Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3328,2,Mod(1665,3328)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3328.1665");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3328.b (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 104) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1665.1 |
|
0 | − | 2.56155i | 0 | − | 0.561553i | 0 | 2.56155 | 0 | −3.56155 | 0 | ||||||||||||||||||||||||||||
1665.2 | 0 | − | 1.56155i | 0 | − | 3.56155i | 0 | −1.56155 | 0 | 0.561553 | 0 | |||||||||||||||||||||||||||||
1665.3 | 0 | 1.56155i | 0 | 3.56155i | 0 | −1.56155 | 0 | 0.561553 | 0 | |||||||||||||||||||||||||||||||
1665.4 | 0 | 2.56155i | 0 | 0.561553i | 0 | 2.56155 | 0 | −3.56155 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3328.2.b.y | 4 | |
4.b | odd | 2 | 1 | 3328.2.b.w | 4 | ||
8.b | even | 2 | 1 | inner | 3328.2.b.y | 4 | |
8.d | odd | 2 | 1 | 3328.2.b.w | 4 | ||
16.e | even | 4 | 1 | 104.2.a.b | ✓ | 2 | |
16.e | even | 4 | 1 | 832.2.a.k | 2 | ||
16.f | odd | 4 | 1 | 208.2.a.e | 2 | ||
16.f | odd | 4 | 1 | 832.2.a.n | 2 | ||
48.i | odd | 4 | 1 | 936.2.a.j | 2 | ||
48.i | odd | 4 | 1 | 7488.2.a.cu | 2 | ||
48.k | even | 4 | 1 | 1872.2.a.u | 2 | ||
48.k | even | 4 | 1 | 7488.2.a.cv | 2 | ||
80.i | odd | 4 | 1 | 2600.2.d.k | 4 | ||
80.k | odd | 4 | 1 | 5200.2.a.bw | 2 | ||
80.q | even | 4 | 1 | 2600.2.a.p | 2 | ||
80.t | odd | 4 | 1 | 2600.2.d.k | 4 | ||
112.l | odd | 4 | 1 | 5096.2.a.m | 2 | ||
208.l | even | 4 | 1 | 2704.2.f.k | 4 | ||
208.m | odd | 4 | 1 | 1352.2.f.c | 4 | ||
208.o | odd | 4 | 1 | 2704.2.a.p | 2 | ||
208.p | even | 4 | 1 | 1352.2.a.g | 2 | ||
208.r | odd | 4 | 1 | 1352.2.f.c | 4 | ||
208.s | even | 4 | 1 | 2704.2.f.k | 4 | ||
208.be | odd | 12 | 2 | 1352.2.o.d | 8 | ||
208.bh | even | 12 | 2 | 1352.2.i.d | 4 | ||
208.bj | even | 12 | 2 | 1352.2.i.f | 4 | ||
208.bl | odd | 12 | 2 | 1352.2.o.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
104.2.a.b | ✓ | 2 | 16.e | even | 4 | 1 | |
208.2.a.e | 2 | 16.f | odd | 4 | 1 | ||
832.2.a.k | 2 | 16.e | even | 4 | 1 | ||
832.2.a.n | 2 | 16.f | odd | 4 | 1 | ||
936.2.a.j | 2 | 48.i | odd | 4 | 1 | ||
1352.2.a.g | 2 | 208.p | even | 4 | 1 | ||
1352.2.f.c | 4 | 208.m | odd | 4 | 1 | ||
1352.2.f.c | 4 | 208.r | odd | 4 | 1 | ||
1352.2.i.d | 4 | 208.bh | even | 12 | 2 | ||
1352.2.i.f | 4 | 208.bj | even | 12 | 2 | ||
1352.2.o.d | 8 | 208.be | odd | 12 | 2 | ||
1352.2.o.d | 8 | 208.bl | odd | 12 | 2 | ||
1872.2.a.u | 2 | 48.k | even | 4 | 1 | ||
2600.2.a.p | 2 | 80.q | even | 4 | 1 | ||
2600.2.d.k | 4 | 80.i | odd | 4 | 1 | ||
2600.2.d.k | 4 | 80.t | odd | 4 | 1 | ||
2704.2.a.p | 2 | 208.o | odd | 4 | 1 | ||
2704.2.f.k | 4 | 208.l | even | 4 | 1 | ||
2704.2.f.k | 4 | 208.s | even | 4 | 1 | ||
3328.2.b.w | 4 | 4.b | odd | 2 | 1 | ||
3328.2.b.w | 4 | 8.d | odd | 2 | 1 | ||
3328.2.b.y | 4 | 1.a | even | 1 | 1 | trivial | |
3328.2.b.y | 4 | 8.b | even | 2 | 1 | inner | |
5096.2.a.m | 2 | 112.l | odd | 4 | 1 | ||
5200.2.a.bw | 2 | 80.k | odd | 4 | 1 | ||
7488.2.a.cu | 2 | 48.i | odd | 4 | 1 | ||
7488.2.a.cv | 2 | 48.k | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|