Properties

Label 3330.2.e.c.739.1
Level $3330$
Weight $2$
Character 3330.739
Analytic conductor $26.590$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3330,2,Mod(739,3330)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3330, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3330.739");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 19x^{8} + 103x^{6} + 210x^{4} + 140x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 739.1
Root \(0.987983i\) of defining polynomial
Character \(\chi\) \(=\) 3330.739
Dual form 3330.2.e.c.739.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-1.85396 - 1.25013i) q^{5} +4.78937i q^{7} -1.00000 q^{8} +(1.85396 + 1.25013i) q^{10} +5.98732 q^{11} +3.49410 q^{13} -4.78937i q^{14} +1.00000 q^{16} +4.96343 q^{17} -7.33092i q^{19} +(-1.85396 - 1.25013i) q^{20} -5.98732 q^{22} -1.74873 q^{23} +(1.87436 + 4.63538i) q^{25} -3.49410 q^{26} +4.78937i q^{28} +7.85004i q^{29} -3.24097i q^{31} -1.00000 q^{32} -4.96343 q^{34} +(5.98732 - 8.87932i) q^{35} +(3.96343 - 4.61424i) q^{37} +7.33092i q^{38} +(1.85396 + 1.25013i) q^{40} +0.530665 q^{41} -1.76838 q^{43} +5.98732 q^{44} +1.74873 q^{46} -4.30638i q^{47} -15.9381 q^{49} +(-1.87436 - 4.63538i) q^{50} +3.49410 q^{52} -3.66238i q^{53} +(-11.1003 - 7.48491i) q^{55} -4.78937i q^{56} -7.85004i q^{58} -2.15110i q^{59} +3.06584i q^{61} +3.24097i q^{62} +1.00000 q^{64} +(-6.47793 - 4.36807i) q^{65} +3.79622i q^{67} +4.96343 q^{68} +(-5.98732 + 8.87932i) q^{70} +8.47719 q^{71} -9.05445i q^{73} +(-3.96343 + 4.61424i) q^{74} -7.33092i q^{76} +28.6755i q^{77} +5.56622i q^{79} +(-1.85396 - 1.25013i) q^{80} -0.530665 q^{82} -3.77680i q^{83} +(-9.20203 - 6.20492i) q^{85} +1.76838 q^{86} -5.98732 q^{88} -8.45791i q^{89} +16.7345i q^{91} -1.74873 q^{92} +4.30638i q^{94} +(-9.16459 + 13.5913i) q^{95} -3.64747 q^{97} +15.9381 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{2} + 10 q^{4} - 3 q^{5} - 10 q^{8} + 3 q^{10} + 2 q^{13} + 10 q^{16} + 18 q^{17} - 3 q^{20} + 10 q^{23} + 5 q^{25} - 2 q^{26} - 10 q^{32} - 18 q^{34} + 8 q^{37} + 3 q^{40} + 4 q^{41} + 10 q^{43}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.85396 1.25013i −0.829118 0.559074i
\(6\) 0 0
\(7\) 4.78937i 1.81021i 0.425186 + 0.905106i \(0.360209\pi\)
−0.425186 + 0.905106i \(0.639791\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.85396 + 1.25013i 0.586275 + 0.395325i
\(11\) 5.98732 1.80525 0.902623 0.430432i \(-0.141639\pi\)
0.902623 + 0.430432i \(0.141639\pi\)
\(12\) 0 0
\(13\) 3.49410 0.969088 0.484544 0.874767i \(-0.338985\pi\)
0.484544 + 0.874767i \(0.338985\pi\)
\(14\) 4.78937i 1.28001i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.96343 1.20381 0.601905 0.798568i \(-0.294409\pi\)
0.601905 + 0.798568i \(0.294409\pi\)
\(18\) 0 0
\(19\) 7.33092i 1.68183i −0.541168 0.840915i \(-0.682018\pi\)
0.541168 0.840915i \(-0.317982\pi\)
\(20\) −1.85396 1.25013i −0.414559 0.279537i
\(21\) 0 0
\(22\) −5.98732 −1.27650
\(23\) −1.74873 −0.364635 −0.182318 0.983240i \(-0.558360\pi\)
−0.182318 + 0.983240i \(0.558360\pi\)
\(24\) 0 0
\(25\) 1.87436 + 4.63538i 0.374873 + 0.927076i
\(26\) −3.49410 −0.685249
\(27\) 0 0
\(28\) 4.78937i 0.905106i
\(29\) 7.85004i 1.45772i 0.684665 + 0.728858i \(0.259949\pi\)
−0.684665 + 0.728858i \(0.740051\pi\)
\(30\) 0 0
\(31\) 3.24097i 0.582096i −0.956708 0.291048i \(-0.905996\pi\)
0.956708 0.291048i \(-0.0940039\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.96343 −0.851222
\(35\) 5.98732 8.87932i 1.01204 1.50088i
\(36\) 0 0
\(37\) 3.96343 4.61424i 0.651584 0.758576i
\(38\) 7.33092i 1.18923i
\(39\) 0 0
\(40\) 1.85396 + 1.25013i 0.293137 + 0.197662i
\(41\) 0.530665 0.0828760 0.0414380 0.999141i \(-0.486806\pi\)
0.0414380 + 0.999141i \(0.486806\pi\)
\(42\) 0 0
\(43\) −1.76838 −0.269676 −0.134838 0.990868i \(-0.543051\pi\)
−0.134838 + 0.990868i \(0.543051\pi\)
\(44\) 5.98732 0.902623
\(45\) 0 0
\(46\) 1.74873 0.257836
\(47\) 4.30638i 0.628150i −0.949398 0.314075i \(-0.898306\pi\)
0.949398 0.314075i \(-0.101694\pi\)
\(48\) 0 0
\(49\) −15.9381 −2.27687
\(50\) −1.87436 4.63538i −0.265075 0.655542i
\(51\) 0 0
\(52\) 3.49410 0.484544
\(53\) 3.66238i 0.503067i −0.967849 0.251534i \(-0.919065\pi\)
0.967849 0.251534i \(-0.0809349\pi\)
\(54\) 0 0
\(55\) −11.1003 7.48491i −1.49676 1.00927i
\(56\) 4.78937i 0.640007i
\(57\) 0 0
\(58\) 7.85004i 1.03076i
\(59\) 2.15110i 0.280049i −0.990148 0.140025i \(-0.955282\pi\)
0.990148 0.140025i \(-0.0447182\pi\)
\(60\) 0 0
\(61\) 3.06584i 0.392541i 0.980550 + 0.196270i \(0.0628830\pi\)
−0.980550 + 0.196270i \(0.937117\pi\)
\(62\) 3.24097i 0.411604i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −6.47793 4.36807i −0.803489 0.541792i
\(66\) 0 0
\(67\) 3.79622i 0.463782i 0.972742 + 0.231891i \(0.0744912\pi\)
−0.972742 + 0.231891i \(0.925509\pi\)
\(68\) 4.96343 0.601905
\(69\) 0 0
\(70\) −5.98732 + 8.87932i −0.715622 + 1.06128i
\(71\) 8.47719 1.00606 0.503028 0.864270i \(-0.332219\pi\)
0.503028 + 0.864270i \(0.332219\pi\)
\(72\) 0 0
\(73\) 9.05445i 1.05974i −0.848078 0.529872i \(-0.822240\pi\)
0.848078 0.529872i \(-0.177760\pi\)
\(74\) −3.96343 + 4.61424i −0.460740 + 0.536394i
\(75\) 0 0
\(76\) 7.33092i 0.840915i
\(77\) 28.6755i 3.26788i
\(78\) 0 0
\(79\) 5.56622i 0.626248i 0.949712 + 0.313124i \(0.101376\pi\)
−0.949712 + 0.313124i \(0.898624\pi\)
\(80\) −1.85396 1.25013i −0.207279 0.139768i
\(81\) 0 0
\(82\) −0.530665 −0.0586022
\(83\) 3.77680i 0.414558i −0.978282 0.207279i \(-0.933539\pi\)
0.978282 0.207279i \(-0.0664607\pi\)
\(84\) 0 0
\(85\) −9.20203 6.20492i −0.998100 0.673018i
\(86\) 1.76838 0.190690
\(87\) 0 0
\(88\) −5.98732 −0.638251
\(89\) 8.45791i 0.896537i −0.893899 0.448268i \(-0.852041\pi\)
0.893899 0.448268i \(-0.147959\pi\)
\(90\) 0 0
\(91\) 16.7345i 1.75426i
\(92\) −1.74873 −0.182318
\(93\) 0 0
\(94\) 4.30638i 0.444169i
\(95\) −9.16459 + 13.5913i −0.940267 + 1.39443i
\(96\) 0 0
\(97\) −3.64747 −0.370345 −0.185172 0.982706i \(-0.559284\pi\)
−0.185172 + 0.982706i \(0.559284\pi\)
\(98\) 15.9381 1.60999
\(99\) 0 0
\(100\) 1.87436 + 4.63538i 0.187436 + 0.463538i
\(101\) −2.30416 −0.229272 −0.114636 0.993408i \(-0.536570\pi\)
−0.114636 + 0.993408i \(0.536570\pi\)
\(102\) 0 0
\(103\) 11.1716 1.10077 0.550383 0.834912i \(-0.314482\pi\)
0.550383 + 0.834912i \(0.314482\pi\)
\(104\) −3.49410 −0.342625
\(105\) 0 0
\(106\) 3.66238i 0.355722i
\(107\) 6.51807i 0.630126i 0.949071 + 0.315063i \(0.102026\pi\)
−0.949071 + 0.315063i \(0.897974\pi\)
\(108\) 0 0
\(109\) 1.33812i 0.128169i 0.997944 + 0.0640846i \(0.0204127\pi\)
−0.997944 + 0.0640846i \(0.979587\pi\)
\(110\) 11.1003 + 7.48491i 1.05837 + 0.713659i
\(111\) 0 0
\(112\) 4.78937i 0.452553i
\(113\) −1.39109 −0.130863 −0.0654315 0.997857i \(-0.520842\pi\)
−0.0654315 + 0.997857i \(0.520842\pi\)
\(114\) 0 0
\(115\) 3.24208 + 2.18613i 0.302326 + 0.203858i
\(116\) 7.85004i 0.728858i
\(117\) 0 0
\(118\) 2.15110i 0.198025i
\(119\) 23.7717i 2.17915i
\(120\) 0 0
\(121\) 24.8480 2.25891
\(122\) 3.06584i 0.277568i
\(123\) 0 0
\(124\) 3.24097i 0.291048i
\(125\) 2.31981 10.9370i 0.207490 0.978237i
\(126\) 0 0
\(127\) 7.51024i 0.666426i 0.942852 + 0.333213i \(0.108133\pi\)
−0.942852 + 0.333213i \(0.891867\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 6.47793 + 4.36807i 0.568152 + 0.383105i
\(131\) 6.19975i 0.541675i 0.962625 + 0.270837i \(0.0873006\pi\)
−0.962625 + 0.270837i \(0.912699\pi\)
\(132\) 0 0
\(133\) 35.1105 3.04447
\(134\) 3.79622i 0.327943i
\(135\) 0 0
\(136\) −4.96343 −0.425611
\(137\) 8.97186i 0.766518i −0.923641 0.383259i \(-0.874802\pi\)
0.923641 0.383259i \(-0.125198\pi\)
\(138\) 0 0
\(139\) 5.04168 0.427629 0.213815 0.976874i \(-0.431411\pi\)
0.213815 + 0.976874i \(0.431411\pi\)
\(140\) 5.98732 8.87932i 0.506021 0.750440i
\(141\) 0 0
\(142\) −8.47719 −0.711390
\(143\) 20.9203 1.74944
\(144\) 0 0
\(145\) 9.81355 14.5537i 0.814971 1.20862i
\(146\) 9.05445i 0.749352i
\(147\) 0 0
\(148\) 3.96343 4.61424i 0.325792 0.379288i
\(149\) 21.6451 1.77324 0.886619 0.462500i \(-0.153048\pi\)
0.886619 + 0.462500i \(0.153048\pi\)
\(150\) 0 0
\(151\) 6.47544 0.526964 0.263482 0.964664i \(-0.415129\pi\)
0.263482 + 0.964664i \(0.415129\pi\)
\(152\) 7.33092i 0.594616i
\(153\) 0 0
\(154\) 28.6755i 2.31074i
\(155\) −4.05163 + 6.00865i −0.325435 + 0.482626i
\(156\) 0 0
\(157\) 13.1689i 1.05099i 0.850797 + 0.525495i \(0.176120\pi\)
−0.850797 + 0.525495i \(0.823880\pi\)
\(158\) 5.56622i 0.442825i
\(159\) 0 0
\(160\) 1.85396 + 1.25013i 0.146569 + 0.0988312i
\(161\) 8.37532i 0.660067i
\(162\) 0 0
\(163\) −18.7651 −1.46979 −0.734896 0.678180i \(-0.762769\pi\)
−0.734896 + 0.678180i \(0.762769\pi\)
\(164\) 0.530665 0.0414380
\(165\) 0 0
\(166\) 3.77680i 0.293136i
\(167\) 7.19692 0.556914 0.278457 0.960449i \(-0.410177\pi\)
0.278457 + 0.960449i \(0.410177\pi\)
\(168\) 0 0
\(169\) −0.791278 −0.0608676
\(170\) 9.20203 + 6.20492i 0.705763 + 0.475896i
\(171\) 0 0
\(172\) −1.76838 −0.134838
\(173\) 9.79406i 0.744629i −0.928107 0.372314i \(-0.878564\pi\)
0.928107 0.372314i \(-0.121436\pi\)
\(174\) 0 0
\(175\) −22.2006 + 8.97703i −1.67820 + 0.678600i
\(176\) 5.98732 0.451311
\(177\) 0 0
\(178\) 8.45791i 0.633947i
\(179\) 11.2829i 0.843320i 0.906754 + 0.421660i \(0.138552\pi\)
−0.906754 + 0.421660i \(0.861448\pi\)
\(180\) 0 0
\(181\) 1.82697 0.135798 0.0678989 0.997692i \(-0.478370\pi\)
0.0678989 + 0.997692i \(0.478370\pi\)
\(182\) 16.7345i 1.24045i
\(183\) 0 0
\(184\) 1.74873 0.128918
\(185\) −13.1164 + 3.59984i −0.964340 + 0.264665i
\(186\) 0 0
\(187\) 29.7177 2.17317
\(188\) 4.30638i 0.314075i
\(189\) 0 0
\(190\) 9.16459 13.5913i 0.664869 0.986014i
\(191\) 23.8204i 1.72358i −0.507264 0.861791i \(-0.669343\pi\)
0.507264 0.861791i \(-0.330657\pi\)
\(192\) 0 0
\(193\) −8.40405 −0.604937 −0.302468 0.953159i \(-0.597811\pi\)
−0.302468 + 0.953159i \(0.597811\pi\)
\(194\) 3.64747 0.261873
\(195\) 0 0
\(196\) −15.9381 −1.13843
\(197\) 4.22797i 0.301230i 0.988592 + 0.150615i \(0.0481254\pi\)
−0.988592 + 0.150615i \(0.951875\pi\)
\(198\) 0 0
\(199\) 17.7545i 1.25858i −0.777170 0.629290i \(-0.783346\pi\)
0.777170 0.629290i \(-0.216654\pi\)
\(200\) −1.87436 4.63538i −0.132538 0.327771i
\(201\) 0 0
\(202\) 2.30416 0.162120
\(203\) −37.5968 −2.63878
\(204\) 0 0
\(205\) −0.983834 0.663399i −0.0687139 0.0463338i
\(206\) −11.1716 −0.778360
\(207\) 0 0
\(208\) 3.49410 0.242272
\(209\) 43.8926i 3.03611i
\(210\) 0 0
\(211\) 4.57321 0.314833 0.157417 0.987532i \(-0.449683\pi\)
0.157417 + 0.987532i \(0.449683\pi\)
\(212\) 3.66238i 0.251534i
\(213\) 0 0
\(214\) 6.51807i 0.445566i
\(215\) 3.27852 + 2.21071i 0.223593 + 0.150769i
\(216\) 0 0
\(217\) 15.5222 1.05372
\(218\) 1.33812i 0.0906293i
\(219\) 0 0
\(220\) −11.1003 7.48491i −0.748381 0.504633i
\(221\) 17.3427 1.16660
\(222\) 0 0
\(223\) 20.3205i 1.36076i 0.732860 + 0.680380i \(0.238185\pi\)
−0.732860 + 0.680380i \(0.761815\pi\)
\(224\) 4.78937i 0.320003i
\(225\) 0 0
\(226\) 1.39109 0.0925341
\(227\) −5.74303 −0.381178 −0.190589 0.981670i \(-0.561040\pi\)
−0.190589 + 0.981670i \(0.561040\pi\)
\(228\) 0 0
\(229\) 23.4383 1.54885 0.774423 0.632669i \(-0.218040\pi\)
0.774423 + 0.632669i \(0.218040\pi\)
\(230\) −3.24208 2.18613i −0.213777 0.144149i
\(231\) 0 0
\(232\) 7.85004i 0.515380i
\(233\) 17.2961i 1.13310i 0.824027 + 0.566551i \(0.191723\pi\)
−0.824027 + 0.566551i \(0.808277\pi\)
\(234\) 0 0
\(235\) −5.38352 + 7.98388i −0.351182 + 0.520811i
\(236\) 2.15110i 0.140025i
\(237\) 0 0
\(238\) 23.7717i 1.54089i
\(239\) 3.68796i 0.238554i 0.992861 + 0.119277i \(0.0380577\pi\)
−0.992861 + 0.119277i \(0.961942\pi\)
\(240\) 0 0
\(241\) 11.3613i 0.731844i −0.930646 0.365922i \(-0.880754\pi\)
0.930646 0.365922i \(-0.119246\pi\)
\(242\) −24.8480 −1.59729
\(243\) 0 0
\(244\) 3.06584i 0.196270i
\(245\) 29.5486 + 19.9246i 1.88779 + 1.27294i
\(246\) 0 0
\(247\) 25.6150i 1.62984i
\(248\) 3.24097i 0.205802i
\(249\) 0 0
\(250\) −2.31981 + 10.9370i −0.146718 + 0.691718i
\(251\) 12.8260i 0.809567i 0.914412 + 0.404784i \(0.132653\pi\)
−0.914412 + 0.404784i \(0.867347\pi\)
\(252\) 0 0
\(253\) −10.4702 −0.658256
\(254\) 7.51024i 0.471234i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.0268 0.874965 0.437483 0.899227i \(-0.355870\pi\)
0.437483 + 0.899227i \(0.355870\pi\)
\(258\) 0 0
\(259\) 22.0993 + 18.9824i 1.37318 + 1.17951i
\(260\) −6.47793 4.36807i −0.401744 0.270896i
\(261\) 0 0
\(262\) 6.19975i 0.383022i
\(263\) 3.57182i 0.220248i −0.993918 0.110124i \(-0.964875\pi\)
0.993918 0.110124i \(-0.0351248\pi\)
\(264\) 0 0
\(265\) −4.57844 + 6.78993i −0.281252 + 0.417102i
\(266\) −35.1105 −2.15276
\(267\) 0 0
\(268\) 3.79622i 0.231891i
\(269\) 0.458895 0.0279793 0.0139897 0.999902i \(-0.495547\pi\)
0.0139897 + 0.999902i \(0.495547\pi\)
\(270\) 0 0
\(271\) 28.8897 1.75492 0.877462 0.479645i \(-0.159235\pi\)
0.877462 + 0.479645i \(0.159235\pi\)
\(272\) 4.96343 0.300952
\(273\) 0 0
\(274\) 8.97186i 0.542010i
\(275\) 11.2224 + 27.7535i 0.676738 + 1.67360i
\(276\) 0 0
\(277\) −22.4482 −1.34878 −0.674391 0.738374i \(-0.735594\pi\)
−0.674391 + 0.738374i \(0.735594\pi\)
\(278\) −5.04168 −0.302380
\(279\) 0 0
\(280\) −5.98732 + 8.87932i −0.357811 + 0.530641i
\(281\) 6.04908i 0.360858i 0.983588 + 0.180429i \(0.0577486\pi\)
−0.983588 + 0.180429i \(0.942251\pi\)
\(282\) 0 0
\(283\) −10.8317 −0.643878 −0.321939 0.946760i \(-0.604335\pi\)
−0.321939 + 0.946760i \(0.604335\pi\)
\(284\) 8.47719 0.503028
\(285\) 0 0
\(286\) −20.9203 −1.23704
\(287\) 2.54155i 0.150023i
\(288\) 0 0
\(289\) 7.63567 0.449157
\(290\) −9.81355 + 14.5537i −0.576271 + 0.854622i
\(291\) 0 0
\(292\) 9.05445i 0.529872i
\(293\) 23.3144i 1.36204i −0.732264 0.681021i \(-0.761536\pi\)
0.732264 0.681021i \(-0.238464\pi\)
\(294\) 0 0
\(295\) −2.68915 + 3.98806i −0.156568 + 0.232194i
\(296\) −3.96343 + 4.61424i −0.230370 + 0.268197i
\(297\) 0 0
\(298\) −21.6451 −1.25387
\(299\) −6.11023 −0.353364
\(300\) 0 0
\(301\) 8.46945i 0.488171i
\(302\) −6.47544 −0.372620
\(303\) 0 0
\(304\) 7.33092i 0.420457i
\(305\) 3.83269 5.68396i 0.219459 0.325462i
\(306\) 0 0
\(307\) 14.2651i 0.814153i 0.913394 + 0.407077i \(0.133452\pi\)
−0.913394 + 0.407077i \(0.866548\pi\)
\(308\) 28.6755i 1.63394i
\(309\) 0 0
\(310\) 4.05163 6.00865i 0.230117 0.341268i
\(311\) 22.5322i 1.27768i 0.769339 + 0.638841i \(0.220586\pi\)
−0.769339 + 0.638841i \(0.779414\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 13.1689i 0.743162i
\(315\) 0 0
\(316\) 5.56622i 0.313124i
\(317\) 12.3877i 0.695764i 0.937538 + 0.347882i \(0.113099\pi\)
−0.937538 + 0.347882i \(0.886901\pi\)
\(318\) 0 0
\(319\) 47.0007i 2.63154i
\(320\) −1.85396 1.25013i −0.103640 0.0698842i
\(321\) 0 0
\(322\) 8.37532i 0.466738i
\(323\) 36.3865i 2.02460i
\(324\) 0 0
\(325\) 6.54921 + 16.1965i 0.363285 + 0.898419i
\(326\) 18.7651 1.03930
\(327\) 0 0
\(328\) −0.530665 −0.0293011
\(329\) 20.6249 1.13709
\(330\) 0 0
\(331\) 19.0068i 1.04471i 0.852728 + 0.522355i \(0.174946\pi\)
−0.852728 + 0.522355i \(0.825054\pi\)
\(332\) 3.77680i 0.207279i
\(333\) 0 0
\(334\) −7.19692 −0.393798
\(335\) 4.74575 7.03805i 0.259288 0.384530i
\(336\) 0 0
\(337\) 25.1046i 1.36753i −0.729701 0.683766i \(-0.760341\pi\)
0.729701 0.683766i \(-0.239659\pi\)
\(338\) 0.791278 0.0430399
\(339\) 0 0
\(340\) −9.20203 6.20492i −0.499050 0.336509i
\(341\) 19.4047i 1.05083i
\(342\) 0 0
\(343\) 42.8078i 2.31140i
\(344\) 1.76838 0.0953449
\(345\) 0 0
\(346\) 9.79406i 0.526532i
\(347\) 30.4282 1.63347 0.816736 0.577011i \(-0.195781\pi\)
0.816736 + 0.577011i \(0.195781\pi\)
\(348\) 0 0
\(349\) 15.1341 0.810111 0.405056 0.914292i \(-0.367252\pi\)
0.405056 + 0.914292i \(0.367252\pi\)
\(350\) 22.2006 8.97703i 1.18667 0.479842i
\(351\) 0 0
\(352\) −5.98732 −0.319125
\(353\) −10.1331 −0.539332 −0.269666 0.962954i \(-0.586913\pi\)
−0.269666 + 0.962954i \(0.586913\pi\)
\(354\) 0 0
\(355\) −15.7164 10.5976i −0.834140 0.562460i
\(356\) 8.45791i 0.448268i
\(357\) 0 0
\(358\) 11.2829i 0.596317i
\(359\) 26.3685 1.39168 0.695838 0.718199i \(-0.255033\pi\)
0.695838 + 0.718199i \(0.255033\pi\)
\(360\) 0 0
\(361\) −34.7424 −1.82855
\(362\) −1.82697 −0.0960235
\(363\) 0 0
\(364\) 16.7345i 0.877128i
\(365\) −11.3192 + 16.7866i −0.592475 + 0.878653i
\(366\) 0 0
\(367\) 2.21157i 0.115443i 0.998333 + 0.0577215i \(0.0183835\pi\)
−0.998333 + 0.0577215i \(0.981616\pi\)
\(368\) −1.74873 −0.0911588
\(369\) 0 0
\(370\) 13.1164 3.59984i 0.681892 0.187147i
\(371\) 17.5405 0.910658
\(372\) 0 0
\(373\) 6.08275i 0.314953i 0.987523 + 0.157476i \(0.0503358\pi\)
−0.987523 + 0.157476i \(0.949664\pi\)
\(374\) −29.7177 −1.53666
\(375\) 0 0
\(376\) 4.30638i 0.222085i
\(377\) 27.4288i 1.41266i
\(378\) 0 0
\(379\) −20.0919 −1.03205 −0.516025 0.856574i \(-0.672589\pi\)
−0.516025 + 0.856574i \(0.672589\pi\)
\(380\) −9.16459 + 13.5913i −0.470133 + 0.697217i
\(381\) 0 0
\(382\) 23.8204i 1.21876i
\(383\) 11.5368 0.589501 0.294751 0.955574i \(-0.404763\pi\)
0.294751 + 0.955574i \(0.404763\pi\)
\(384\) 0 0
\(385\) 35.8480 53.1634i 1.82698 2.70946i
\(386\) 8.40405 0.427755
\(387\) 0 0
\(388\) −3.64747 −0.185172
\(389\) 8.55057i 0.433531i 0.976224 + 0.216766i \(0.0695507\pi\)
−0.976224 + 0.216766i \(0.930449\pi\)
\(390\) 0 0
\(391\) −8.67970 −0.438951
\(392\) 15.9381 0.804995
\(393\) 0 0
\(394\) 4.22797i 0.213002i
\(395\) 6.95848 10.3196i 0.350119 0.519234i
\(396\) 0 0
\(397\) 9.84444i 0.494078i 0.969006 + 0.247039i \(0.0794576\pi\)
−0.969006 + 0.247039i \(0.920542\pi\)
\(398\) 17.7545i 0.889951i
\(399\) 0 0
\(400\) 1.87436 + 4.63538i 0.0937182 + 0.231769i
\(401\) 31.0959i 1.55285i −0.630207 0.776427i \(-0.717030\pi\)
0.630207 0.776427i \(-0.282970\pi\)
\(402\) 0 0
\(403\) 11.3243i 0.564102i
\(404\) −2.30416 −0.114636
\(405\) 0 0
\(406\) 37.5968 1.86590
\(407\) 23.7304 27.6269i 1.17627 1.36942i
\(408\) 0 0
\(409\) 38.3150i 1.89455i −0.320417 0.947277i \(-0.603823\pi\)
0.320417 0.947277i \(-0.396177\pi\)
\(410\) 0.983834 + 0.663399i 0.0485881 + 0.0327629i
\(411\) 0 0
\(412\) 11.1716 0.550383
\(413\) 10.3024 0.506948
\(414\) 0 0
\(415\) −4.72148 + 7.00205i −0.231768 + 0.343717i
\(416\) −3.49410 −0.171312
\(417\) 0 0
\(418\) 43.8926i 2.14686i
\(419\) −29.0183 −1.41764 −0.708819 0.705391i \(-0.750772\pi\)
−0.708819 + 0.705391i \(0.750772\pi\)
\(420\) 0 0
\(421\) 23.6443i 1.15235i 0.817326 + 0.576175i \(0.195455\pi\)
−0.817326 + 0.576175i \(0.804545\pi\)
\(422\) −4.57321 −0.222621
\(423\) 0 0
\(424\) 3.66238i 0.177861i
\(425\) 9.30328 + 23.0074i 0.451276 + 1.11602i
\(426\) 0 0
\(427\) −14.6834 −0.710582
\(428\) 6.51807i 0.315063i
\(429\) 0 0
\(430\) −3.27852 2.21071i −0.158104 0.106610i
\(431\) 32.1126i 1.54681i 0.633912 + 0.773406i \(0.281448\pi\)
−0.633912 + 0.773406i \(0.718552\pi\)
\(432\) 0 0
\(433\) 13.0575i 0.627504i 0.949505 + 0.313752i \(0.101586\pi\)
−0.949505 + 0.313752i \(0.898414\pi\)
\(434\) −15.5222 −0.745091
\(435\) 0 0
\(436\) 1.33812i 0.0640846i
\(437\) 12.8198i 0.613254i
\(438\) 0 0
\(439\) 28.0499i 1.33875i 0.742924 + 0.669375i \(0.233438\pi\)
−0.742924 + 0.669375i \(0.766562\pi\)
\(440\) 11.1003 + 7.48491i 0.529185 + 0.356829i
\(441\) 0 0
\(442\) −17.3427 −0.824909
\(443\) 6.79629i 0.322902i 0.986881 + 0.161451i \(0.0516173\pi\)
−0.986881 + 0.161451i \(0.948383\pi\)
\(444\) 0 0
\(445\) −10.5735 + 15.6807i −0.501230 + 0.743335i
\(446\) 20.3205i 0.962203i
\(447\) 0 0
\(448\) 4.78937i 0.226277i
\(449\) 17.3278i 0.817747i −0.912591 0.408874i \(-0.865922\pi\)
0.912591 0.408874i \(-0.134078\pi\)
\(450\) 0 0
\(451\) 3.17726 0.149611
\(452\) −1.39109 −0.0654315
\(453\) 0 0
\(454\) 5.74303 0.269534
\(455\) 20.9203 31.0252i 0.980758 1.45448i
\(456\) 0 0
\(457\) −3.20960 −0.150139 −0.0750693 0.997178i \(-0.523918\pi\)
−0.0750693 + 0.997178i \(0.523918\pi\)
\(458\) −23.4383 −1.09520
\(459\) 0 0
\(460\) 3.24208 + 2.18613i 0.151163 + 0.101929i
\(461\) 34.0347i 1.58515i 0.609773 + 0.792576i \(0.291261\pi\)
−0.609773 + 0.792576i \(0.708739\pi\)
\(462\) 0 0
\(463\) −26.0543 −1.21085 −0.605423 0.795904i \(-0.706996\pi\)
−0.605423 + 0.795904i \(0.706996\pi\)
\(464\) 7.85004i 0.364429i
\(465\) 0 0
\(466\) 17.2961i 0.801224i
\(467\) −20.3289 −0.940710 −0.470355 0.882477i \(-0.655874\pi\)
−0.470355 + 0.882477i \(0.655874\pi\)
\(468\) 0 0
\(469\) −18.1815 −0.839544
\(470\) 5.38352 7.98388i 0.248323 0.368269i
\(471\) 0 0
\(472\) 2.15110i 0.0990123i
\(473\) −10.5879 −0.486832
\(474\) 0 0
\(475\) 33.9816 13.7408i 1.55918 0.630472i
\(476\) 23.7717i 1.08958i
\(477\) 0 0
\(478\) 3.68796i 0.168683i
\(479\) 6.22972i 0.284643i −0.989820 0.142322i \(-0.954543\pi\)
0.989820 0.142322i \(-0.0454567\pi\)
\(480\) 0 0
\(481\) 13.8486 16.1226i 0.631443 0.735127i
\(482\) 11.3613i 0.517492i
\(483\) 0 0
\(484\) 24.8480 1.12946
\(485\) 6.76228 + 4.55980i 0.307059 + 0.207050i
\(486\) 0 0
\(487\) 30.5352 1.38368 0.691841 0.722050i \(-0.256800\pi\)
0.691841 + 0.722050i \(0.256800\pi\)
\(488\) 3.06584i 0.138784i
\(489\) 0 0
\(490\) −29.5486 19.9246i −1.33487 0.900103i
\(491\) −24.5944 −1.10993 −0.554965 0.831874i \(-0.687268\pi\)
−0.554965 + 0.831874i \(0.687268\pi\)
\(492\) 0 0
\(493\) 38.9632i 1.75481i
\(494\) 25.6150i 1.15247i
\(495\) 0 0
\(496\) 3.24097i 0.145524i
\(497\) 40.6004i 1.82118i
\(498\) 0 0
\(499\) 33.5739i 1.50297i 0.659747 + 0.751487i \(0.270663\pi\)
−0.659747 + 0.751487i \(0.729337\pi\)
\(500\) 2.31981 10.9370i 0.103745 0.489119i
\(501\) 0 0
\(502\) 12.8260i 0.572451i
\(503\) −1.77931 −0.0793357 −0.0396679 0.999213i \(-0.512630\pi\)
−0.0396679 + 0.999213i \(0.512630\pi\)
\(504\) 0 0
\(505\) 4.27183 + 2.88049i 0.190094 + 0.128180i
\(506\) 10.4702 0.465458
\(507\) 0 0
\(508\) 7.51024i 0.333213i
\(509\) −29.5114 −1.30807 −0.654035 0.756464i \(-0.726925\pi\)
−0.654035 + 0.756464i \(0.726925\pi\)
\(510\) 0 0
\(511\) 43.3651 1.91836
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −14.0268 −0.618694
\(515\) −20.7117 13.9659i −0.912665 0.615410i
\(516\) 0 0
\(517\) 25.7837i 1.13397i
\(518\) −22.0993 18.9824i −0.970988 0.834037i
\(519\) 0 0
\(520\) 6.47793 + 4.36807i 0.284076 + 0.191552i
\(521\) −29.2841 −1.28296 −0.641481 0.767139i \(-0.721680\pi\)
−0.641481 + 0.767139i \(0.721680\pi\)
\(522\) 0 0
\(523\) 29.9729 1.31062 0.655312 0.755359i \(-0.272537\pi\)
0.655312 + 0.755359i \(0.272537\pi\)
\(524\) 6.19975i 0.270837i
\(525\) 0 0
\(526\) 3.57182i 0.155739i
\(527\) 16.0864i 0.700732i
\(528\) 0 0
\(529\) −19.9419 −0.867041
\(530\) 4.57844 6.78993i 0.198875 0.294936i
\(531\) 0 0
\(532\) 35.1105 1.52223
\(533\) 1.85420 0.0803141
\(534\) 0 0
\(535\) 8.14842 12.0843i 0.352287 0.522449i
\(536\) 3.79622i 0.163972i
\(537\) 0 0
\(538\) −0.458895 −0.0197844
\(539\) −95.4264 −4.11031
\(540\) 0 0
\(541\) 18.7155i 0.804644i 0.915498 + 0.402322i \(0.131797\pi\)
−0.915498 + 0.402322i \(0.868203\pi\)
\(542\) −28.8897 −1.24092
\(543\) 0 0
\(544\) −4.96343 −0.212805
\(545\) 1.67283 2.48084i 0.0716560 0.106267i
\(546\) 0 0
\(547\) 32.4792 1.38871 0.694355 0.719633i \(-0.255690\pi\)
0.694355 + 0.719633i \(0.255690\pi\)
\(548\) 8.97186i 0.383259i
\(549\) 0 0
\(550\) −11.2224 27.7535i −0.478526 1.18341i
\(551\) 57.5480 2.45163
\(552\) 0 0
\(553\) −26.6587 −1.13364
\(554\) 22.4482 0.953733
\(555\) 0 0
\(556\) 5.04168 0.213815
\(557\) −16.0158 −0.678612 −0.339306 0.940676i \(-0.610192\pi\)
−0.339306 + 0.940676i \(0.610192\pi\)
\(558\) 0 0
\(559\) −6.17891 −0.261340
\(560\) 5.98732 8.87932i 0.253011 0.375220i
\(561\) 0 0
\(562\) 6.04908i 0.255165i
\(563\) −15.3069 −0.645109 −0.322554 0.946551i \(-0.604542\pi\)
−0.322554 + 0.946551i \(0.604542\pi\)
\(564\) 0 0
\(565\) 2.57904 + 1.73904i 0.108501 + 0.0731621i
\(566\) 10.8317 0.455291
\(567\) 0 0
\(568\) −8.47719 −0.355695
\(569\) 26.6494i 1.11720i 0.829437 + 0.558601i \(0.188662\pi\)
−0.829437 + 0.558601i \(0.811338\pi\)
\(570\) 0 0
\(571\) 23.1683 0.969564 0.484782 0.874635i \(-0.338899\pi\)
0.484782 + 0.874635i \(0.338899\pi\)
\(572\) 20.9203 0.874721
\(573\) 0 0
\(574\) 2.54155i 0.106082i
\(575\) −3.27776 8.10603i −0.136692 0.338045i
\(576\) 0 0
\(577\) 3.54110 0.147418 0.0737091 0.997280i \(-0.476516\pi\)
0.0737091 + 0.997280i \(0.476516\pi\)
\(578\) −7.63567 −0.317602
\(579\) 0 0
\(580\) 9.81355 14.5537i 0.407485 0.604309i
\(581\) 18.0885 0.750437
\(582\) 0 0
\(583\) 21.9279i 0.908160i
\(584\) 9.05445i 0.374676i
\(585\) 0 0
\(586\) 23.3144i 0.963109i
\(587\) 12.0976 0.499320 0.249660 0.968334i \(-0.419681\pi\)
0.249660 + 0.968334i \(0.419681\pi\)
\(588\) 0 0
\(589\) −23.7593 −0.978986
\(590\) 2.68915 3.98806i 0.110710 0.164186i
\(591\) 0 0
\(592\) 3.96343 4.61424i 0.162896 0.189644i
\(593\) 17.2007i 0.706348i −0.935558 0.353174i \(-0.885102\pi\)
0.935558 0.353174i \(-0.114898\pi\)
\(594\) 0 0
\(595\) 29.7177 44.0719i 1.21831 1.80677i
\(596\) 21.6451 0.886619
\(597\) 0 0
\(598\) 6.11023 0.249866
\(599\) −2.41919 −0.0988454 −0.0494227 0.998778i \(-0.515738\pi\)
−0.0494227 + 0.998778i \(0.515738\pi\)
\(600\) 0 0
\(601\) −39.0483 −1.59281 −0.796407 0.604761i \(-0.793269\pi\)
−0.796407 + 0.604761i \(0.793269\pi\)
\(602\) 8.46945i 0.345189i
\(603\) 0 0
\(604\) 6.47544 0.263482
\(605\) −46.0674 31.0632i −1.87290 1.26290i
\(606\) 0 0
\(607\) 38.0508 1.54443 0.772217 0.635359i \(-0.219148\pi\)
0.772217 + 0.635359i \(0.219148\pi\)
\(608\) 7.33092i 0.297308i
\(609\) 0 0
\(610\) −3.83269 + 5.68396i −0.155181 + 0.230137i
\(611\) 15.0469i 0.608733i
\(612\) 0 0
\(613\) 7.12176i 0.287645i 0.989603 + 0.143823i \(0.0459395\pi\)
−0.989603 + 0.143823i \(0.954061\pi\)
\(614\) 14.2651i 0.575693i
\(615\) 0 0
\(616\) 28.6755i 1.15537i
\(617\) 42.6678i 1.71774i −0.512192 0.858871i \(-0.671166\pi\)
0.512192 0.858871i \(-0.328834\pi\)
\(618\) 0 0
\(619\) −6.30429 −0.253391 −0.126695 0.991942i \(-0.540437\pi\)
−0.126695 + 0.991942i \(0.540437\pi\)
\(620\) −4.05163 + 6.00865i −0.162717 + 0.241313i
\(621\) 0 0
\(622\) 22.5322i 0.903458i
\(623\) 40.5081 1.62292
\(624\) 0 0
\(625\) −17.9735 + 17.3768i −0.718941 + 0.695072i
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 13.1689i 0.525495i
\(629\) 19.6722 22.9025i 0.784383 0.913181i
\(630\) 0 0
\(631\) 32.6385i 1.29932i 0.760225 + 0.649660i \(0.225089\pi\)
−0.760225 + 0.649660i \(0.774911\pi\)
\(632\) 5.56622i 0.221412i
\(633\) 0 0
\(634\) 12.3877i 0.491979i
\(635\) 9.38875 13.9237i 0.372581 0.552546i
\(636\) 0 0
\(637\) −55.6892 −2.20649
\(638\) 47.0007i 1.86078i
\(639\) 0 0
\(640\) 1.85396 + 1.25013i 0.0732844 + 0.0494156i
\(641\) 12.1721 0.480767 0.240384 0.970678i \(-0.422727\pi\)
0.240384 + 0.970678i \(0.422727\pi\)
\(642\) 0 0
\(643\) −10.0853 −0.397727 −0.198864 0.980027i \(-0.563725\pi\)
−0.198864 + 0.980027i \(0.563725\pi\)
\(644\) 8.37532i 0.330034i
\(645\) 0 0
\(646\) 36.3865i 1.43161i
\(647\) −38.5061 −1.51383 −0.756916 0.653512i \(-0.773295\pi\)
−0.756916 + 0.653512i \(0.773295\pi\)
\(648\) 0 0
\(649\) 12.8793i 0.505558i
\(650\) −6.54921 16.1965i −0.256881 0.635278i
\(651\) 0 0
\(652\) −18.7651 −0.734896
\(653\) −2.20349 −0.0862293 −0.0431146 0.999070i \(-0.513728\pi\)
−0.0431146 + 0.999070i \(0.513728\pi\)
\(654\) 0 0
\(655\) 7.75048 11.4941i 0.302836 0.449112i
\(656\) 0.530665 0.0207190
\(657\) 0 0
\(658\) −20.6249 −0.804041
\(659\) 20.4048 0.794859 0.397430 0.917633i \(-0.369902\pi\)
0.397430 + 0.917633i \(0.369902\pi\)
\(660\) 0 0
\(661\) 27.0306i 1.05137i 0.850680 + 0.525684i \(0.176191\pi\)
−0.850680 + 0.525684i \(0.823809\pi\)
\(662\) 19.0068i 0.738721i
\(663\) 0 0
\(664\) 3.77680i 0.146568i
\(665\) −65.0936 43.8926i −2.52422 1.70208i
\(666\) 0 0
\(667\) 13.7276i 0.531535i
\(668\) 7.19692 0.278457
\(669\) 0 0
\(670\) −4.74575 + 7.03805i −0.183344 + 0.271904i
\(671\) 18.3562i 0.708632i
\(672\) 0 0
\(673\) 11.6776i 0.450139i 0.974343 + 0.225070i \(0.0722609\pi\)
−0.974343 + 0.225070i \(0.927739\pi\)
\(674\) 25.1046i 0.966991i
\(675\) 0 0
\(676\) −0.791278 −0.0304338
\(677\) 37.2578i 1.43193i −0.698135 0.715966i \(-0.745986\pi\)
0.698135 0.715966i \(-0.254014\pi\)
\(678\) 0 0
\(679\) 17.4691i 0.670402i
\(680\) 9.20203 + 6.20492i 0.352882 + 0.237948i
\(681\) 0 0
\(682\) 19.4047i 0.743046i
\(683\) −46.3018 −1.77169 −0.885845 0.463981i \(-0.846420\pi\)
−0.885845 + 0.463981i \(0.846420\pi\)
\(684\) 0 0
\(685\) −11.2160 + 16.6335i −0.428540 + 0.635533i
\(686\) 42.8078i 1.63441i
\(687\) 0 0
\(688\) −1.76838 −0.0674190
\(689\) 12.7967i 0.487516i
\(690\) 0 0
\(691\) 29.7037 1.12998 0.564991 0.825097i \(-0.308879\pi\)
0.564991 + 0.825097i \(0.308879\pi\)
\(692\) 9.79406i 0.372314i
\(693\) 0 0
\(694\) −30.4282 −1.15504
\(695\) −9.34708 6.30273i −0.354555 0.239076i
\(696\) 0 0
\(697\) 2.63392 0.0997669
\(698\) −15.1341 −0.572835
\(699\) 0 0
\(700\) −22.2006 + 8.97703i −0.839102 + 0.339300i
\(701\) 45.9214i 1.73443i 0.497936 + 0.867214i \(0.334091\pi\)
−0.497936 + 0.867214i \(0.665909\pi\)
\(702\) 0 0
\(703\) −33.8266 29.0556i −1.27580 1.09585i
\(704\) 5.98732 0.225656
\(705\) 0 0
\(706\) 10.1331 0.381365
\(707\) 11.0355i 0.415031i
\(708\) 0 0
\(709\) 52.6575i 1.97759i −0.149266 0.988797i \(-0.547691\pi\)
0.149266 0.988797i \(-0.452309\pi\)
\(710\) 15.7164 + 10.5976i 0.589826 + 0.397719i
\(711\) 0 0
\(712\) 8.45791i 0.316974i
\(713\) 5.66759i 0.212253i
\(714\) 0 0
\(715\) −38.7855 26.1530i −1.45049 0.978068i
\(716\) 11.2829i 0.421660i
\(717\) 0 0
\(718\) −26.3685 −0.984063
\(719\) 13.3494 0.497850 0.248925 0.968523i \(-0.419923\pi\)
0.248925 + 0.968523i \(0.419923\pi\)
\(720\) 0 0
\(721\) 53.5048i 1.99262i
\(722\) 34.7424 1.29298
\(723\) 0 0
\(724\) 1.82697 0.0678989
\(725\) −36.3879 + 14.7138i −1.35141 + 0.546458i
\(726\) 0 0
\(727\) −13.1733 −0.488571 −0.244286 0.969703i \(-0.578553\pi\)
−0.244286 + 0.969703i \(0.578553\pi\)
\(728\) 16.7345i 0.620223i
\(729\) 0 0
\(730\) 11.3192 16.7866i 0.418943 0.621301i
\(731\) −8.77726 −0.324639
\(732\) 0 0
\(733\) 32.3264i 1.19400i −0.802241 0.597001i \(-0.796359\pi\)
0.802241 0.597001i \(-0.203641\pi\)
\(734\) 2.21157i 0.0816305i
\(735\) 0 0
\(736\) 1.74873 0.0644590
\(737\) 22.7292i 0.837240i
\(738\) 0 0
\(739\) 6.94169 0.255354 0.127677 0.991816i \(-0.459248\pi\)
0.127677 + 0.991816i \(0.459248\pi\)
\(740\) −13.1164 + 3.59984i −0.482170 + 0.132333i
\(741\) 0 0
\(742\) −17.5405 −0.643933
\(743\) 36.0784i 1.32359i 0.749685 + 0.661795i \(0.230205\pi\)
−0.749685 + 0.661795i \(0.769795\pi\)
\(744\) 0 0
\(745\) −40.1293 27.0592i −1.47022 0.991371i
\(746\) 6.08275i 0.222705i
\(747\) 0 0
\(748\) 29.7177 1.08659
\(749\) −31.2175 −1.14066
\(750\) 0 0
\(751\) −29.9052 −1.09126 −0.545629 0.838027i \(-0.683709\pi\)
−0.545629 + 0.838027i \(0.683709\pi\)
\(752\) 4.30638i 0.157038i
\(753\) 0 0
\(754\) 27.4288i 0.998898i
\(755\) −12.0052 8.09512i −0.436915 0.294612i
\(756\) 0 0
\(757\) −24.9464 −0.906693 −0.453347 0.891334i \(-0.649770\pi\)
−0.453347 + 0.891334i \(0.649770\pi\)
\(758\) 20.0919 0.729769
\(759\) 0 0
\(760\) 9.16459 13.5913i 0.332434 0.493007i
\(761\) −11.7647 −0.426469 −0.213235 0.977001i \(-0.568400\pi\)
−0.213235 + 0.977001i \(0.568400\pi\)
\(762\) 0 0
\(763\) −6.40878 −0.232013
\(764\) 23.8204i 0.861791i
\(765\) 0 0
\(766\) −11.5368 −0.416840
\(767\) 7.51615i 0.271392i
\(768\) 0 0
\(769\) 26.7939i 0.966214i 0.875561 + 0.483107i \(0.160492\pi\)
−0.875561 + 0.483107i \(0.839508\pi\)
\(770\) −35.8480 + 53.1634i −1.29187 + 1.91587i
\(771\) 0 0
\(772\) −8.40405 −0.302468
\(773\) 2.77358i 0.0997589i −0.998755 0.0498794i \(-0.984116\pi\)
0.998755 0.0498794i \(-0.0158837\pi\)
\(774\) 0 0
\(775\) 15.0231 6.07477i 0.539647 0.218212i
\(776\) 3.64747 0.130937
\(777\) 0 0
\(778\) 8.55057i 0.306553i
\(779\) 3.89026i 0.139383i
\(780\) 0 0
\(781\) 50.7556 1.81618
\(782\) 8.67970 0.310386
\(783\) 0 0
\(784\) −15.9381 −0.569217
\(785\) 16.4628 24.4146i 0.587581 0.871395i
\(786\) 0 0
\(787\) 28.0910i 1.00134i −0.865639 0.500669i \(-0.833088\pi\)
0.865639 0.500669i \(-0.166912\pi\)
\(788\) 4.22797i 0.150615i
\(789\) 0 0
\(790\) −6.95848 + 10.3196i −0.247572 + 0.367154i
\(791\) 6.66246i 0.236890i
\(792\) 0 0
\(793\) 10.7123i 0.380407i
\(794\) 9.84444i 0.349366i
\(795\) 0 0
\(796\) 17.7545i 0.629290i
\(797\) 1.36472 0.0483407 0.0241704 0.999708i \(-0.492306\pi\)
0.0241704 + 0.999708i \(0.492306\pi\)
\(798\) 0 0
\(799\) 21.3744i 0.756173i
\(800\) −1.87436 4.63538i −0.0662688 0.163885i
\(801\) 0 0
\(802\) 31.0959i 1.09803i
\(803\) 54.2119i 1.91310i
\(804\) 0 0
\(805\) −10.4702 + 15.5275i −0.369026 + 0.547274i
\(806\) 11.3243i 0.398881i
\(807\) 0 0
\(808\) 2.30416 0.0810600
\(809\) 0.636644i 0.0223832i −0.999937 0.0111916i \(-0.996438\pi\)
0.999937 0.0111916i \(-0.00356247\pi\)
\(810\) 0 0
\(811\) 11.3776 0.399521 0.199760 0.979845i \(-0.435984\pi\)
0.199760 + 0.979845i \(0.435984\pi\)
\(812\) −37.5968 −1.31939
\(813\) 0 0
\(814\) −23.7304 + 27.6269i −0.831748 + 0.968324i
\(815\) 34.7897 + 23.4587i 1.21863 + 0.821722i
\(816\) 0 0
\(817\) 12.9639i 0.453549i
\(818\) 38.3150i 1.33965i
\(819\) 0 0
\(820\) −0.983834 0.663399i −0.0343570 0.0231669i
\(821\) 26.1807 0.913711 0.456856 0.889541i \(-0.348976\pi\)
0.456856 + 0.889541i \(0.348976\pi\)
\(822\) 0 0
\(823\) 21.7020i 0.756485i −0.925707 0.378242i \(-0.876529\pi\)
0.925707 0.378242i \(-0.123471\pi\)
\(824\) −11.1716 −0.389180
\(825\) 0 0
\(826\) −10.3024 −0.358467
\(827\) 7.90798 0.274988 0.137494 0.990503i \(-0.456095\pi\)
0.137494 + 0.990503i \(0.456095\pi\)
\(828\) 0 0
\(829\) 21.7391i 0.755030i −0.926003 0.377515i \(-0.876779\pi\)
0.926003 0.377515i \(-0.123221\pi\)
\(830\) 4.72148 7.00205i 0.163885 0.243045i
\(831\) 0 0
\(832\) 3.49410 0.121136
\(833\) −79.1076 −2.74092
\(834\) 0 0
\(835\) −13.3428 8.99706i −0.461748 0.311356i
\(836\) 43.8926i 1.51806i
\(837\) 0 0
\(838\) 29.0183 1.00242
\(839\) −11.3258 −0.391011 −0.195506 0.980703i \(-0.562635\pi\)
−0.195506 + 0.980703i \(0.562635\pi\)
\(840\) 0 0
\(841\) −32.6231 −1.12494
\(842\) 23.6443i 0.814835i
\(843\) 0 0
\(844\) 4.57321 0.157417
\(845\) 1.46700 + 0.989199i 0.0504664 + 0.0340295i
\(846\) 0 0
\(847\) 119.006i 4.08911i
\(848\) 3.66238i 0.125767i
\(849\) 0 0
\(850\) −9.30328 23.0074i −0.319100 0.789147i
\(851\) −6.93097 + 8.06906i −0.237591 + 0.276604i
\(852\) 0 0
\(853\) −48.1277 −1.64786 −0.823930 0.566691i \(-0.808223\pi\)
−0.823930 + 0.566691i \(0.808223\pi\)
\(854\) 14.6834 0.502457
\(855\) 0 0
\(856\) 6.51807i 0.222783i
\(857\) 40.0486 1.36803 0.684017 0.729466i \(-0.260231\pi\)
0.684017 + 0.729466i \(0.260231\pi\)
\(858\) 0 0
\(859\) 7.66509i 0.261530i −0.991413 0.130765i \(-0.958257\pi\)
0.991413 0.130765i \(-0.0417433\pi\)
\(860\) 3.27852 + 2.21071i 0.111797 + 0.0753844i
\(861\) 0 0
\(862\) 32.1126i 1.09376i
\(863\) 50.9196i 1.73332i 0.498896 + 0.866662i \(0.333739\pi\)
−0.498896 + 0.866662i \(0.666261\pi\)
\(864\) 0 0
\(865\) −12.2438 + 18.1578i −0.416302 + 0.617385i
\(866\) 13.0575i 0.443712i
\(867\) 0 0
\(868\) 15.5222 0.526859
\(869\) 33.3267i 1.13053i
\(870\) 0 0
\(871\) 13.2644i 0.449446i
\(872\) 1.33812i 0.0453146i
\(873\) 0 0
\(874\) 12.8198i 0.433636i
\(875\) 52.3815 + 11.1104i 1.77082 + 0.375601i
\(876\) 0 0
\(877\) 2.50813i 0.0846937i −0.999103 0.0423468i \(-0.986517\pi\)
0.999103 0.0423468i \(-0.0134834\pi\)
\(878\) 28.0499i 0.946640i
\(879\) 0 0
\(880\) −11.1003 7.48491i −0.374190 0.252316i
\(881\) −24.0074 −0.808829 −0.404414 0.914576i \(-0.632525\pi\)
−0.404414 + 0.914576i \(0.632525\pi\)
\(882\) 0 0
\(883\) 34.7959 1.17098 0.585488 0.810681i \(-0.300903\pi\)
0.585488 + 0.810681i \(0.300903\pi\)
\(884\) 17.3427 0.583299
\(885\) 0 0
\(886\) 6.79629i 0.228326i
\(887\) 0.672248i 0.0225719i −0.999936 0.0112859i \(-0.996408\pi\)
0.999936 0.0112859i \(-0.00359250\pi\)
\(888\) 0 0
\(889\) −35.9693 −1.20637
\(890\) 10.5735 15.6807i 0.354423 0.525617i
\(891\) 0 0
\(892\) 20.3205i 0.680380i
\(893\) −31.5698 −1.05644
\(894\) 0 0
\(895\) 14.1050 20.9180i 0.471478 0.699212i
\(896\) 4.78937i 0.160002i
\(897\) 0 0
\(898\) 17.3278i 0.578235i
\(899\) 25.4418 0.848531
\(900\) 0 0
\(901\) 18.1780i 0.605597i
\(902\) −3.17726 −0.105791
\(903\) 0 0
\(904\) 1.39109 0.0462671
\(905\) −3.38714 2.28395i −0.112592 0.0759210i
\(906\) 0 0
\(907\) 36.6618 1.21734 0.608668 0.793425i \(-0.291704\pi\)
0.608668 + 0.793425i \(0.291704\pi\)
\(908\) −5.74303 −0.190589
\(909\) 0 0
\(910\) −20.9203 + 31.0252i −0.693501 + 1.02848i
\(911\) 20.5358i 0.680381i 0.940356 + 0.340191i \(0.110492\pi\)
−0.940356 + 0.340191i \(0.889508\pi\)
\(912\) 0 0
\(913\) 22.6129i 0.748378i
\(914\) 3.20960 0.106164
\(915\) 0 0
\(916\) 23.4383 0.774423
\(917\) −29.6929 −0.980546
\(918\) 0 0
\(919\) 42.3926i 1.39840i −0.714925 0.699202i \(-0.753539\pi\)
0.714925 0.699202i \(-0.246461\pi\)
\(920\) −3.24208 2.18613i −0.106888 0.0720747i
\(921\) 0 0
\(922\) 34.0347i 1.12087i
\(923\) 29.6201 0.974958
\(924\) 0 0
\(925\) 28.8177 + 9.72326i 0.947519 + 0.319699i
\(926\) 26.0543 0.856197
\(927\) 0 0
\(928\) 7.85004i 0.257690i
\(929\) −1.22700 −0.0402565 −0.0201282 0.999797i \(-0.506407\pi\)
−0.0201282 + 0.999797i \(0.506407\pi\)
\(930\) 0 0
\(931\) 116.841i 3.82930i
\(932\) 17.2961i 0.566551i
\(933\) 0 0
\(934\) 20.3289 0.665183
\(935\) −55.0955 37.1509i −1.80182 1.21496i
\(936\) 0 0
\(937\) 31.9456i 1.04362i −0.853063 0.521808i \(-0.825258\pi\)
0.853063 0.521808i \(-0.174742\pi\)
\(938\) 18.1815 0.593647
\(939\) 0 0
\(940\) −5.38352 + 7.98388i −0.175591 + 0.260405i
\(941\) −6.72808 −0.219329 −0.109665 0.993969i \(-0.534978\pi\)
−0.109665 + 0.993969i \(0.534978\pi\)
\(942\) 0 0
\(943\) −0.927990 −0.0302195
\(944\) 2.15110i 0.0700123i
\(945\) 0 0
\(946\) 10.5879 0.344242
\(947\) −3.77013 −0.122513 −0.0612564 0.998122i \(-0.519511\pi\)
−0.0612564 + 0.998122i \(0.519511\pi\)
\(948\) 0 0
\(949\) 31.6372i 1.02699i
\(950\) −33.9816 + 13.7408i −1.10251 + 0.445811i
\(951\) 0 0
\(952\) 23.7717i 0.770446i
\(953\) 13.7237i 0.444553i −0.974984 0.222276i \(-0.928651\pi\)
0.974984 0.222276i \(-0.0713487\pi\)
\(954\) 0 0
\(955\) −29.7785 + 44.1621i −0.963610 + 1.42905i
\(956\) 3.68796i 0.119277i
\(957\) 0 0
\(958\) 6.22972i 0.201273i
\(959\) 42.9696 1.38756
\(960\) 0 0
\(961\) 20.4961 0.661164
\(962\) −13.8486 + 16.1226i −0.446498 + 0.519814i
\(963\) 0 0
\(964\) 11.3613i 0.365922i
\(965\) 15.5808 + 10.5061i 0.501564 + 0.338204i
\(966\) 0 0
\(967\) −43.7304 −1.40627 −0.703137 0.711055i \(-0.748218\pi\)
−0.703137 + 0.711055i \(0.748218\pi\)
\(968\) −24.8480 −0.798646
\(969\) 0 0
\(970\) −6.76228 4.55980i −0.217124 0.146406i
\(971\) −36.2807 −1.16430 −0.582151 0.813081i \(-0.697789\pi\)
−0.582151 + 0.813081i \(0.697789\pi\)
\(972\) 0 0
\(973\) 24.1465i 0.774100i
\(974\) −30.5352 −0.978410
\(975\) 0 0
\(976\) 3.06584i 0.0981351i
\(977\) 29.6513 0.948628 0.474314 0.880356i \(-0.342696\pi\)
0.474314 + 0.880356i \(0.342696\pi\)
\(978\) 0 0
\(979\) 50.6402i 1.61847i
\(980\) 29.5486 + 19.9246i 0.943896 + 0.636469i
\(981\) 0 0
\(982\) 24.5944 0.784839
\(983\) 42.0082i 1.33985i −0.742427 0.669927i \(-0.766325\pi\)
0.742427 0.669927i \(-0.233675\pi\)
\(984\) 0 0
\(985\) 5.28550 7.83850i 0.168410 0.249755i
\(986\) 38.9632i 1.24084i
\(987\) 0 0
\(988\) 25.6150i 0.814921i
\(989\) 3.09243 0.0983334
\(990\) 0 0
\(991\) 20.7399i 0.658824i −0.944186 0.329412i \(-0.893149\pi\)
0.944186 0.329412i \(-0.106851\pi\)
\(992\) 3.24097i 0.102901i
\(993\) 0 0
\(994\) 40.6004i 1.28777i
\(995\) −22.1953 + 32.9161i −0.703639 + 1.04351i
\(996\) 0 0
\(997\) −16.0224 −0.507435 −0.253718 0.967278i \(-0.581653\pi\)
−0.253718 + 0.967278i \(0.581653\pi\)
\(998\) 33.5739i 1.06276i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.e.c.739.1 10
3.2 odd 2 370.2.c.b.369.4 yes 10
5.4 even 2 3330.2.e.d.739.9 10
15.2 even 4 1850.2.d.i.1701.14 20
15.8 even 4 1850.2.d.i.1701.7 20
15.14 odd 2 370.2.c.a.369.7 yes 10
37.36 even 2 3330.2.e.d.739.10 10
111.110 odd 2 370.2.c.a.369.4 10
185.184 even 2 inner 3330.2.e.c.739.2 10
555.332 even 4 1850.2.d.i.1701.4 20
555.443 even 4 1850.2.d.i.1701.17 20
555.554 odd 2 370.2.c.b.369.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.c.a.369.4 10 111.110 odd 2
370.2.c.a.369.7 yes 10 15.14 odd 2
370.2.c.b.369.4 yes 10 3.2 odd 2
370.2.c.b.369.7 yes 10 555.554 odd 2
1850.2.d.i.1701.4 20 555.332 even 4
1850.2.d.i.1701.7 20 15.8 even 4
1850.2.d.i.1701.14 20 15.2 even 4
1850.2.d.i.1701.17 20 555.443 even 4
3330.2.e.c.739.1 10 1.1 even 1 trivial
3330.2.e.c.739.2 10 185.184 even 2 inner
3330.2.e.d.739.9 10 5.4 even 2
3330.2.e.d.739.10 10 37.36 even 2