Properties

Label 3332.1.g.a
Level 33323332
Weight 11
Character orbit 3332.g
Self dual yes
Analytic conductor 1.6631.663
Analytic rank 00
Dimension 11
Projective image D2D_{2}
CM/RM discs -4, -68, 17
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(883,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.883");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3332=227217 3332 = 2^{2} \cdot 7^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3332.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.662884622091.66288462209
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 68)
Projective image: D2D_{2}
Projective field: Galois closure of Q(i,17)\Q(i, \sqrt{17})
Artin image: D4D_4
Artin field: Galois closure of 4.0.13328.1
Stark unit: Root of x4725x3+1252x2725x+1x^{4} - 725x^{3} + 1252x^{2} - 725x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq2+q4q8q9+2q13+q16q17+q18+q252q26q32+q34q36q50+2q52+2q53+q64q68+q72+q81++2q89+O(q100) q - q^{2} + q^{4} - q^{8} - q^{9} + 2 q^{13} + q^{16} - q^{17} + q^{18} + q^{25} - 2 q^{26} - q^{32} + q^{34} - q^{36} - q^{50} + 2 q^{52} + 2 q^{53} + q^{64} - q^{68} + q^{72} + q^{81}+ \cdots + 2 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3332Z)×\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times.

nn 785785 885885 16671667
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
883.1
0
−1.00000 0 1.00000 0 0 0 −1.00000 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
17.b even 2 1 RM by Q(17)\Q(\sqrt{17})
68.d odd 2 1 CM by Q(17)\Q(\sqrt{-17})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3332.1.g.a 1
4.b odd 2 1 CM 3332.1.g.a 1
7.b odd 2 1 68.1.d.a 1
7.c even 3 2 3332.1.o.d 2
7.d odd 6 2 3332.1.o.c 2
17.b even 2 1 RM 3332.1.g.a 1
21.c even 2 1 612.1.e.a 1
28.d even 2 1 68.1.d.a 1
28.f even 6 2 3332.1.o.c 2
28.g odd 6 2 3332.1.o.d 2
35.c odd 2 1 1700.1.h.d 1
35.f even 4 2 1700.1.d.b 2
56.e even 2 1 1088.1.g.a 1
56.h odd 2 1 1088.1.g.a 1
68.d odd 2 1 CM 3332.1.g.a 1
84.h odd 2 1 612.1.e.a 1
119.d odd 2 1 68.1.d.a 1
119.f odd 4 2 1156.1.c.a 1
119.h odd 6 2 3332.1.o.c 2
119.j even 6 2 3332.1.o.d 2
119.l odd 8 4 1156.1.f.a 2
119.p even 16 8 1156.1.g.a 4
140.c even 2 1 1700.1.h.d 1
140.j odd 4 2 1700.1.d.b 2
357.c even 2 1 612.1.e.a 1
476.e even 2 1 68.1.d.a 1
476.k even 4 2 1156.1.c.a 1
476.o odd 6 2 3332.1.o.d 2
476.q even 6 2 3332.1.o.c 2
476.w even 8 4 1156.1.f.a 2
476.bf odd 16 8 1156.1.g.a 4
595.b odd 2 1 1700.1.h.d 1
595.p even 4 2 1700.1.d.b 2
952.e odd 2 1 1088.1.g.a 1
952.k even 2 1 1088.1.g.a 1
1428.b odd 2 1 612.1.e.a 1
2380.p even 2 1 1700.1.h.d 1
2380.bi odd 4 2 1700.1.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.1.d.a 1 7.b odd 2 1
68.1.d.a 1 28.d even 2 1
68.1.d.a 1 119.d odd 2 1
68.1.d.a 1 476.e even 2 1
612.1.e.a 1 21.c even 2 1
612.1.e.a 1 84.h odd 2 1
612.1.e.a 1 357.c even 2 1
612.1.e.a 1 1428.b odd 2 1
1088.1.g.a 1 56.e even 2 1
1088.1.g.a 1 56.h odd 2 1
1088.1.g.a 1 952.e odd 2 1
1088.1.g.a 1 952.k even 2 1
1156.1.c.a 1 119.f odd 4 2
1156.1.c.a 1 476.k even 4 2
1156.1.f.a 2 119.l odd 8 4
1156.1.f.a 2 476.w even 8 4
1156.1.g.a 4 119.p even 16 8
1156.1.g.a 4 476.bf odd 16 8
1700.1.d.b 2 35.f even 4 2
1700.1.d.b 2 140.j odd 4 2
1700.1.d.b 2 595.p even 4 2
1700.1.d.b 2 2380.bi odd 4 2
1700.1.h.d 1 35.c odd 2 1
1700.1.h.d 1 140.c even 2 1
1700.1.h.d 1 595.b odd 2 1
1700.1.h.d 1 2380.p even 2 1
3332.1.g.a 1 1.a even 1 1 trivial
3332.1.g.a 1 4.b odd 2 1 CM
3332.1.g.a 1 17.b even 2 1 RM
3332.1.g.a 1 68.d odd 2 1 CM
3332.1.o.c 2 7.d odd 6 2
3332.1.o.c 2 28.f even 6 2
3332.1.o.c 2 119.h odd 6 2
3332.1.o.c 2 476.q even 6 2
3332.1.o.d 2 7.c even 3 2
3332.1.o.d 2 28.g odd 6 2
3332.1.o.d 2 119.j even 6 2
3332.1.o.d 2 476.o odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3332,[χ])S_{1}^{\mathrm{new}}(3332, [\chi]):

T3 T_{3} Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T132 T_{13} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T2 T - 2 Copy content Toggle raw display
1717 T+1 T + 1 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T2 T - 2 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T2 T - 2 Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less