Properties

Label 3330.2.d.d.1999.1
Level $3330$
Weight $2$
Character 3330.1999
Analytic conductor $26.590$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3330,2,Mod(1999,3330)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3330, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3330.1999");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3330.1999
Dual form 3330.2.d.d.1999.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-1.00000 + 2.00000i) q^{5} +1.00000i q^{7} +1.00000i q^{8} +(2.00000 + 1.00000i) q^{10} -5.00000 q^{11} +1.00000 q^{14} +1.00000 q^{16} -1.00000i q^{17} +(1.00000 - 2.00000i) q^{20} +5.00000i q^{22} +4.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} -1.00000i q^{28} -3.00000 q^{29} +1.00000 q^{31} -1.00000i q^{32} -1.00000 q^{34} +(-2.00000 - 1.00000i) q^{35} -1.00000i q^{37} +(-2.00000 - 1.00000i) q^{40} +1.00000 q^{41} -7.00000i q^{43} +5.00000 q^{44} +4.00000 q^{46} +4.00000i q^{47} +6.00000 q^{49} +(-4.00000 + 3.00000i) q^{50} +3.00000i q^{53} +(5.00000 - 10.0000i) q^{55} -1.00000 q^{56} +3.00000i q^{58} -8.00000 q^{59} +5.00000 q^{61} -1.00000i q^{62} -1.00000 q^{64} -4.00000i q^{67} +1.00000i q^{68} +(-1.00000 + 2.00000i) q^{70} +6.00000 q^{71} -10.0000i q^{73} -1.00000 q^{74} -5.00000i q^{77} +(-1.00000 + 2.00000i) q^{80} -1.00000i q^{82} -8.00000i q^{83} +(2.00000 + 1.00000i) q^{85} -7.00000 q^{86} -5.00000i q^{88} +8.00000 q^{89} -4.00000i q^{92} +4.00000 q^{94} -1.00000i q^{97} -6.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{5} + 4 q^{10} - 10 q^{11} + 2 q^{14} + 2 q^{16} + 2 q^{20} - 6 q^{25} - 6 q^{29} + 2 q^{31} - 2 q^{34} - 4 q^{35} - 4 q^{40} + 2 q^{41} + 10 q^{44} + 8 q^{46} + 12 q^{49} - 8 q^{50}+ \cdots + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 0 0
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 + 1.00000i 0.632456 + 0.316228i
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.00000 2.00000i 0.223607 0.447214i
\(21\) 0 0
\(22\) 5.00000i 1.06600i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) −2.00000 1.00000i −0.338062 0.169031i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0 0
\(39\) 0 0
\(40\) −2.00000 1.00000i −0.316228 0.158114i
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) 7.00000i 1.06749i −0.845645 0.533745i \(-0.820784\pi\)
0.845645 0.533745i \(-0.179216\pi\)
\(44\) 5.00000 0.753778
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) −4.00000 + 3.00000i −0.565685 + 0.424264i
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) 0 0
\(55\) 5.00000 10.0000i 0.674200 1.34840i
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 3.00000i 0.393919i
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 1.00000i 0.127000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 0 0
\(70\) −1.00000 + 2.00000i −0.119523 + 0.239046i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) 0 0
\(77\) 5.00000i 0.569803i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 0 0
\(82\) 1.00000i 0.110432i
\(83\) 8.00000i 0.878114i −0.898459 0.439057i \(-0.855313\pi\)
0.898459 0.439057i \(-0.144687\pi\)
\(84\) 0 0
\(85\) 2.00000 + 1.00000i 0.216930 + 0.108465i
\(86\) −7.00000 −0.754829
\(87\) 0 0
\(88\) 5.00000i 0.533002i
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00000i 0.101535i −0.998711 0.0507673i \(-0.983833\pi\)
0.998711 0.0507673i \(-0.0161667\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 6.00000i 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) −10.0000 5.00000i −0.953463 0.476731i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 21.0000i 1.97551i −0.156001 0.987757i \(-0.549860\pi\)
0.156001 0.987757i \(-0.450140\pi\)
\(114\) 0 0
\(115\) −8.00000 4.00000i −0.746004 0.373002i
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) 8.00000i 0.736460i
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 5.00000i 0.452679i
\(123\) 0 0
\(124\) −1.00000 −0.0898027
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 18.0000i 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) 2.00000 + 1.00000i 0.169031 + 0.0845154i
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 0 0
\(144\) 0 0
\(145\) 3.00000 6.00000i 0.249136 0.498273i
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −5.00000 −0.402911
\(155\) −1.00000 + 2.00000i −0.0803219 + 0.160644i
\(156\) 0 0
\(157\) 23.0000i 1.83560i 0.397043 + 0.917800i \(0.370036\pi\)
−0.397043 + 0.917800i \(0.629964\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 2.00000 + 1.00000i 0.158114 + 0.0790569i
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) 1.00000i 0.0783260i 0.999233 + 0.0391630i \(0.0124692\pi\)
−0.999233 + 0.0391630i \(0.987531\pi\)
\(164\) −1.00000 −0.0780869
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 6.00000i 0.464294i 0.972681 + 0.232147i \(0.0745750\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 1.00000 2.00000i 0.0766965 0.153393i
\(171\) 0 0
\(172\) 7.00000i 0.533745i
\(173\) 13.0000i 0.988372i −0.869356 0.494186i \(-0.835466\pi\)
0.869356 0.494186i \(-0.164534\pi\)
\(174\) 0 0
\(175\) 4.00000 3.00000i 0.302372 0.226779i
\(176\) −5.00000 −0.376889
\(177\) 0 0
\(178\) 8.00000i 0.599625i
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 2.00000 + 1.00000i 0.147043 + 0.0735215i
\(186\) 0 0
\(187\) 5.00000i 0.365636i
\(188\) 4.00000i 0.291730i
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) −1.00000 −0.0717958
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 26.0000i 1.85242i −0.377004 0.926212i \(-0.623046\pi\)
0.377004 0.926212i \(-0.376954\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 4.00000 3.00000i 0.282843 0.212132i
\(201\) 0 0
\(202\) 10.0000i 0.703598i
\(203\) 3.00000i 0.210559i
\(204\) 0 0
\(205\) −1.00000 + 2.00000i −0.0698430 + 0.139686i
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −21.0000 −1.44570 −0.722850 0.691005i \(-0.757168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(212\) 3.00000i 0.206041i
\(213\) 0 0
\(214\) −6.00000 −0.410152
\(215\) 14.0000 + 7.00000i 0.954792 + 0.477396i
\(216\) 0 0
\(217\) 1.00000i 0.0678844i
\(218\) 1.00000i 0.0677285i
\(219\) 0 0
\(220\) −5.00000 + 10.0000i −0.337100 + 0.674200i
\(221\) 0 0
\(222\) 0 0
\(223\) 5.00000i 0.334825i 0.985887 + 0.167412i \(0.0535411\pi\)
−0.985887 + 0.167412i \(0.946459\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −21.0000 −1.39690
\(227\) 1.00000i 0.0663723i −0.999449 0.0331862i \(-0.989435\pi\)
0.999449 0.0331862i \(-0.0105654\pi\)
\(228\) 0 0
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) −4.00000 + 8.00000i −0.263752 + 0.527504i
\(231\) 0 0
\(232\) 3.00000i 0.196960i
\(233\) 10.0000i 0.655122i −0.944830 0.327561i \(-0.893773\pi\)
0.944830 0.327561i \(-0.106227\pi\)
\(234\) 0 0
\(235\) −8.00000 4.00000i −0.521862 0.260931i
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 1.00000i 0.0648204i
\(239\) 11.0000 0.711531 0.355765 0.934575i \(-0.384220\pi\)
0.355765 + 0.934575i \(0.384220\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 14.0000i 0.899954i
\(243\) 0 0
\(244\) −5.00000 −0.320092
\(245\) −6.00000 + 12.0000i −0.383326 + 0.766652i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.00000i 0.0635001i
\(249\) 0 0
\(250\) −2.00000 11.0000i −0.126491 0.695701i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 20.0000i 1.25739i
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000i 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 0 0
\(262\) 6.00000i 0.370681i
\(263\) 19.0000i 1.17159i 0.810459 + 0.585795i \(0.199218\pi\)
−0.810459 + 0.585795i \(0.800782\pi\)
\(264\) 0 0
\(265\) −6.00000 3.00000i −0.368577 0.184289i
\(266\) 0 0
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 15.0000 + 20.0000i 0.904534 + 1.20605i
\(276\) 0 0
\(277\) 8.00000i 0.480673i −0.970690 0.240337i \(-0.922742\pi\)
0.970690 0.240337i \(-0.0772579\pi\)
\(278\) 11.0000i 0.659736i
\(279\) 0 0
\(280\) 1.00000 2.00000i 0.0597614 0.119523i
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) 1.00000i 0.0590281i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) −6.00000 3.00000i −0.352332 0.176166i
\(291\) 0 0
\(292\) 10.0000i 0.585206i
\(293\) 9.00000i 0.525786i 0.964825 + 0.262893i \(0.0846766\pi\)
−0.964825 + 0.262893i \(0.915323\pi\)
\(294\) 0 0
\(295\) 8.00000 16.0000i 0.465778 0.931556i
\(296\) 1.00000 0.0581238
\(297\) 0 0
\(298\) 4.00000i 0.231714i
\(299\) 0 0
\(300\) 0 0
\(301\) 7.00000 0.403473
\(302\) 2.00000i 0.115087i
\(303\) 0 0
\(304\) 0 0
\(305\) −5.00000 + 10.0000i −0.286299 + 0.572598i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 5.00000i 0.284901i
\(309\) 0 0
\(310\) 2.00000 + 1.00000i 0.113592 + 0.0567962i
\(311\) −15.0000 −0.850572 −0.425286 0.905059i \(-0.639826\pi\)
−0.425286 + 0.905059i \(0.639826\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) 23.0000 1.29797
\(315\) 0 0
\(316\) 0 0
\(317\) 5.00000i 0.280828i 0.990093 + 0.140414i \(0.0448433\pi\)
−0.990093 + 0.140414i \(0.955157\pi\)
\(318\) 0 0
\(319\) 15.0000 0.839839
\(320\) 1.00000 2.00000i 0.0559017 0.111803i
\(321\) 0 0
\(322\) 4.00000i 0.222911i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 1.00000 0.0553849
\(327\) 0 0
\(328\) 1.00000i 0.0552158i
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 8.00000i 0.439057i
\(333\) 0 0
\(334\) 6.00000 0.328305
\(335\) 8.00000 + 4.00000i 0.437087 + 0.218543i
\(336\) 0 0
\(337\) 16.0000i 0.871576i 0.900049 + 0.435788i \(0.143530\pi\)
−0.900049 + 0.435788i \(0.856470\pi\)
\(338\) 13.0000i 0.707107i
\(339\) 0 0
\(340\) −2.00000 1.00000i −0.108465 0.0542326i
\(341\) −5.00000 −0.270765
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 7.00000 0.377415
\(345\) 0 0
\(346\) −13.0000 −0.698884
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −3.00000 4.00000i −0.160357 0.213809i
\(351\) 0 0
\(352\) 5.00000i 0.266501i
\(353\) 31.0000i 1.64996i −0.565159 0.824982i \(-0.691185\pi\)
0.565159 0.824982i \(-0.308815\pi\)
\(354\) 0 0
\(355\) −6.00000 + 12.0000i −0.318447 + 0.636894i
\(356\) −8.00000 −0.423999
\(357\) 0 0
\(358\) 10.0000i 0.528516i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 16.0000i 0.840941i
\(363\) 0 0
\(364\) 0 0
\(365\) 20.0000 + 10.0000i 1.04685 + 0.523424i
\(366\) 0 0
\(367\) 13.0000i 0.678594i 0.940679 + 0.339297i \(0.110189\pi\)
−0.940679 + 0.339297i \(0.889811\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 0 0
\(370\) 1.00000 2.00000i 0.0519875 0.103975i
\(371\) −3.00000 −0.155752
\(372\) 0 0
\(373\) 6.00000i 0.310668i −0.987862 0.155334i \(-0.950355\pi\)
0.987862 0.155334i \(-0.0496454\pi\)
\(374\) 5.00000 0.258544
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.00000i 0.153493i
\(383\) 8.00000i 0.408781i 0.978889 + 0.204390i \(0.0655212\pi\)
−0.978889 + 0.204390i \(0.934479\pi\)
\(384\) 0 0
\(385\) 10.0000 + 5.00000i 0.509647 + 0.254824i
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) 1.00000i 0.0507673i
\(389\) 23.0000 1.16615 0.583073 0.812420i \(-0.301850\pi\)
0.583073 + 0.812420i \(0.301850\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 6.00000i 0.303046i
\(393\) 0 0
\(394\) −26.0000 −1.30986
\(395\) 0 0
\(396\) 0 0
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 24.0000i 1.20301i
\(399\) 0 0
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) 5.00000i 0.247841i
\(408\) 0 0
\(409\) 40.0000 1.97787 0.988936 0.148340i \(-0.0473931\pi\)
0.988936 + 0.148340i \(0.0473931\pi\)
\(410\) 2.00000 + 1.00000i 0.0987730 + 0.0493865i
\(411\) 0 0
\(412\) 8.00000i 0.394132i
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) 16.0000 + 8.00000i 0.785409 + 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) 21.0000i 1.02226i
\(423\) 0 0
\(424\) −3.00000 −0.145693
\(425\) −4.00000 + 3.00000i −0.194029 + 0.145521i
\(426\) 0 0
\(427\) 5.00000i 0.241967i
\(428\) 6.00000i 0.290021i
\(429\) 0 0
\(430\) 7.00000 14.0000i 0.337570 0.675140i
\(431\) 13.0000 0.626188 0.313094 0.949722i \(-0.398635\pi\)
0.313094 + 0.949722i \(0.398635\pi\)
\(432\) 0 0
\(433\) 20.0000i 0.961139i 0.876957 + 0.480569i \(0.159570\pi\)
−0.876957 + 0.480569i \(0.840430\pi\)
\(434\) 1.00000 0.0480015
\(435\) 0 0
\(436\) 1.00000 0.0478913
\(437\) 0 0
\(438\) 0 0
\(439\) 33.0000 1.57500 0.787502 0.616312i \(-0.211374\pi\)
0.787502 + 0.616312i \(0.211374\pi\)
\(440\) 10.0000 + 5.00000i 0.476731 + 0.238366i
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000i 0.285069i −0.989790 0.142534i \(-0.954475\pi\)
0.989790 0.142534i \(-0.0455251\pi\)
\(444\) 0 0
\(445\) −8.00000 + 16.0000i −0.379236 + 0.758473i
\(446\) 5.00000 0.236757
\(447\) 0 0
\(448\) 1.00000i 0.0472456i
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) −5.00000 −0.235441
\(452\) 21.0000i 0.987757i
\(453\) 0 0
\(454\) −1.00000 −0.0469323
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0000i 0.888783i 0.895833 + 0.444391i \(0.146580\pi\)
−0.895833 + 0.444391i \(0.853420\pi\)
\(458\) 16.0000i 0.747631i
\(459\) 0 0
\(460\) 8.00000 + 4.00000i 0.373002 + 0.186501i
\(461\) −3.00000 −0.139724 −0.0698620 0.997557i \(-0.522256\pi\)
−0.0698620 + 0.997557i \(0.522256\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −10.0000 −0.463241
\(467\) 27.0000i 1.24941i −0.780860 0.624705i \(-0.785219\pi\)
0.780860 0.624705i \(-0.214781\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) −4.00000 + 8.00000i −0.184506 + 0.369012i
\(471\) 0 0
\(472\) 8.00000i 0.368230i
\(473\) 35.0000i 1.60930i
\(474\) 0 0
\(475\) 0 0
\(476\) −1.00000 −0.0458349
\(477\) 0 0
\(478\) 11.0000i 0.503128i
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.00000i 0.0910975i
\(483\) 0 0
\(484\) −14.0000 −0.636364
\(485\) 2.00000 + 1.00000i 0.0908153 + 0.0454077i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 5.00000i 0.226339i
\(489\) 0 0
\(490\) 12.0000 + 6.00000i 0.542105 + 0.271052i
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 3.00000i 0.135113i
\(494\) 0 0
\(495\) 0 0
\(496\) 1.00000 0.0449013
\(497\) 6.00000i 0.269137i
\(498\) 0 0
\(499\) 30.0000 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(500\) −11.0000 + 2.00000i −0.491935 + 0.0894427i
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 0 0
\(505\) 10.0000 20.0000i 0.444994 0.889988i
\(506\) −20.0000 −0.889108
\(507\) 0 0
\(508\) 8.00000i 0.354943i
\(509\) −42.0000 −1.86162 −0.930809 0.365507i \(-0.880896\pi\)
−0.930809 + 0.365507i \(0.880896\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −6.00000 −0.264649
\(515\) 16.0000 + 8.00000i 0.705044 + 0.352522i
\(516\) 0 0
\(517\) 20.0000i 0.879599i
\(518\) 1.00000i 0.0439375i
\(519\) 0 0
\(520\) 0 0
\(521\) 35.0000 1.53338 0.766689 0.642019i \(-0.221903\pi\)
0.766689 + 0.642019i \(0.221903\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) −6.00000 −0.262111
\(525\) 0 0
\(526\) 19.0000 0.828439
\(527\) 1.00000i 0.0435607i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −3.00000 + 6.00000i −0.130312 + 0.260623i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 12.0000 + 6.00000i 0.518805 + 0.259403i
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) 12.0000i 0.517357i
\(539\) −30.0000 −1.29219
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) 14.0000i 0.601351i
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 1.00000 2.00000i 0.0428353 0.0856706i
\(546\) 0 0
\(547\) 41.0000i 1.75303i −0.481371 0.876517i \(-0.659861\pi\)
0.481371 0.876517i \(-0.340139\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 20.0000 15.0000i 0.852803 0.639602i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) −11.0000 −0.466504
\(557\) 6.00000i 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.00000 1.00000i −0.0845154 0.0422577i
\(561\) 0 0
\(562\) 18.0000i 0.759284i
\(563\) 19.0000i 0.800755i −0.916350 0.400377i \(-0.868879\pi\)
0.916350 0.400377i \(-0.131121\pi\)
\(564\) 0 0
\(565\) 42.0000 + 21.0000i 1.76695 + 0.883477i
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −29.0000 −1.21361 −0.606806 0.794850i \(-0.707550\pi\)
−0.606806 + 0.794850i \(0.707550\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 1.00000 0.0417392
\(575\) 16.0000 12.0000i 0.667246 0.500435i
\(576\) 0 0
\(577\) 22.0000i 0.915872i 0.888985 + 0.457936i \(0.151411\pi\)
−0.888985 + 0.457936i \(0.848589\pi\)
\(578\) 16.0000i 0.665512i
\(579\) 0 0
\(580\) −3.00000 + 6.00000i −0.124568 + 0.249136i
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 15.0000i 0.621237i
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) 33.0000i 1.36206i 0.732257 + 0.681028i \(0.238467\pi\)
−0.732257 + 0.681028i \(0.761533\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −16.0000 8.00000i −0.658710 0.329355i
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 24.0000i 0.985562i −0.870153 0.492781i \(-0.835980\pi\)
0.870153 0.492781i \(-0.164020\pi\)
\(594\) 0 0
\(595\) −1.00000 + 2.00000i −0.0409960 + 0.0819920i
\(596\) −4.00000 −0.163846
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −7.00000 −0.285536 −0.142768 0.989756i \(-0.545600\pi\)
−0.142768 + 0.989756i \(0.545600\pi\)
\(602\) 7.00000i 0.285299i
\(603\) 0 0
\(604\) 2.00000 0.0813788
\(605\) −14.0000 + 28.0000i −0.569181 + 1.13836i
\(606\) 0 0
\(607\) 10.0000i 0.405887i −0.979190 0.202944i \(-0.934949\pi\)
0.979190 0.202944i \(-0.0650509\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 10.0000 + 5.00000i 0.404888 + 0.202444i
\(611\) 0 0
\(612\) 0 0
\(613\) 37.0000i 1.49442i −0.664590 0.747208i \(-0.731394\pi\)
0.664590 0.747208i \(-0.268606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 5.00000 0.201456
\(617\) 34.0000i 1.36879i −0.729112 0.684394i \(-0.760067\pi\)
0.729112 0.684394i \(-0.239933\pi\)
\(618\) 0 0
\(619\) 31.0000 1.24600 0.622998 0.782224i \(-0.285915\pi\)
0.622998 + 0.782224i \(0.285915\pi\)
\(620\) 1.00000 2.00000i 0.0401610 0.0803219i
\(621\) 0 0
\(622\) 15.0000i 0.601445i
\(623\) 8.00000i 0.320513i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 23.0000i 0.917800i
\(629\) −1.00000 −0.0398726
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 5.00000 0.198575
\(635\) 16.0000 + 8.00000i 0.634941 + 0.317470i
\(636\) 0 0
\(637\) 0 0
\(638\) 15.0000i 0.593856i
\(639\) 0 0
\(640\) −2.00000 1.00000i −0.0790569 0.0395285i
\(641\) 37.0000 1.46141 0.730706 0.682692i \(-0.239191\pi\)
0.730706 + 0.682692i \(0.239191\pi\)
\(642\) 0 0
\(643\) 21.0000i 0.828159i 0.910241 + 0.414080i \(0.135896\pi\)
−0.910241 + 0.414080i \(0.864104\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) 0 0
\(647\) 42.0000i 1.65119i −0.564263 0.825595i \(-0.690840\pi\)
0.564263 0.825595i \(-0.309160\pi\)
\(648\) 0 0
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 0 0
\(652\) 1.00000i 0.0391630i
\(653\) 10.0000i 0.391330i 0.980671 + 0.195665i \(0.0626866\pi\)
−0.980671 + 0.195665i \(0.937313\pi\)
\(654\) 0 0
\(655\) −6.00000 + 12.0000i −0.234439 + 0.468879i
\(656\) 1.00000 0.0390434
\(657\) 0 0
\(658\) 4.00000i 0.155936i
\(659\) −32.0000 −1.24654 −0.623272 0.782006i \(-0.714197\pi\)
−0.623272 + 0.782006i \(0.714197\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 26.0000i 1.01052i
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000i 0.464642i
\(668\) 6.00000i 0.232147i
\(669\) 0 0
\(670\) 4.00000 8.00000i 0.154533 0.309067i
\(671\) −25.0000 −0.965114
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) 16.0000 0.616297
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 2.00000i 0.0768662i 0.999261 + 0.0384331i \(0.0122367\pi\)
−0.999261 + 0.0384331i \(0.987763\pi\)
\(678\) 0 0
\(679\) 1.00000 0.0383765
\(680\) −1.00000 + 2.00000i −0.0383482 + 0.0766965i
\(681\) 0 0
\(682\) 5.00000i 0.191460i
\(683\) 37.0000i 1.41577i 0.706330 + 0.707883i \(0.250350\pi\)
−0.706330 + 0.707883i \(0.749650\pi\)
\(684\) 0 0
\(685\) 36.0000 + 18.0000i 1.37549 + 0.687745i
\(686\) 13.0000 0.496342
\(687\) 0 0
\(688\) 7.00000i 0.266872i
\(689\) 0 0
\(690\) 0 0
\(691\) −5.00000 −0.190209 −0.0951045 0.995467i \(-0.530319\pi\)
−0.0951045 + 0.995467i \(0.530319\pi\)
\(692\) 13.0000i 0.494186i
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −11.0000 + 22.0000i −0.417254 + 0.834508i
\(696\) 0 0
\(697\) 1.00000i 0.0378777i
\(698\) 2.00000i 0.0757011i
\(699\) 0 0
\(700\) −4.00000 + 3.00000i −0.151186 + 0.113389i
\(701\) −26.0000 −0.982006 −0.491003 0.871158i \(-0.663370\pi\)
−0.491003 + 0.871158i \(0.663370\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 5.00000 0.188445
\(705\) 0 0
\(706\) −31.0000 −1.16670
\(707\) 10.0000i 0.376089i
\(708\) 0 0
\(709\) −9.00000 −0.338002 −0.169001 0.985616i \(-0.554054\pi\)
−0.169001 + 0.985616i \(0.554054\pi\)
\(710\) 12.0000 + 6.00000i 0.450352 + 0.225176i
\(711\) 0 0
\(712\) 8.00000i 0.299813i
\(713\) 4.00000i 0.149801i
\(714\) 0 0
\(715\) 0 0
\(716\) −10.0000 −0.373718
\(717\) 0 0
\(718\) 6.00000i 0.223918i
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 19.0000i 0.707107i
\(723\) 0 0
\(724\) 16.0000 0.594635
\(725\) 9.00000 + 12.0000i 0.334252 + 0.445669i
\(726\) 0 0
\(727\) 42.0000i 1.55769i −0.627214 0.778847i \(-0.715805\pi\)
0.627214 0.778847i \(-0.284195\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 10.0000 20.0000i 0.370117 0.740233i
\(731\) −7.00000 −0.258904
\(732\) 0 0
\(733\) 19.0000i 0.701781i 0.936416 + 0.350891i \(0.114121\pi\)
−0.936416 + 0.350891i \(0.885879\pi\)
\(734\) 13.0000 0.479839
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 20.0000i 0.736709i
\(738\) 0 0
\(739\) −37.0000 −1.36107 −0.680534 0.732717i \(-0.738252\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) −2.00000 1.00000i −0.0735215 0.0367607i
\(741\) 0 0
\(742\) 3.00000i 0.110133i
\(743\) 15.0000i 0.550297i 0.961402 + 0.275148i \(0.0887270\pi\)
−0.961402 + 0.275148i \(0.911273\pi\)
\(744\) 0 0
\(745\) −4.00000 + 8.00000i −0.146549 + 0.293097i
\(746\) −6.00000 −0.219676
\(747\) 0 0
\(748\) 5.00000i 0.182818i
\(749\) 6.00000 0.219235
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 4.00000i 0.145865i
\(753\) 0 0
\(754\) 0 0
\(755\) 2.00000 4.00000i 0.0727875 0.145575i
\(756\) 0 0
\(757\) 20.0000i 0.726912i −0.931611 0.363456i \(-0.881597\pi\)
0.931611 0.363456i \(-0.118403\pi\)
\(758\) 20.0000i 0.726433i
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) 0 0
\(763\) 1.00000i 0.0362024i
\(764\) 3.00000 0.108536
\(765\) 0 0
\(766\) 8.00000 0.289052
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 5.00000 10.0000i 0.180187 0.360375i
\(771\) 0 0
\(772\) 10.0000i 0.359908i
\(773\) 27.0000i 0.971123i −0.874203 0.485561i \(-0.838615\pi\)
0.874203 0.485561i \(-0.161385\pi\)
\(774\) 0 0
\(775\) −3.00000 4.00000i −0.107763 0.143684i
\(776\) 1.00000 0.0358979
\(777\) 0 0
\(778\) 23.0000i 0.824590i
\(779\) 0 0
\(780\) 0 0
\(781\) −30.0000 −1.07348
\(782\) 4.00000i 0.143040i
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) −46.0000 23.0000i −1.64181 0.820905i
\(786\) 0 0
\(787\) 10.0000i 0.356462i 0.983989 + 0.178231i \(0.0570374\pi\)
−0.983989 + 0.178231i \(0.942963\pi\)
\(788\) 26.0000i 0.926212i
\(789\) 0 0
\(790\) 0 0
\(791\) 21.0000 0.746674
\(792\) 0 0
\(793\) 0 0
\(794\) 22.0000 0.780751
\(795\) 0 0
\(796\) 24.0000 0.850657
\(797\) 8.00000i 0.283375i 0.989911 + 0.141687i \(0.0452527\pi\)
−0.989911 + 0.141687i \(0.954747\pi\)
\(798\) 0 0
\(799\) 4.00000 0.141510
\(800\) −4.00000 + 3.00000i −0.141421 + 0.106066i
\(801\) 0 0
\(802\) 10.0000i 0.353112i
\(803\) 50.0000i 1.76446i
\(804\) 0 0
\(805\) 4.00000 8.00000i 0.140981 0.281963i
\(806\) 0 0
\(807\) 0 0
\(808\) 10.0000i 0.351799i
\(809\) 48.0000 1.68759 0.843795 0.536666i \(-0.180316\pi\)
0.843795 + 0.536666i \(0.180316\pi\)
\(810\) 0 0
\(811\) −8.00000 −0.280918 −0.140459 0.990086i \(-0.544858\pi\)
−0.140459 + 0.990086i \(0.544858\pi\)
\(812\) 3.00000i 0.105279i
\(813\) 0 0
\(814\) 5.00000 0.175250
\(815\) −2.00000 1.00000i −0.0700569 0.0350285i
\(816\) 0 0
\(817\) 0 0
\(818\) 40.0000i 1.39857i
\(819\) 0 0
\(820\) 1.00000 2.00000i 0.0349215 0.0698430i
\(821\) 50.0000 1.74501 0.872506 0.488603i \(-0.162493\pi\)
0.872506 + 0.488603i \(0.162493\pi\)
\(822\) 0 0
\(823\) 24.0000i 0.836587i 0.908312 + 0.418294i \(0.137372\pi\)
−0.908312 + 0.418294i \(0.862628\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) 35.0000i 1.21707i 0.793527 + 0.608535i \(0.208242\pi\)
−0.793527 + 0.608535i \(0.791758\pi\)
\(828\) 0 0
\(829\) −21.0000 −0.729360 −0.364680 0.931133i \(-0.618822\pi\)
−0.364680 + 0.931133i \(0.618822\pi\)
\(830\) 8.00000 16.0000i 0.277684 0.555368i
\(831\) 0 0
\(832\) 0 0
\(833\) 6.00000i 0.207888i
\(834\) 0 0
\(835\) −12.0000 6.00000i −0.415277 0.207639i
\(836\) 0 0
\(837\) 0 0
\(838\) 20.0000i 0.690889i
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 38.0000i 1.30957i
\(843\) 0 0
\(844\) 21.0000 0.722850
\(845\) −13.0000 + 26.0000i −0.447214 + 0.894427i
\(846\) 0 0
\(847\) 14.0000i 0.481046i
\(848\) 3.00000i 0.103020i
\(849\) 0 0
\(850\) 3.00000 + 4.00000i 0.102899 + 0.137199i
\(851\) 4.00000 0.137118
\(852\) 0 0
\(853\) 2.00000i 0.0684787i −0.999414 0.0342393i \(-0.989099\pi\)
0.999414 0.0342393i \(-0.0109009\pi\)
\(854\) 5.00000 0.171096
\(855\) 0 0
\(856\) 6.00000 0.205076
\(857\) 27.0000i 0.922302i −0.887322 0.461151i \(-0.847437\pi\)
0.887322 0.461151i \(-0.152563\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) −14.0000 7.00000i −0.477396 0.238698i
\(861\) 0 0
\(862\) 13.0000i 0.442782i
\(863\) 21.0000i 0.714848i 0.933942 + 0.357424i \(0.116345\pi\)
−0.933942 + 0.357424i \(0.883655\pi\)
\(864\) 0 0
\(865\) 26.0000 + 13.0000i 0.884027 + 0.442013i
\(866\) 20.0000 0.679628
\(867\) 0 0
\(868\) 1.00000i 0.0339422i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.00000i 0.0338643i
\(873\) 0 0
\(874\) 0 0
\(875\) 2.00000 + 11.0000i 0.0676123 + 0.371868i
\(876\) 0 0
\(877\) 13.0000i 0.438979i −0.975615 0.219489i \(-0.929561\pi\)
0.975615 0.219489i \(-0.0704391\pi\)
\(878\) 33.0000i 1.11370i
\(879\) 0 0
\(880\) 5.00000 10.0000i 0.168550 0.337100i
\(881\) 45.0000 1.51609 0.758044 0.652203i \(-0.226155\pi\)
0.758044 + 0.652203i \(0.226155\pi\)
\(882\) 0 0
\(883\) 33.0000i 1.11054i −0.831671 0.555269i \(-0.812615\pi\)
0.831671 0.555269i \(-0.187385\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.00000 −0.201574
\(887\) 45.0000i 1.51095i 0.655176 + 0.755476i \(0.272594\pi\)
−0.655176 + 0.755476i \(0.727406\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 16.0000 + 8.00000i 0.536321 + 0.268161i
\(891\) 0 0
\(892\) 5.00000i 0.167412i
\(893\) 0 0
\(894\) 0 0
\(895\) −10.0000 + 20.0000i −0.334263 + 0.668526i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 24.0000i 0.800890i
\(899\) −3.00000 −0.100056
\(900\) 0 0
\(901\) 3.00000 0.0999445
\(902\) 5.00000i 0.166482i
\(903\) 0 0
\(904\) 21.0000 0.698450
\(905\) 16.0000 32.0000i 0.531858 1.06372i
\(906\) 0 0
\(907\) 36.0000i 1.19536i 0.801735 + 0.597680i \(0.203911\pi\)
−0.801735 + 0.597680i \(0.796089\pi\)
\(908\) 1.00000i 0.0331862i
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 40.0000i 1.32381i
\(914\) 19.0000 0.628464
\(915\) 0 0
\(916\) −16.0000 −0.528655
\(917\) 6.00000i 0.198137i
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 4.00000 8.00000i 0.131876 0.263752i
\(921\) 0 0
\(922\) 3.00000i 0.0987997i
\(923\) 0 0
\(924\) 0 0
\(925\) −4.00000 + 3.00000i −0.131519 + 0.0986394i
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 3.00000i 0.0984798i
\(929\) −3.00000 −0.0984268 −0.0492134 0.998788i \(-0.515671\pi\)
−0.0492134 + 0.998788i \(0.515671\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 10.0000i 0.327561i
\(933\) 0 0
\(934\) −27.0000 −0.883467
\(935\) −10.0000 5.00000i −0.327035 0.163517i
\(936\) 0 0
\(937\) 16.0000i 0.522697i −0.965244 0.261349i \(-0.915833\pi\)
0.965244 0.261349i \(-0.0841672\pi\)
\(938\) 4.00000i 0.130605i
\(939\) 0 0
\(940\) 8.00000 + 4.00000i 0.260931 + 0.130466i
\(941\) 22.0000 0.717180 0.358590 0.933495i \(-0.383258\pi\)
0.358590 + 0.933495i \(0.383258\pi\)
\(942\) 0 0
\(943\) 4.00000i 0.130258i
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 35.0000 1.13795
\(947\) 27.0000i 0.877382i 0.898638 + 0.438691i \(0.144558\pi\)
−0.898638 + 0.438691i \(0.855442\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 1.00000i 0.0324102i
\(953\) 14.0000i 0.453504i 0.973952 + 0.226752i \(0.0728108\pi\)
−0.973952 + 0.226752i \(0.927189\pi\)
\(954\) 0 0
\(955\) 3.00000 6.00000i 0.0970777 0.194155i
\(956\) −11.0000 −0.355765
\(957\) 0 0
\(958\) 28.0000i 0.904639i
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) 20.0000 + 10.0000i 0.643823 + 0.321911i
\(966\) 0 0
\(967\) 10.0000i 0.321578i −0.986989 0.160789i \(-0.948596\pi\)
0.986989 0.160789i \(-0.0514039\pi\)
\(968\) 14.0000i 0.449977i
\(969\) 0 0
\(970\) 1.00000 2.00000i 0.0321081 0.0642161i
\(971\) −39.0000 −1.25157 −0.625785 0.779996i \(-0.715221\pi\)
−0.625785 + 0.779996i \(0.715221\pi\)
\(972\) 0 0
\(973\) 11.0000i 0.352644i
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) 3.00000i 0.0959785i 0.998848 + 0.0479893i \(0.0152813\pi\)
−0.998848 + 0.0479893i \(0.984719\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 6.00000 12.0000i 0.191663 0.383326i
\(981\) 0 0
\(982\) 12.0000i 0.382935i
\(983\) 7.00000i 0.223265i −0.993750 0.111633i \(-0.964392\pi\)
0.993750 0.111633i \(-0.0356080\pi\)
\(984\) 0 0
\(985\) 52.0000 + 26.0000i 1.65686 + 0.828429i
\(986\) 3.00000 0.0955395
\(987\) 0 0
\(988\) 0 0
\(989\) 28.0000 0.890348
\(990\) 0 0
\(991\) −5.00000 −0.158830 −0.0794151 0.996842i \(-0.525305\pi\)
−0.0794151 + 0.996842i \(0.525305\pi\)
\(992\) 1.00000i 0.0317500i
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 24.0000 48.0000i 0.760851 1.52170i
\(996\) 0 0
\(997\) 24.0000i 0.760088i −0.924968 0.380044i \(-0.875909\pi\)
0.924968 0.380044i \(-0.124091\pi\)
\(998\) 30.0000i 0.949633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.d.d.1999.1 2
3.2 odd 2 1110.2.d.c.889.2 yes 2
5.4 even 2 inner 3330.2.d.d.1999.2 2
15.2 even 4 5550.2.a.d.1.1 1
15.8 even 4 5550.2.a.bo.1.1 1
15.14 odd 2 1110.2.d.c.889.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.d.c.889.1 2 15.14 odd 2
1110.2.d.c.889.2 yes 2 3.2 odd 2
3330.2.d.d.1999.1 2 1.1 even 1 trivial
3330.2.d.d.1999.2 2 5.4 even 2 inner
5550.2.a.d.1.1 1 15.2 even 4
5550.2.a.bo.1.1 1 15.8 even 4