Properties

Label 3328.2.b.y
Level $3328$
Weight $2$
Character orbit 3328.b
Analytic conductor $26.574$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1665,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1665");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (2 \beta_{2} + \beta_1) q^{5} + ( - \beta_{3} + 1) q^{7} + (\beta_{3} - 2) q^{9} + 2 \beta_1 q^{11} - \beta_{2} q^{13} + ( - \beta_{3} - 3) q^{15} + ( - 3 \beta_{3} + 1) q^{17} + 2 \beta_1 q^{19}+ \cdots + (8 \beta_{2} - 4 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{7} - 6 q^{9} - 14 q^{15} - 2 q^{17} + 32 q^{23} - 6 q^{25} + 16 q^{31} - 36 q^{33} - 2 q^{39} - 4 q^{41} - 26 q^{47} - 10 q^{49} - 28 q^{55} - 36 q^{57} - 20 q^{63} + 6 q^{65} + 6 q^{71} + 24 q^{73}+ \cdots - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1665.1
2.56155i
1.56155i
1.56155i
2.56155i
0 2.56155i 0 0.561553i 0 2.56155 0 −3.56155 0
1665.2 0 1.56155i 0 3.56155i 0 −1.56155 0 0.561553 0
1665.3 0 1.56155i 0 3.56155i 0 −1.56155 0 0.561553 0
1665.4 0 2.56155i 0 0.561553i 0 2.56155 0 −3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.2.b.y 4
4.b odd 2 1 3328.2.b.w 4
8.b even 2 1 inner 3328.2.b.y 4
8.d odd 2 1 3328.2.b.w 4
16.e even 4 1 104.2.a.b 2
16.e even 4 1 832.2.a.k 2
16.f odd 4 1 208.2.a.e 2
16.f odd 4 1 832.2.a.n 2
48.i odd 4 1 936.2.a.j 2
48.i odd 4 1 7488.2.a.cu 2
48.k even 4 1 1872.2.a.u 2
48.k even 4 1 7488.2.a.cv 2
80.i odd 4 1 2600.2.d.k 4
80.k odd 4 1 5200.2.a.bw 2
80.q even 4 1 2600.2.a.p 2
80.t odd 4 1 2600.2.d.k 4
112.l odd 4 1 5096.2.a.m 2
208.l even 4 1 2704.2.f.k 4
208.m odd 4 1 1352.2.f.c 4
208.o odd 4 1 2704.2.a.p 2
208.p even 4 1 1352.2.a.g 2
208.r odd 4 1 1352.2.f.c 4
208.s even 4 1 2704.2.f.k 4
208.be odd 12 2 1352.2.o.d 8
208.bh even 12 2 1352.2.i.d 4
208.bj even 12 2 1352.2.i.f 4
208.bl odd 12 2 1352.2.o.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.a.b 2 16.e even 4 1
208.2.a.e 2 16.f odd 4 1
832.2.a.k 2 16.e even 4 1
832.2.a.n 2 16.f odd 4 1
936.2.a.j 2 48.i odd 4 1
1352.2.a.g 2 208.p even 4 1
1352.2.f.c 4 208.m odd 4 1
1352.2.f.c 4 208.r odd 4 1
1352.2.i.d 4 208.bh even 12 2
1352.2.i.f 4 208.bj even 12 2
1352.2.o.d 8 208.be odd 12 2
1352.2.o.d 8 208.bl odd 12 2
1872.2.a.u 2 48.k even 4 1
2600.2.a.p 2 80.q even 4 1
2600.2.d.k 4 80.i odd 4 1
2600.2.d.k 4 80.t odd 4 1
2704.2.a.p 2 208.o odd 4 1
2704.2.f.k 4 208.l even 4 1
2704.2.f.k 4 208.s even 4 1
3328.2.b.w 4 4.b odd 2 1
3328.2.b.w 4 8.d odd 2 1
3328.2.b.y 4 1.a even 1 1 trivial
3328.2.b.y 4 8.b even 2 1 inner
5096.2.a.m 2 112.l odd 4 1
5200.2.a.bw 2 80.k odd 4 1
7488.2.a.cu 2 48.i odd 4 1
7488.2.a.cv 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3328, [\chi])\):

\( T_{3}^{4} + 9T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{5}^{4} + 13T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 36T_{11}^{2} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$5$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T^{2} - T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + T - 38)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$23$ \( (T - 8)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 101T^{2} + 676 \) Copy content Toggle raw display
$41$ \( (T^{2} + 2 T - 16)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 121T^{2} + 2704 \) Copy content Toggle raw display
$47$ \( (T^{2} + 13 T + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$59$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$61$ \( T^{4} + 132T^{2} + 1024 \) Copy content Toggle raw display
$67$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$71$ \( (T^{2} - 3 T - 36)^{2} \) Copy content Toggle raw display
$73$ \( (T - 6)^{4} \) Copy content Toggle raw display
$79$ \( (T - 8)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 208T^{2} + 1024 \) Copy content Toggle raw display
$89$ \( (T + 10)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 68)^{2} \) Copy content Toggle raw display
show more
show less