Properties

Label 3328.2.b.z
Level $3328$
Weight $2$
Character orbit 3328.b
Analytic conductor $26.574$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1665,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1665");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1664)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{3} + ( - 2 \beta_{2} - \beta_1) q^{5} + ( - \beta_{3} + 1) q^{7} - 2 \beta_{3} q^{9} + (2 \beta_{2} - 2 \beta_1) q^{11} - \beta_1 q^{13} + (3 \beta_{3} + 5) q^{15} + 5 q^{17}+ \cdots + (4 \beta_{2} - 8 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 20 q^{15} + 20 q^{17} + 16 q^{23} - 16 q^{25} - 24 q^{31} - 8 q^{33} + 4 q^{39} - 32 q^{41} + 4 q^{47} - 16 q^{49} + 24 q^{55} - 8 q^{57} + 16 q^{63} - 4 q^{65} + 12 q^{71} - 8 q^{73} - 16 q^{79}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1665.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0 2.41421i 0 3.82843i 0 −0.414214 0 −2.82843 0
1665.2 0 0.414214i 0 1.82843i 0 2.41421 0 2.82843 0
1665.3 0 0.414214i 0 1.82843i 0 2.41421 0 2.82843 0
1665.4 0 2.41421i 0 3.82843i 0 −0.414214 0 −2.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.2.b.z 4
4.b odd 2 1 3328.2.b.v 4
8.b even 2 1 inner 3328.2.b.z 4
8.d odd 2 1 3328.2.b.v 4
16.e even 4 1 1664.2.a.u 2
16.e even 4 1 1664.2.a.x yes 2
16.f odd 4 1 1664.2.a.v yes 2
16.f odd 4 1 1664.2.a.w yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1664.2.a.u 2 16.e even 4 1
1664.2.a.v yes 2 16.f odd 4 1
1664.2.a.w yes 2 16.f odd 4 1
1664.2.a.x yes 2 16.e even 4 1
3328.2.b.v 4 4.b odd 2 1
3328.2.b.v 4 8.d odd 2 1
3328.2.b.z 4 1.a even 1 1 trivial
3328.2.b.z 4 8.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3328, [\chi])\):

\( T_{3}^{4} + 6T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} + 18T_{5}^{2} + 49 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{4} + 24T_{11}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 6T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 18T^{2} + 49 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T - 5)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 4)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
$31$ \( (T + 6)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 82T^{2} + 529 \) Copy content Toggle raw display
$41$ \( (T + 8)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 86T^{2} + 49 \) Copy content Toggle raw display
$47$ \( (T^{2} - 2 T - 49)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 216T^{2} + 1296 \) Copy content Toggle raw display
$61$ \( T^{4} + 96T^{2} + 256 \) Copy content Toggle raw display
$67$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T - 153)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 124)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 8 T - 112)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 352 T^{2} + 12544 \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 28)^{2} \) Copy content Toggle raw display
$97$ \( (T - 14)^{4} \) Copy content Toggle raw display
show more
show less