226π0.388226\pi
434434 0 0
435435 − 11.8617i − 0.568727i
436436 0 0
437437 0 0
438438 0 0
439439 41.6155 1.98620 0.993100 0.117267i 0.0374134π-0.0374134\pi
0.993100 + 0.117267i 0.0374134π0.0374134\pi
440440 0 0
441441 23.8078 1.13370
442442 0 0
443443 7.68466i 0.365109i 0.983196 + 0.182555i 0.0584366π0.0584366\pi
−0.983196 + 0.182555i 0.941563π0.941563\pi
444444 0 0
445445 − 4.63068i − 0.219515i
446446 0 0
447447 −21.1231 −0.999089
448448 0 0
449449 18.0000 0.849473 0.424736 0.905317i 0.360367π-0.360367\pi
0.424736 + 0.905317i 0.360367π0.360367\pi
450450 0 0
451451 14.2462i 0.670828i
452452 0 0
453453 − 26.4233i − 1.24147i
454454 0 0
455455 −0.315342 −0.0147834
456456 0 0
457457 14.0000 0.654892 0.327446 0.944870i 0.393812π-0.393812\pi
0.327446 + 0.944870i 0.393812π0.393812\pi
458458 0 0
459459 0.807764i 0.0377032i
460460 0 0
461461 − 21.1922i − 0.987021i −0.869740 0.493510i 0.835713π-0.835713\pi
0.869740 0.493510i 0.164287π-0.164287\pi
462462 0 0
463463 23.6155 1.09751 0.548753 0.835984i 0.315103π-0.315103\pi
0.548753 + 0.835984i 0.315103π0.315103\pi
464464 0 0
465465 10.2462 0.475157
466466 0 0
467467 14.7386i 0.682023i 0.940059 + 0.341011i 0.110769π0.110769\pi
−0.940059 + 0.341011i 0.889231π0.889231\pi
468468 0 0
469469 3.36932i 0.155581i
470470 0 0
471471 −5.12311 −0.236060
472472 0 0
473473 17.6155 0.809963
474474 0 0
475475 28.1080i 1.28968i
476476 0 0
477477 − 17.3693i − 0.795286i
478478 0 0
479479 33.6847 1.53909 0.769546 0.638592i 0.220483π-0.220483\pi
0.769546 + 0.638592i 0.220483π0.220483\pi
480480 0 0
481481 9.68466 0.441582
482482 0 0
483483 0 0
484484 0 0
485485 3.36932i 0.152993i
486486 0 0
487487 19.1231 0.866551 0.433275 0.901262i 0.357358π-0.357358\pi
0.433275 + 0.901262i 0.357358π0.357358\pi
488488 0 0
489489 −24.0000 −1.08532
490490 0 0
491491 − 35.6847i − 1.61043i −0.592986 0.805213i 0.702051π-0.702051\pi
0.592986 0.805213i 0.297949π-0.297949\pi
492492 0 0
493493 4.63068i 0.208555i
494494 0 0
495495 4.00000 0.179787
496496 0 0
497497 0.946025 0.0424350
498498 0 0
499499 16.8769i 0.755514i 0.925905 + 0.377757i 0.123304π0.123304\pi
−0.925905 + 0.377757i 0.876696π0.876696\pi
500500 0 0
501501 24.0000i 1.07224i
502502 0 0
503503 4.63068 0.206472 0.103236 0.994657i 0.467080π-0.467080\pi
0.103236 + 0.994657i 0.467080π0.467080\pi
504504 0 0
505505 4.00000 0.177998
506506 0 0
507507 − 2.56155i − 0.113763i
508508 0 0
509509 − 10.4924i − 0.465068i −0.972588 0.232534i 0.925298π-0.925298\pi
0.972588 0.232534i 0.0747018π-0.0747018\pi
510510 0 0
511511 −5.61553 −0.248416
512512 0 0
513513 8.63068 0.381054
514514 0 0
515515 0 0
516516 0 0
517517 − 3.36932i − 0.148182i
518518 0 0
519519 −54.7386 −2.40276
520520 0 0
521521 −12.5616 −0.550332 −0.275166 0.961397i 0.588733π-0.588733\pi
−0.275166 + 0.961397i 0.588733π0.588733\pi
522522 0 0
523523 40.4924i 1.77061i 0.465011 + 0.885305i 0.346050π0.346050\pi
−0.465011 + 0.885305i 0.653950π0.653950\pi
524524 0 0
525525 6.73863i 0.294098i
526526 0 0
527527 −4.00000 −0.174243
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 − 21.3693i − 0.927349i
532532 0 0
533533 7.12311i 0.308536i
534534 0 0
535535 6.73863 0.291337
536536 0 0
537537 48.8078 2.10621
538538 0 0
539539 13.3693i 0.575857i
540540 0 0
541541 − 18.3153i − 0.787438i −0.919231 0.393719i 0.871188π-0.871188\pi
0.919231 0.393719i 0.128812π-0.128812\pi
542542 0 0
543543 44.4924 1.90935
544544 0 0
545545 −0.946025 −0.0405232
546546 0 0
547547 23.0540i 0.985717i 0.870110 + 0.492858i 0.164048π0.164048\pi
−0.870110 + 0.492858i 0.835952π0.835952\pi
548548 0 0
549549 − 47.6155i − 2.03218i
550550 0 0
551551 49.4773 2.10780
552552 0 0
553553 6.73863 0.286556
554554 0 0
555555 13.9309i 0.591332i
556556 0 0
557557 − 43.3002i − 1.83469i −0.398096 0.917344i 0.630329π-0.630329\pi
0.398096 0.917344i 0.369671π-0.369671\pi
558558 0 0
559559 8.80776 0.372529
560560 0 0
561561 −2.87689 −0.121463
562562 0 0
563563 43.6847i 1.84109i 0.390638 + 0.920544i 0.372254π0.372254\pi
−0.390638 + 0.920544i 0.627746π0.627746\pi
564564 0 0
565565 − 4.63068i − 0.194814i
566566 0 0
567567 −3.93087 −0.165081
568568 0 0
569569 25.6847 1.07676 0.538378 0.842703i 0.319037π-0.319037\pi
0.538378 + 0.842703i 0.319037π0.319037\pi
570570 0 0
571571 17.4384i 0.729776i 0.931051 + 0.364888i 0.118893π0.118893\pi
−0.931051 + 0.364888i 0.881107π0.881107\pi
572572 0 0
573573 − 49.6155i − 2.07272i
574574 0 0
575575 0 0
576576 0 0
577577 −4.73863 −0.197272 −0.0986360 0.995124i 0.531448π-0.531448\pi
−0.0986360 + 0.995124i 0.531448π0.531448\pi
578578 0 0
579579 3.50758i 0.145770i
580580 0 0
581581 − 9.75379i − 0.404655i
582582 0 0
583583 9.75379 0.403961
584584 0 0
585585 2.00000 0.0826898
586586 0 0
587587 9.36932i 0.386713i 0.981129 + 0.193357i 0.0619374π0.0619374\pi
−0.981129 + 0.193357i 0.938063π0.938063\pi
588588 0 0
589589 42.7386i 1.76101i
590590 0 0
591591 35.0540 1.44193
592592 0 0
593593 20.2462 0.831412 0.415706 0.909499i 0.363534π-0.363534\pi
0.415706 + 0.909499i 0.363534π0.363534\pi
594594 0 0
595595 0.177081i 0.00725961i
596596 0 0
597597 − 39.3693i − 1.61128i
598598 0 0
599599 −35.3693 −1.44515 −0.722576 0.691292i 0.757042π-0.757042\pi
−0.722576 + 0.691292i 0.757042π0.757042\pi
600600 0 0
601601 21.0540 0.858810 0.429405 0.903112i 0.358723π-0.358723\pi
0.429405 + 0.903112i 0.358723π0.358723\pi
602602 0 0
603603 − 21.3693i − 0.870226i
604604 0 0
605605 − 3.93087i − 0.159813i
606606 0 0
607607 31.8617 1.29323 0.646614 0.762817i 0.276184π-0.276184\pi
0.646614 + 0.762817i 0.276184π0.276184\pi
608608 0 0
609609 11.8617 0.480662
610610 0 0
611611 − 1.68466i − 0.0681540i
612612 0 0
613613 − 10.0000i − 0.403896i −0.979396 0.201948i 0.935273π-0.935273\pi
0.979396 0.201948i 0.0647272π-0.0647272\pi
614614 0 0
615615 −10.2462 −0.413167
616616 0 0
617617 23.6155 0.950725 0.475363 0.879790i 0.342317π-0.342317\pi
0.475363 + 0.879790i 0.342317π0.342317\pi
618618 0 0
619619 − 9.36932i − 0.376585i −0.982113 0.188292i 0.939705π-0.939705\pi
0.982113 0.188292i 0.0602952π-0.0602952\pi
620620 0 0
621621 0 0
622622 0 0
623623 4.63068 0.185524
624624 0 0
625625 20.3693 0.814773
626626 0 0
627627 30.7386i 1.22758i
628628 0 0
629629 − 5.43845i − 0.216845i
630630 0 0
631631 −41.0540 −1.63433 −0.817166 0.576402i 0.804456π-0.804456\pi
−0.817166 + 0.576402i 0.804456π0.804456\pi
632632 0 0
633633 −8.17708 −0.325010
634634 0 0
635635 − 1.26137i − 0.0500558i
636636 0 0
637637 6.68466i 0.264856i
638638 0 0
639639 −6.00000 −0.237356
640640 0 0
641641 10.4924 0.414426 0.207213 0.978296i 0.433561π-0.433561\pi
0.207213 + 0.978296i 0.433561π0.433561\pi
642642 0 0
643643 − 18.0000i − 0.709851i −0.934895 0.354925i 0.884506π-0.884506\pi
0.934895 0.354925i 0.115494π-0.115494\pi
644644 0 0
645645 12.6695i 0.498861i
646646 0 0
647647 30.1080 1.18367 0.591833 0.806061i 0.298405π-0.298405\pi
0.591833 + 0.806061i 0.298405π0.298405\pi
648648 0 0
649649 12.0000 0.471041
650650 0 0
651651 10.2462i 0.401581i
652652 0 0
653653 − 47.6155i − 1.86334i −0.363306 0.931670i 0.618352π-0.618352\pi
0.363306 0.931670i 0.381648π-0.381648\pi
654654 0 0
655655 8.80776 0.344148
656656 0 0
657657 35.6155 1.38949
658658 0 0
659659 12.0000i 0.467454i 0.972302 + 0.233727i 0.0750921π0.0750921\pi
−0.972302 + 0.233727i 0.924908π0.924908\pi
660660 0 0
661661 20.7386i 0.806639i 0.915059 + 0.403320i 0.132144π0.132144\pi
−0.915059 + 0.403320i 0.867856π0.867856\pi
662662 0 0
663663 −1.43845 −0.0558647
664664 0 0
665665 1.89205 0.0733705
666666 0 0
667667 0 0
668668 0 0
669669 68.6695i 2.65492i
670670 0 0
671671 26.7386 1.03223
672672 0 0
673673 −21.0540 −0.811571 −0.405786 0.913968i 0.633002π-0.633002\pi
−0.405786 + 0.913968i 0.633002π0.633002\pi
674674 0 0
675675 − 6.73863i − 0.259370i
676676 0 0
677677 − 21.3693i − 0.821290i −0.911795 0.410645i 0.865304π-0.865304\pi
0.911795 0.410645i 0.134696π-0.134696\pi
678678 0 0
679679 −3.36932 −0.129303
680680 0 0
681681 −54.7386 −2.09759
682682 0 0
683683 5.36932i 0.205451i 0.994710 + 0.102726i 0.0327564π0.0327564\pi
−0.994710 + 0.102726i 0.967244π0.967244\pi
684684 0 0
685685 2.73863i 0.104638i
686686 0 0
687687 35.0540 1.33739
688688 0 0
689689 4.87689 0.185795
690690 0 0
691691 − 4.87689i − 0.185526i −0.995688 0.0927629i 0.970430π-0.970430\pi
0.995688 0.0927629i 0.0295699π-0.0295699\pi
692692 0 0
693693 4.00000i 0.151947i
694694 0 0
695695 −4.31534 −0.163690
696696 0 0
697697 4.00000 0.151511
698698 0 0
699699 − 35.0540i − 1.32586i
700700 0 0
701701 9.36932i 0.353874i 0.984222 + 0.176937i 0.0566189π0.0566189\pi
−0.984222 + 0.176937i 0.943381π0.943381\pi
702702 0 0
703703 −58.1080 −2.19158
704704 0 0
705705 2.42329 0.0912665
706706 0 0
707707 4.00000i 0.150435i
708708 0 0
709709 − 16.7386i − 0.628633i −0.949318 0.314316i 0.898225π-0.898225\pi
0.949318 0.314316i 0.101775π-0.101775\pi
710710 0 0
711711 −42.7386 −1.60282
712712 0 0
713713 0 0
714714 0 0
715715 1.12311i 0.0420018i
716716 0 0
717717 55.5464i 2.07442i
718718 0 0
719719 −15.3693 −0.573179 −0.286589 0.958054i 0.592522π-0.592522\pi
−0.286589 + 0.958054i 0.592522π0.592522\pi
720720 0 0
721721 0 0
722722 0 0
723723 5.12311i 0.190530i
724724 0 0
725725 − 38.6307i − 1.43471i
726726 0 0
727727 41.6155 1.54343 0.771717 0.635966i 0.219398π-0.219398\pi
0.771717 + 0.635966i 0.219398π0.219398\pi
728728 0 0
729729 35.9848 1.33277
730730 0 0
731731 − 4.94602i − 0.182935i
732732 0 0
733733 − 25.0540i − 0.925390i −0.886518 0.462695i 0.846883π-0.846883\pi
0.886518 0.462695i 0.153117π-0.153117\pi
734734 0 0
735735 −9.61553 −0.354674
736736 0 0
737737 12.0000 0.442026
738738 0 0
739739 − 52.1080i − 1.91682i −0.285392 0.958411i 0.592124π-0.592124\pi
0.285392 0.958411i 0.407876π-0.407876\pi
740740 0 0
741741 15.3693i 0.564606i
742742 0 0
743743 −13.6847 −0.502041 −0.251021 0.967982i 0.580766π-0.580766\pi
−0.251021 + 0.967982i 0.580766π0.580766\pi
744744 0 0
745745 4.63068 0.169655
746746 0 0
747747 61.8617i 2.26340i
748748 0 0
749749 6.73863i 0.246224i
750750 0 0
751751 −26.2462 −0.957738 −0.478869 0.877886i 0.658953π-0.658953\pi
−0.478869 + 0.877886i 0.658953π0.658953\pi
752752 0 0
753753 −40.9848 −1.49357
754754 0 0
755755 5.79261i 0.210815i
756756 0 0
757757 9.36932i 0.340534i 0.985398 + 0.170267i 0.0544630π0.0544630\pi
−0.985398 + 0.170267i 0.945537π0.945537\pi
758758 0 0
759759 0 0
760760 0 0
761761 30.0000 1.08750 0.543750 0.839248i 0.317004π-0.317004\pi
0.543750 + 0.839248i 0.317004π0.317004\pi
762762 0 0
763763 − 0.946025i − 0.0342484i
764764 0 0
765765 − 1.12311i − 0.0406060i
766766 0 0
767767 6.00000 0.216647
768768 0 0
769769 9.36932 0.337866 0.168933 0.985628i 0.445968π-0.445968\pi
0.168933 + 0.985628i 0.445968π0.445968\pi
770770 0 0
771771 40.8078i 1.46966i
772772 0 0
773773 25.6847i 0.923813i 0.886929 + 0.461906i 0.152834π0.152834\pi
−0.886929 + 0.461906i 0.847166π0.847166\pi
774774 0 0
775775 33.3693 1.19866
776776 0 0
777777 −13.9309 −0.499767
778778 0 0
779779 − 42.7386i − 1.53127i
780780 0 0
781781 − 3.36932i − 0.120564i
782782 0 0
783783 −11.8617 −0.423904
784784 0 0
785785 1.12311 0.0400854
786786 0 0
787787 35.6155i 1.26956i 0.772694 + 0.634778i 0.218909π0.218909\pi
−0.772694 + 0.634778i 0.781091π0.781091\pi
788788 0 0
789789 − 68.4924i − 2.43839i
790790 0 0
791791 4.63068 0.164648
792792 0 0
793793 13.3693 0.474758
794794 0 0
795795 7.01515i 0.248802i
796796 0 0
797797 − 12.7386i − 0.451226i −0.974217 0.225613i 0.927562π-0.927562\pi
0.974217 0.225613i 0.0724384π-0.0724384\pi
798798 0 0
799799 −0.946025 −0.0334679
800800 0 0
801801 −29.3693 −1.03771
802802 0 0
803803 20.0000i 0.705785i
804804 0 0
805805 0 0
806806 0 0
807807 54.7386 1.92689
808808 0 0
809809 39.9309 1.40389 0.701947 0.712229i 0.252314π-0.252314\pi
0.701947 + 0.712229i 0.252314π0.252314\pi
810810 0 0
811811 − 25.8617i − 0.908128i −0.890969 0.454064i 0.849974π-0.849974\pi
0.890969 0.454064i 0.150026π-0.150026\pi
812812 0 0
813813 4.31534i 0.151346i
814814 0 0
815815 5.26137 0.184298
816816 0 0
817817 −52.8466 −1.84887
818818 0 0
819819 2.00000i 0.0698857i
820820 0 0
821821 − 5.05398i − 0.176385i −0.996103 0.0881925i 0.971891π-0.971891\pi
0.996103 0.0881925i 0.0281091π-0.0281091\pi
822822 0 0
823823 39.3693 1.37233 0.686164 0.727447i 0.259293π-0.259293\pi
0.686164 + 0.727447i 0.259293π0.259293\pi
824824 0 0
825825 24.0000 0.835573
826826 0 0
827827 36.7386i 1.27753i 0.769403 + 0.638764i 0.220554π0.220554\pi
−0.769403 + 0.638764i 0.779446π0.779446\pi
828828 0 0
829829 − 32.7386i − 1.13706i −0.822663 0.568530i 0.807512π-0.807512\pi
0.822663 0.568530i 0.192488π-0.192488\pi
830830 0 0
831831 −3.50758 −0.121677
832832 0 0
833833 3.75379 0.130061
834834 0 0
835835 − 5.26137i − 0.182077i
836836 0 0
837837 − 10.2462i − 0.354161i
838838 0 0
839839 −36.1080 −1.24658 −0.623292 0.781989i 0.714205π-0.714205\pi
−0.623292 + 0.781989i 0.714205π0.714205\pi
840840 0 0
841841 −39.0000 −1.34483
842842 0 0
843843 − 51.8617i − 1.78621i
844844 0 0
845845 0.561553i 0.0193180i
846846 0 0
847847 3.93087 0.135066
848848 0 0
849849 5.75379 0.197470
850850 0 0
851851 0 0
852852 0 0
853853 − 21.6847i − 0.742469i −0.928539 0.371234i 0.878935π-0.878935\pi
0.928539 0.371234i 0.121065π-0.121065\pi
854854 0 0
855855 −12.0000 −0.410391
856856 0 0
857857 32.2462 1.10151 0.550755 0.834667i 0.314340π-0.314340\pi
0.550755 + 0.834667i 0.314340π0.314340\pi
858858 0 0
859859 36.0000i 1.22830i 0.789188 + 0.614152i 0.210502π0.210502\pi
−0.789188 + 0.614152i 0.789498π0.789498\pi
860860 0 0
861861 − 10.2462i − 0.349190i
862862 0 0
863863 −25.0540 −0.852847 −0.426424 0.904524i 0.640227π-0.640227\pi
−0.426424 + 0.904524i 0.640227π0.640227\pi
864864 0 0
865865 12.0000 0.408012
866866 0 0
867867 − 42.7386i − 1.45148i
868868 0 0
869869 − 24.0000i − 0.814144i
870870 0 0
871871 6.00000 0.203302
872872 0 0
873873 21.3693 0.723242
874874 0 0
875875 − 3.05398i − 0.103243i
876876 0 0
877877 − 31.7926i − 1.07356i −0.843722 0.536780i 0.819640π-0.819640\pi
0.843722 0.536780i 0.180360π-0.180360\pi
878878 0 0
879879 −60.0388 −2.02506
880880 0 0
881881 −19.3002 −0.650240 −0.325120 0.945673i 0.605405π-0.605405\pi
−0.325120 + 0.945673i 0.605405π0.605405\pi
882882 0 0
883883 − 17.4384i − 0.586850i −0.955982 0.293425i 0.905205π-0.905205\pi
0.955982 0.293425i 0.0947952π-0.0947952\pi
884884 0 0
885885 8.63068i 0.290117i
886886 0 0
887887 −12.0000 −0.402921 −0.201460 0.979497i 0.564569π-0.564569\pi
−0.201460 + 0.979497i 0.564569π0.564569\pi
888888 0 0
889889 1.26137 0.0423049
890890 0 0
891891 14.0000i 0.469018i
892892 0 0
893893 10.1080i 0.338250i
894894 0 0
895895 −10.6998 −0.357655
896896 0 0
897897 0 0
898898 0 0
899899 − 58.7386i − 1.95904i
900900 0 0
901901 − 2.73863i − 0.0912371i
902902 0 0
903903 −12.6695 −0.421615
904904 0 0
905905 −9.75379 −0.324227
906906 0 0
907907 − 26.4233i − 0.877371i −0.898641 0.438686i 0.855444π-0.855444\pi
0.898641 0.438686i 0.144556π-0.144556\pi
908908 0 0
909909 − 25.3693i − 0.841447i
910910 0 0
911911 −27.3693 −0.906786 −0.453393 0.891311i 0.649787π-0.649787\pi
−0.453393 + 0.891311i 0.649787π0.649787\pi
912912 0 0
913913 −34.7386 −1.14968
914914 0 0
915915 19.2311i 0.635759i
916916 0 0
917917 8.80776i 0.290858i
918918 0 0
919919 −33.7538 −1.11343 −0.556717 0.830702i 0.687939π-0.687939\pi
−0.556717 + 0.830702i 0.687939π0.687939\pi
920920 0 0
921921 15.3693 0.506436
922922 0 0
923923 − 1.68466i − 0.0554512i
924924 0 0
925925 45.3693i 1.49173i
926926 0 0
927927 0 0
928928 0 0
929929 35.6155 1.16851 0.584254 0.811571i 0.301387π-0.301387\pi
0.584254 + 0.811571i 0.301387π0.301387\pi
930930 0 0
931931 − 40.1080i − 1.31448i
932932 0 0
933933 39.3693i 1.28889i
934934 0 0
935935 0.630683 0.0206255
936936 0 0
937937 −40.7386 −1.33087 −0.665437 0.746454i 0.731755π-0.731755\pi
−0.665437 + 0.746454i 0.731755π0.731755\pi
938938 0 0
939939 − 43.6847i − 1.42559i
940940 0 0
941941 37.6847i 1.22848i 0.789117 + 0.614242i 0.210538π0.210538\pi
−0.789117 + 0.614242i 0.789462π0.789462\pi
942942 0 0
943943 0 0
944944 0 0
945945 −0.453602 −0.0147557
946946 0 0
947947 2.00000i 0.0649913i 0.999472 + 0.0324956i 0.0103455π0.0103455\pi
−0.999472 + 0.0324956i 0.989654π0.989654\pi
948948 0 0
949949 10.0000i 0.324614i
950950 0 0
951951 82.6004 2.67850
952952 0 0
953953 21.1922 0.686484 0.343242 0.939247i 0.388475π-0.388475\pi
0.343242 + 0.939247i 0.388475π0.388475\pi
954954 0 0
955955 10.8769i 0.351968i
956956 0 0
957957 − 42.2462i − 1.36563i
958958 0 0
959959 −2.73863 −0.0884351
960960 0 0
961961 19.7386 0.636730
962962 0 0
963963 − 42.7386i − 1.37723i
964964 0 0
965965 − 0.768944i − 0.0247532i
966966 0 0
967967 8.42329 0.270875 0.135437 0.990786i 0.456756π-0.456756\pi
0.135437 + 0.990786i 0.456756π0.456756\pi
968968 0 0
969969 8.63068 0.277257
970970 0 0
971971 15.6847i 0.503345i 0.967813 + 0.251672i 0.0809805π0.0809805\pi
−0.967813 + 0.251672i 0.919019π0.919019\pi
972972 0 0
973973 − 4.31534i − 0.138343i
974974 0 0
975975 12.0000 0.384308
976976 0 0
977977 50.9848 1.63115 0.815575 0.578652i 0.196421π-0.196421\pi
0.815575 + 0.578652i 0.196421π0.196421\pi
978978 0 0
979979 − 16.4924i − 0.527100i
980980 0 0
981981 6.00000i 0.191565i
982982 0 0
983983 −40.4233 −1.28930 −0.644651 0.764477i 0.722997π-0.722997\pi
−0.644651 + 0.764477i 0.722997π0.722997\pi
984984 0 0
985985 −7.68466 −0.244854
986986 0 0
987987 2.42329i 0.0771342i
988988 0 0
989989 0 0
990990 0 0
991991 3.36932 0.107030 0.0535149 0.998567i 0.482958π-0.482958\pi
0.0535149 + 0.998567i 0.482958π0.482958\pi
992992 0 0
993993 54.7386 1.73708
994994 0 0
995995 8.63068i 0.273611i
996996 0 0
997997 − 44.7386i − 1.41689i −0.705768 0.708443i 0.749398π-0.749398\pi
0.705768 0.708443i 0.250602π-0.250602\pi
998998 0 0
999999 13.9309 0.440753
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.b.u.1665.4 4
4.3 odd 2 3328.2.b.ba.1665.1 4
8.3 odd 2 3328.2.b.ba.1665.4 4
8.5 even 2 inner 3328.2.b.u.1665.1 4
16.3 odd 4 832.2.a.o.1.2 2
16.5 even 4 416.2.a.e.1.2 yes 2
16.11 odd 4 416.2.a.c.1.1 2
16.13 even 4 832.2.a.l.1.1 2
48.5 odd 4 3744.2.a.y.1.1 2
48.11 even 4 3744.2.a.x.1.1 2
48.29 odd 4 7488.2.a.cf.1.2 2
48.35 even 4 7488.2.a.ce.1.2 2
208.155 odd 4 5408.2.a.p.1.1 2
208.181 even 4 5408.2.a.bd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.c.1.1 2 16.11 odd 4
416.2.a.e.1.2 yes 2 16.5 even 4
832.2.a.l.1.1 2 16.13 even 4
832.2.a.o.1.2 2 16.3 odd 4
3328.2.b.u.1665.1 4 8.5 even 2 inner
3328.2.b.u.1665.4 4 1.1 even 1 trivial
3328.2.b.ba.1665.1 4 4.3 odd 2
3328.2.b.ba.1665.4 4 8.3 odd 2
3744.2.a.x.1.1 2 48.11 even 4
3744.2.a.y.1.1 2 48.5 odd 4
5408.2.a.p.1.1 2 208.155 odd 4
5408.2.a.bd.1.2 2 208.181 even 4
7488.2.a.ce.1.2 2 48.35 even 4
7488.2.a.cf.1.2 2 48.29 odd 4