Properties

Label 3330.2.h.n
Level $3330$
Weight $2$
Character orbit 3330.h
Analytic conductor $26.590$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3330,2,Mod(2071,3330)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3330, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3330.2071");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - q^{4} + \beta_{2} q^{5} + (\beta_{3} + 2) q^{7} + \beta_{2} q^{8} + q^{10} + (2 \beta_{3} + \beta_1 + 1) q^{11} - 2 \beta_{5} q^{13} + (\beta_{5} - 2 \beta_{2}) q^{14} + q^{16}+ \cdots + (4 \beta_{5} + \beta_{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 10 q^{7} + 6 q^{10} + 2 q^{11} + 6 q^{16} - 6 q^{25} - 4 q^{26} - 10 q^{28} - 14 q^{34} - 10 q^{37} - 16 q^{38} - 6 q^{40} - 2 q^{41} - 2 q^{44} + 4 q^{46} + 4 q^{47} - 8 q^{49} - 2 q^{53}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} - \nu^{2} + 2\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 3\nu^{3} + 4\nu^{2} - 2\nu + 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 2\nu^{4} - 3\nu^{3} + 6\nu^{2} - 2\nu + 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 2\nu^{4} + 3\nu^{3} - 6\nu^{2} + 10\nu - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{5} - 2\nu^{4} + 5\nu^{3} - 6\nu^{2} + 2\nu - 12 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + 2\beta_{3} + \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{4} + \beta_{3} - 2\beta_{2} + 2\beta _1 + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{5} + 2\beta_{3} - 5\beta_{2} - \beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 4\beta_{5} + \beta_{4} + 3\beta_{3} + 2\beta_{2} - 2\beta _1 + 5 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2071.1
−0.671462 1.24464i
0.264658 + 1.38923i
1.40680 0.144584i
−0.671462 + 1.24464i
0.264658 1.38923i
1.40680 + 0.144584i
1.00000i 0 −1.00000 1.00000i 0 −0.342923 1.00000i 0 1.00000
2071.2 1.00000i 0 −1.00000 1.00000i 0 1.52932 1.00000i 0 1.00000
2071.3 1.00000i 0 −1.00000 1.00000i 0 3.81361 1.00000i 0 1.00000
2071.4 1.00000i 0 −1.00000 1.00000i 0 −0.342923 1.00000i 0 1.00000
2071.5 1.00000i 0 −1.00000 1.00000i 0 1.52932 1.00000i 0 1.00000
2071.6 1.00000i 0 −1.00000 1.00000i 0 3.81361 1.00000i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2071.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3330.2.h.n 6
3.b odd 2 1 370.2.d.c 6
12.b even 2 1 2960.2.p.g 6
15.d odd 2 1 1850.2.d.f 6
15.e even 4 1 1850.2.c.i 6
15.e even 4 1 1850.2.c.j 6
37.b even 2 1 inner 3330.2.h.n 6
111.d odd 2 1 370.2.d.c 6
444.g even 2 1 2960.2.p.g 6
555.b odd 2 1 1850.2.d.f 6
555.n even 4 1 1850.2.c.i 6
555.n even 4 1 1850.2.c.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.d.c 6 3.b odd 2 1
370.2.d.c 6 111.d odd 2 1
1850.2.c.i 6 15.e even 4 1
1850.2.c.i 6 555.n even 4 1
1850.2.c.j 6 15.e even 4 1
1850.2.c.j 6 555.n even 4 1
1850.2.d.f 6 15.d odd 2 1
1850.2.d.f 6 555.b odd 2 1
2960.2.p.g 6 12.b even 2 1
2960.2.p.g 6 444.g even 2 1
3330.2.h.n 6 1.a even 1 1 trivial
3330.2.h.n 6 37.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3330, [\chi])\):

\( T_{7}^{3} - 5T_{7}^{2} + 4T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{3} - T_{11}^{2} - 16T_{11} - 16 \) Copy content Toggle raw display
\( T_{13}^{6} + 36T_{13}^{4} + 320T_{13}^{2} + 256 \) Copy content Toggle raw display
\( T_{41}^{3} + T_{41}^{2} - 56T_{41} - 172 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$7$ \( (T^{3} - 5 T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{3} - T^{2} - 16 T - 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 36 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{6} + 81 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$19$ \( T^{6} + 36 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{6} + 36 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{6} + 49 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{6} + 57 T^{4} + \cdots + 6724 \) Copy content Toggle raw display
$37$ \( T^{6} + 10 T^{5} + \cdots + 50653 \) Copy content Toggle raw display
$41$ \( (T^{3} + T^{2} - 56 T - 172)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 33 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$47$ \( (T^{3} - 2 T^{2} - 14 T + 32)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + T^{2} - 104 T - 352)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 96 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$61$ \( T^{6} + 121 T^{4} + \cdots + 15376 \) Copy content Toggle raw display
$67$ \( (T^{3} - 4 T^{2} + \cdots - 124)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} - 10 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 6 T^{2} + \cdots - 344)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + 80 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$83$ \( (T^{3} - 10 T^{2} - 62 T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 256 T^{4} + \cdots + 262144 \) Copy content Toggle raw display
$97$ \( T^{6} + 289 T^{4} + \cdots + 29584 \) Copy content Toggle raw display
show more
show less