Properties

Label 3332.1.m.a.3039.1
Level 33323332
Weight 11
Character 3332.3039
Analytic conductor 1.6631.663
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(2843,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.2843");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3332=227217 3332 = 2^{2} \cdot 7^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3332.m (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.662884622091.66288462209
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.962948.2

Embedding invariants

Embedding label 3039.1
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 3332.3039
Dual form 3332.1.m.a.2843.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q4+(1.000001.00000i)q5+1.00000iq8+1.00000iq9+(1.00000+1.00000i)q10+2.00000q13+1.00000q161.00000iq17+1.00000q18+(1.00000+1.00000i)q20+1.00000iq252.00000iq26+(1.000001.00000i)q291.00000iq321.00000q341.00000iq36+(1.00000+1.00000i)q37+(1.000001.00000i)q40+(1.000001.00000i)q41+(1.000001.00000i)q45+1.00000q502.00000q52+(1.00000+1.00000i)q58+(1.000001.00000i)q611.00000q64+(2.000002.00000i)q65+1.00000iq681.00000q72+(1.000001.00000i)q73+(1.000001.00000i)q74+(1.000001.00000i)q801.00000q81+(1.000001.00000i)q82+(1.00000+1.00000i)q852.00000q89+(1.000001.00000i)q90+(1.000001.00000i)q97+O(q100)q-1.00000i q^{2} -1.00000 q^{4} +(-1.00000 - 1.00000i) q^{5} +1.00000i q^{8} +1.00000i q^{9} +(-1.00000 + 1.00000i) q^{10} +2.00000 q^{13} +1.00000 q^{16} -1.00000i q^{17} +1.00000 q^{18} +(1.00000 + 1.00000i) q^{20} +1.00000i q^{25} -2.00000i q^{26} +(-1.00000 - 1.00000i) q^{29} -1.00000i q^{32} -1.00000 q^{34} -1.00000i q^{36} +(1.00000 + 1.00000i) q^{37} +(1.00000 - 1.00000i) q^{40} +(1.00000 - 1.00000i) q^{41} +(1.00000 - 1.00000i) q^{45} +1.00000 q^{50} -2.00000 q^{52} +(-1.00000 + 1.00000i) q^{58} +(1.00000 - 1.00000i) q^{61} -1.00000 q^{64} +(-2.00000 - 2.00000i) q^{65} +1.00000i q^{68} -1.00000 q^{72} +(-1.00000 - 1.00000i) q^{73} +(1.00000 - 1.00000i) q^{74} +(-1.00000 - 1.00000i) q^{80} -1.00000 q^{81} +(-1.00000 - 1.00000i) q^{82} +(-1.00000 + 1.00000i) q^{85} -2.00000 q^{89} +(-1.00000 - 1.00000i) q^{90} +(-1.00000 - 1.00000i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q42q52q10+4q13+2q16+2q18+2q202q292q34+2q37+2q40+2q41+2q45+2q504q522q58+2q612q644q65+2q97+O(q100) 2 q - 2 q^{4} - 2 q^{5} - 2 q^{10} + 4 q^{13} + 2 q^{16} + 2 q^{18} + 2 q^{20} - 2 q^{29} - 2 q^{34} + 2 q^{37} + 2 q^{40} + 2 q^{41} + 2 q^{45} + 2 q^{50} - 4 q^{52} - 2 q^{58} + 2 q^{61} - 2 q^{64} - 4 q^{65}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3332Z)×\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times.

nn 785785 885885 16671667
χ(n)\chi(n) e(14)e\left(\frac{1}{4}\right) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
44 −1.00000 −1.00000
55 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
66 0 0
77 0 0
88 1.00000i 1.00000i
99 1.00000i 1.00000i
1010 −1.00000 + 1.00000i −1.00000 + 1.00000i
1111 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1212 0 0
1313 2.00000 2.00000 1.00000 00
1.00000 00
1414 0 0
1515 0 0
1616 1.00000 1.00000
1717 1.00000i 1.00000i
1818 1.00000 1.00000
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 1.00000 + 1.00000i 1.00000 + 1.00000i
2121 0 0
2222 0 0
2323 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2424 0 0
2525 1.00000i 1.00000i
2626 2.00000i 2.00000i
2727 0 0
2828 0 0
2929 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
3030 0 0
3131 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3232 1.00000i 1.00000i
3333 0 0
3434 −1.00000 −1.00000
3535 0 0
3636 1.00000i 1.00000i
3737 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 1.00000 1.00000i 1.00000 1.00000i
4141 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 1.00000 1.00000i 1.00000 1.00000i
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0 0
5050 1.00000 1.00000
5151 0 0
5252 −2.00000 −2.00000
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 −1.00000 + 1.00000i −1.00000 + 1.00000i
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 −2.00000 2.00000i −2.00000 2.00000i
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 1.00000i 1.00000i
6969 0 0
7070 0 0
7171 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
7272 −1.00000 −1.00000
7373 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
7474 1.00000 1.00000i 1.00000 1.00000i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
8080 −1.00000 1.00000i −1.00000 1.00000i
8181 −1.00000 −1.00000
8282 −1.00000 1.00000i −1.00000 1.00000i
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 −1.00000 + 1.00000i −1.00000 + 1.00000i
8686 0 0
8787 0 0
8888 0 0
8989 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
9090 −1.00000 1.00000i −1.00000 1.00000i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
9898 0 0
9999 0 0
100100 1.00000i 1.00000i
101101 2.00000 2.00000 1.00000 00
1.00000 00
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 2.00000i 2.00000i
105105 0 0
106106 0 0
107107 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
108108 0 0
109109 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
110110 0 0
111111 0 0
112112 0 0
113113 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
114114 0 0
115115 0 0
116116 1.00000 + 1.00000i 1.00000 + 1.00000i
117117 2.00000i 2.00000i
118118 0 0
119119 0 0
120120 0 0
121121 1.00000i 1.00000i
122122 −1.00000 1.00000i −1.00000 1.00000i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 1.00000i 1.00000i
129129 0 0
130130 −2.00000 + 2.00000i −2.00000 + 2.00000i
131131 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 1.00000 1.00000
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 1.00000i 1.00000i
145145 2.00000i 2.00000i
146146 −1.00000 + 1.00000i −1.00000 + 1.00000i
147147 0 0
148148 −1.00000 1.00000i −1.00000 1.00000i
149149 2.00000 2.00000 1.00000 00
1.00000 00
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 1.00000 1.00000
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 −1.00000 + 1.00000i −1.00000 + 1.00000i
161161 0 0
162162 1.00000i 1.00000i
163163 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
164164 −1.00000 + 1.00000i −1.00000 + 1.00000i
165165 0 0
166166 0 0
167167 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
168168 0 0
169169 3.00000 3.00000
170170 1.00000 + 1.00000i 1.00000 + 1.00000i
171171 0 0
172172 0 0
173173 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 2.00000i 2.00000i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 −1.00000 + 1.00000i −1.00000 + 1.00000i
181181 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 2.00000i 2.00000i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
194194 −1.00000 + 1.00000i −1.00000 + 1.00000i
195195 0 0
196196 0 0
197197 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
198198 0 0
199199 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
200200 −1.00000 −1.00000
201201 0 0
202202 2.00000i 2.00000i
203203 0 0
204204 0 0
205205 −2.00000 −2.00000
206206 0 0
207207 0 0
208208 2.00000 2.00000
209209 0 0
210210 0 0
211211 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −1.00000 1.00000i −1.00000 1.00000i
219219 0 0
220220 0 0
221221 2.00000i 2.00000i
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 −1.00000 −1.00000
226226 1.00000 + 1.00000i 1.00000 + 1.00000i
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 1.00000 1.00000i 1.00000 1.00000i
233233 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
234234 2.00000 2.00000
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
242242 −1.00000 −1.00000
243243 0 0
244244 −1.00000 + 1.00000i −1.00000 + 1.00000i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 2.00000 + 2.00000i 2.00000 + 2.00000i
261261 1.00000 1.00000i 1.00000 1.00000i
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 1.00000i 1.00000i
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 1.00000 1.00000
289289 −1.00000 −1.00000
290290 2.00000 2.00000
291291 0 0
292292 1.00000 + 1.00000i 1.00000 + 1.00000i
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 −1.00000 + 1.00000i −1.00000 + 1.00000i
297297 0 0
298298 2.00000i 2.00000i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −2.00000 −2.00000
306306 1.00000i 1.00000i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
312312 0 0
313313 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
314314 0 0
315315 0 0
316316 0 0
317317 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
318318 0 0
319319 0 0
320320 1.00000 + 1.00000i 1.00000 + 1.00000i
321321 0 0
322322 0 0
323323 0 0
324324 1.00000 1.00000
325325 2.00000i 2.00000i
326326 0 0
327327 0 0
328328 1.00000 + 1.00000i 1.00000 + 1.00000i
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 −1.00000 + 1.00000i −1.00000 + 1.00000i
334334 0 0
335335 0 0
336336 0 0
337337 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
338338 3.00000i 3.00000i
339339 0 0
340340 1.00000 1.00000i 1.00000 1.00000i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −1.00000 + 1.00000i −1.00000 + 1.00000i
347347 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
348348 0 0
349349 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 2.00000 2.00000
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 1.00000 + 1.00000i 1.00000 + 1.00000i
361361 −1.00000 −1.00000
362362 1.00000 + 1.00000i 1.00000 + 1.00000i
363363 0 0
364364 0 0
365365 2.00000i 2.00000i
366366 0 0
367367 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
368368 0 0
369369 1.00000 + 1.00000i 1.00000 + 1.00000i
370370 −2.00000 −2.00000
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 −2.00000 2.00000i −2.00000 2.00000i
378378 0 0
379379 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 −1.00000 1.00000i −1.00000 1.00000i
387387 0 0
388388 1.00000 + 1.00000i 1.00000 + 1.00000i
389389 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 −1.00000 1.00000i −1.00000 1.00000i
395395 0 0
396396 0 0
397397 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 1.00000i 1.00000i
401401 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 −2.00000 −2.00000
405405 1.00000 + 1.00000i 1.00000 + 1.00000i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 2.00000i 2.00000i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 2.00000i 2.00000i
417417 0 0
418418 0 0
419419 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 0 0
423423 0 0
424424 0 0
425425 1.00000 1.00000
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 −1.00000 + 1.00000i −1.00000 + 1.00000i
437437 0 0
438438 0 0
439439 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
440440 0 0
441441 0 0
442442 −2.00000 −2.00000
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 2.00000 + 2.00000i 2.00000 + 2.00000i
446446 0 0
447447 0 0
448448 0 0
449449 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
450450 1.00000i 1.00000i
451451 0 0
452452 1.00000 1.00000i 1.00000 1.00000i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 0 0
461461 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 −1.00000 1.00000i −1.00000 1.00000i
465465 0 0
466466 1.00000 1.00000i 1.00000 1.00000i
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 2.00000i 2.00000i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
480480 0 0
481481 2.00000 + 2.00000i 2.00000 + 2.00000i
482482 1.00000 1.00000i 1.00000 1.00000i
483483 0 0
484484 1.00000i 1.00000i
485485 2.00000i 2.00000i
486486 0 0
487487 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 1.00000 + 1.00000i 1.00000 + 1.00000i
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 −1.00000 + 1.00000i −1.00000 + 1.00000i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
504504 0 0
505505 −2.00000 2.00000i −2.00000 2.00000i
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 2.00000 2.00000i 2.00000 2.00000i
521521 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
522522 −1.00000 1.00000i −1.00000 1.00000i
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.00000i 1.00000i
530530 0 0
531531 0 0
532532 0 0
533533 2.00000 2.00000i 2.00000 2.00000i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 1.00000 1.00000i 1.00000 1.00000i
539539 0 0
540540 0 0
541541 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
542542 0 0
543543 0 0
544544 −1.00000 −1.00000
545545 −2.00000 −2.00000
546546 0 0
547547 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
548548 0 0
549549 1.00000 + 1.00000i 1.00000 + 1.00000i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 1.00000 1.00000i 1.00000 1.00000i
555555 0 0
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 2.00000 2.00000
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 1.00000i 1.00000i
577577 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
578578 1.00000i 1.00000i
579579 0 0
580580 2.00000i 2.00000i
581581 0 0
582582 0 0
583583 0 0
584584 1.00000 1.00000i 1.00000 1.00000i
585585 2.00000 2.00000i 2.00000 2.00000i
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.00000 + 1.00000i 1.00000 + 1.00000i
593593 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
594594 0 0
595595 0 0
596596 −2.00000 −2.00000
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 −1.00000 + 1.00000i −1.00000 + 1.00000i
606606 0 0
607607 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
608608 0 0
609609 0 0
610610 2.00000i 2.00000i
611611 0 0
612612 −1.00000 −1.00000
613613 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 −1.00000 1.00000i −1.00000 1.00000i
627627 0 0
628628 0 0
629629 1.00000 1.00000i 1.00000 1.00000i
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 −1.00000 1.00000i −1.00000 1.00000i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 1.00000 1.00000i 1.00000 1.00000i
641641 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 1.00000i 1.00000i
649649 0 0
650650 2.00000 2.00000
651651 0 0
652652 0 0
653653 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
654654 0 0
655655 0 0
656656 1.00000 1.00000i 1.00000 1.00000i
657657 1.00000 1.00000i 1.00000 1.00000i
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 1.00000 + 1.00000i 1.00000 + 1.00000i
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
674674 −1.00000 + 1.00000i −1.00000 + 1.00000i
675675 0 0
676676 −3.00000 −3.00000
677677 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 −1.00000 1.00000i −1.00000 1.00000i
681681 0 0
682682 0 0
683683 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
692692 1.00000 + 1.00000i 1.00000 + 1.00000i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −1.00000 1.00000i −1.00000 1.00000i
698698 2.00000 2.00000
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
710710 0 0
711711 0 0
712712 2.00000i 2.00000i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
720720 1.00000 1.00000i 1.00000 1.00000i
721721 0 0
722722 1.00000i 1.00000i
723723 0 0
724724 1.00000 1.00000i 1.00000 1.00000i
725725 1.00000 1.00000i 1.00000 1.00000i
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.00000i 1.00000i
730730 2.00000 2.00000
731731 0 0
732732 0 0
733733 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 1.00000 1.00000i 1.00000 1.00000i
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 2.00000i 2.00000i
741741 0 0
742742 0 0
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 −2.00000 2.00000i −2.00000 2.00000i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
752752 0 0
753753 0 0
754754 −2.00000 + 2.00000i −2.00000 + 2.00000i
755755 0 0
756756 0 0
757757 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 2.00000 2.00000 1.00000 00
1.00000 00
762762 0 0
763763 0 0
764764 0 0
765765 −1.00000 1.00000i −1.00000 1.00000i
766766 0 0
767767 0 0
768768 0 0
769769 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
770770 0 0
771771 0 0
772772 −1.00000 + 1.00000i −1.00000 + 1.00000i
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 1.00000 1.00000i 1.00000 1.00000i
777777 0 0
778778 2.00000 2.00000
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
788788 −1.00000 + 1.00000i −1.00000 + 1.00000i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 2.00000 2.00000i 2.00000 2.00000i
794794 1.00000 + 1.00000i 1.00000 + 1.00000i
795795 0 0
796796 0 0
797797 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 1.00000 1.00000
801801 2.00000i 2.00000i
802802 1.00000 + 1.00000i 1.00000 + 1.00000i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 2.00000i 2.00000i
809809 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
810810 1.00000 1.00000i 1.00000 1.00000i
811811 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 2.00000 2.00000
821821 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 −2.00000 −2.00000
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
840840 0 0
841841 1.00000i 1.00000i
842842 0 0
843843 0 0
844844 0 0
845845 −3.00000 3.00000i −3.00000 3.00000i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 1.00000i 1.00000i
851851 0 0
852852 0 0
853853 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 2.00000i 2.00000i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 1.00000 + 1.00000i 1.00000 + 1.00000i
873873 1.00000 1.00000i 1.00000 1.00000i
874874 0 0
875875 0 0
876876 0 0
877877 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
878878 0 0
879879 0 0
880880 0 0
881881 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 2.00000i 2.00000i
885885 0 0
886886 0 0
887887 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
888888 0 0
889889 0 0
890890 2.00000 2.00000i 2.00000 2.00000i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 1.00000 + 1.00000i 1.00000 + 1.00000i
899899 0 0
900900 1.00000 1.00000
901901 0 0
902902 0 0
903903 0 0
904904 −1.00000 1.00000i −1.00000 1.00000i
905905 2.00000 2.00000
906906 0 0
907907 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
908908 0 0
909909 2.00000i 2.00000i
910910 0 0
911911 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
912912 0 0
913913 0 0
914914 2.00000 2.00000
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 −2.00000 −2.00000
923923 0 0
924924 0 0
925925 −1.00000 + 1.00000i −1.00000 + 1.00000i
926926 0 0
927927 0 0
928928 −1.00000 + 1.00000i −1.00000 + 1.00000i
929929 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
930930 0 0
931931 0 0
932932 −1.00000 1.00000i −1.00000 1.00000i
933933 0 0
934934 0 0
935935 0 0
936936 −2.00000 −2.00000
937937 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 0 0
949949 −2.00000 2.00000i −2.00000 2.00000i
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.00000i 1.00000i
962962 2.00000 2.00000i 2.00000 2.00000i
963963 0 0
964964 −1.00000 1.00000i −1.00000 1.00000i
965965 −2.00000 −2.00000
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 1.00000 1.00000
969969 0 0
970970 2.00000 2.00000
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1.00000 1.00000i 1.00000 1.00000i
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 1.00000 + 1.00000i 1.00000 + 1.00000i
982982 0 0
983983 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
984984 0 0
985985 −2.00000 −2.00000
986986 1.00000 + 1.00000i 1.00000 + 1.00000i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.1.m.a.3039.1 yes 2
4.3 odd 2 CM 3332.1.m.a.3039.1 yes 2
7.2 even 3 3332.1.bc.d.2223.1 4
7.3 odd 6 3332.1.bc.a.863.1 4
7.4 even 3 3332.1.bc.d.863.1 4
7.5 odd 6 3332.1.bc.a.2223.1 4
7.6 odd 2 3332.1.m.c.3039.1 yes 2
17.4 even 4 inner 3332.1.m.a.2843.1 2
28.3 even 6 3332.1.bc.a.863.1 4
28.11 odd 6 3332.1.bc.d.863.1 4
28.19 even 6 3332.1.bc.a.2223.1 4
28.23 odd 6 3332.1.bc.d.2223.1 4
28.27 even 2 3332.1.m.c.3039.1 yes 2
68.55 odd 4 inner 3332.1.m.a.2843.1 2
119.4 even 12 3332.1.bc.d.667.1 4
119.38 odd 12 3332.1.bc.a.667.1 4
119.55 odd 4 3332.1.m.c.2843.1 yes 2
119.72 even 12 3332.1.bc.d.2027.1 4
119.89 odd 12 3332.1.bc.a.2027.1 4
476.55 even 4 3332.1.m.c.2843.1 yes 2
476.123 odd 12 3332.1.bc.d.667.1 4
476.191 odd 12 3332.1.bc.d.2027.1 4
476.327 even 12 3332.1.bc.a.2027.1 4
476.395 even 12 3332.1.bc.a.667.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.1.m.a.2843.1 2 17.4 even 4 inner
3332.1.m.a.2843.1 2 68.55 odd 4 inner
3332.1.m.a.3039.1 yes 2 1.1 even 1 trivial
3332.1.m.a.3039.1 yes 2 4.3 odd 2 CM
3332.1.m.c.2843.1 yes 2 119.55 odd 4
3332.1.m.c.2843.1 yes 2 476.55 even 4
3332.1.m.c.3039.1 yes 2 7.6 odd 2
3332.1.m.c.3039.1 yes 2 28.27 even 2
3332.1.bc.a.667.1 4 119.38 odd 12
3332.1.bc.a.667.1 4 476.395 even 12
3332.1.bc.a.863.1 4 7.3 odd 6
3332.1.bc.a.863.1 4 28.3 even 6
3332.1.bc.a.2027.1 4 119.89 odd 12
3332.1.bc.a.2027.1 4 476.327 even 12
3332.1.bc.a.2223.1 4 7.5 odd 6
3332.1.bc.a.2223.1 4 28.19 even 6
3332.1.bc.d.667.1 4 119.4 even 12
3332.1.bc.d.667.1 4 476.123 odd 12
3332.1.bc.d.863.1 4 7.4 even 3
3332.1.bc.d.863.1 4 28.11 odd 6
3332.1.bc.d.2027.1 4 119.72 even 12
3332.1.bc.d.2027.1 4 476.191 odd 12
3332.1.bc.d.2223.1 4 7.2 even 3
3332.1.bc.d.2223.1 4 28.23 odd 6