Properties

Label 3328.2.b.y
Level 33283328
Weight 22
Character orbit 3328.b
Analytic conductor 26.57426.574
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1665,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1665");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3328=2813 3328 = 2^{8} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3328.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.574213792726.5742137927
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(2β2+β1)q5+(β3+1)q7+(β32)q9+2β1q11β2q13+(β33)q15+(3β3+1)q17+2β1q19++(8β24β1)q99+O(q100) q + \beta_1 q^{3} + (2 \beta_{2} + \beta_1) q^{5} + ( - \beta_{3} + 1) q^{7} + (\beta_{3} - 2) q^{9} + 2 \beta_1 q^{11} - \beta_{2} q^{13} + ( - \beta_{3} - 3) q^{15} + ( - 3 \beta_{3} + 1) q^{17} + 2 \beta_1 q^{19}+ \cdots + (8 \beta_{2} - 4 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q76q914q152q17+32q236q25+16q3136q332q394q4126q4710q4928q5536q5720q63+6q65+6q71+24q73+28q95+O(q100) 4 q + 2 q^{7} - 6 q^{9} - 14 q^{15} - 2 q^{17} + 32 q^{23} - 6 q^{25} + 16 q^{31} - 36 q^{33} - 2 q^{39} - 4 q^{41} - 26 q^{47} - 10 q^{49} - 28 q^{55} - 36 q^{57} - 20 q^{63} + 6 q^{65} + 6 q^{71} + 24 q^{73}+ \cdots - 28 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9x2+16 x^{4} + 9x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+5ν)/4 ( \nu^{3} + 5\nu ) / 4 Copy content Toggle raw display
β3\beta_{3}== ν2+5 \nu^{2} + 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β35 \beta_{3} - 5 Copy content Toggle raw display
ν3\nu^{3}== 4β25β1 4\beta_{2} - 5\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3328Z)×\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times.

nn 261261 769769 15351535
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1665.1
2.56155i
1.56155i
1.56155i
2.56155i
0 2.56155i 0 0.561553i 0 2.56155 0 −3.56155 0
1665.2 0 1.56155i 0 3.56155i 0 −1.56155 0 0.561553 0
1665.3 0 1.56155i 0 3.56155i 0 −1.56155 0 0.561553 0
1665.4 0 2.56155i 0 0.561553i 0 2.56155 0 −3.56155 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.2.b.y 4
4.b odd 2 1 3328.2.b.w 4
8.b even 2 1 inner 3328.2.b.y 4
8.d odd 2 1 3328.2.b.w 4
16.e even 4 1 104.2.a.b 2
16.e even 4 1 832.2.a.k 2
16.f odd 4 1 208.2.a.e 2
16.f odd 4 1 832.2.a.n 2
48.i odd 4 1 936.2.a.j 2
48.i odd 4 1 7488.2.a.cu 2
48.k even 4 1 1872.2.a.u 2
48.k even 4 1 7488.2.a.cv 2
80.i odd 4 1 2600.2.d.k 4
80.k odd 4 1 5200.2.a.bw 2
80.q even 4 1 2600.2.a.p 2
80.t odd 4 1 2600.2.d.k 4
112.l odd 4 1 5096.2.a.m 2
208.l even 4 1 2704.2.f.k 4
208.m odd 4 1 1352.2.f.c 4
208.o odd 4 1 2704.2.a.p 2
208.p even 4 1 1352.2.a.g 2
208.r odd 4 1 1352.2.f.c 4
208.s even 4 1 2704.2.f.k 4
208.be odd 12 2 1352.2.o.d 8
208.bh even 12 2 1352.2.i.d 4
208.bj even 12 2 1352.2.i.f 4
208.bl odd 12 2 1352.2.o.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.a.b 2 16.e even 4 1
208.2.a.e 2 16.f odd 4 1
832.2.a.k 2 16.e even 4 1
832.2.a.n 2 16.f odd 4 1
936.2.a.j 2 48.i odd 4 1
1352.2.a.g 2 208.p even 4 1
1352.2.f.c 4 208.m odd 4 1
1352.2.f.c 4 208.r odd 4 1
1352.2.i.d 4 208.bh even 12 2
1352.2.i.f 4 208.bj even 12 2
1352.2.o.d 8 208.be odd 12 2
1352.2.o.d 8 208.bl odd 12 2
1872.2.a.u 2 48.k even 4 1
2600.2.a.p 2 80.q even 4 1
2600.2.d.k 4 80.i odd 4 1
2600.2.d.k 4 80.t odd 4 1
2704.2.a.p 2 208.o odd 4 1
2704.2.f.k 4 208.l even 4 1
2704.2.f.k 4 208.s even 4 1
3328.2.b.w 4 4.b odd 2 1
3328.2.b.w 4 8.d odd 2 1
3328.2.b.y 4 1.a even 1 1 trivial
3328.2.b.y 4 8.b even 2 1 inner
5096.2.a.m 2 112.l odd 4 1
5200.2.a.bw 2 80.k odd 4 1
7488.2.a.cu 2 48.i odd 4 1
7488.2.a.cv 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3328,[χ])S_{2}^{\mathrm{new}}(3328, [\chi]):

T34+9T32+16 T_{3}^{4} + 9T_{3}^{2} + 16 Copy content Toggle raw display
T54+13T52+4 T_{5}^{4} + 13T_{5}^{2} + 4 Copy content Toggle raw display
T72T74 T_{7}^{2} - T_{7} - 4 Copy content Toggle raw display
T114+36T112+256 T_{11}^{4} + 36T_{11}^{2} + 256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+9T2+16 T^{4} + 9T^{2} + 16 Copy content Toggle raw display
55 T4+13T2+4 T^{4} + 13T^{2} + 4 Copy content Toggle raw display
77 (T2T4)2 (T^{2} - T - 4)^{2} Copy content Toggle raw display
1111 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
1313 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1717 (T2+T38)2 (T^{2} + T - 38)^{2} Copy content Toggle raw display
1919 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
2323 (T8)4 (T - 8)^{4} Copy content Toggle raw display
2929 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
3131 (T4)4 (T - 4)^{4} Copy content Toggle raw display
3737 T4+101T2+676 T^{4} + 101T^{2} + 676 Copy content Toggle raw display
4141 (T2+2T16)2 (T^{2} + 2 T - 16)^{2} Copy content Toggle raw display
4343 T4+121T2+2704 T^{4} + 121T^{2} + 2704 Copy content Toggle raw display
4747 (T2+13T+4)2 (T^{2} + 13 T + 4)^{2} Copy content Toggle raw display
5353 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
5959 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
6161 T4+132T2+1024 T^{4} + 132T^{2} + 1024 Copy content Toggle raw display
6767 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
7171 (T23T36)2 (T^{2} - 3 T - 36)^{2} Copy content Toggle raw display
7373 (T6)4 (T - 6)^{4} Copy content Toggle raw display
7979 (T8)4 (T - 8)^{4} Copy content Toggle raw display
8383 T4+208T2+1024 T^{4} + 208T^{2} + 1024 Copy content Toggle raw display
8989 (T+10)4 (T + 10)^{4} Copy content Toggle raw display
9797 (T268)2 (T^{2} - 68)^{2} Copy content Toggle raw display
show more
show less