Properties

Label 3332.2.a.r
Level $3332$
Weight $2$
Character orbit 3332.a
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.113481.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 9x^{2} + 3x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + \beta_1 q^{5} + (\beta_{2} + 3) q^{9} + ( - \beta_{3} + 3) q^{11} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{13} + (\beta_{2} + \beta_1 + 5) q^{15} + q^{17} + ( - \beta_{3} - \beta_{2} - 1) q^{19}+ \cdots + ( - 2 \beta_{3} + 5 \beta_{2} + \cdots + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} + 10 q^{9} + 11 q^{11} - 5 q^{13} + 20 q^{15} + 4 q^{17} - 3 q^{19} - 6 q^{23} + 2 q^{25} + q^{27} + 3 q^{29} - 10 q^{31} + 2 q^{33} + 11 q^{37} - 11 q^{39} + 18 q^{41} + 15 q^{43}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 9x^{2} + 3x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu^{2} - 5\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 11\beta _1 + 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.84745
−1.31920
1.26053
3.90611
0 −2.84745 0 −1.84745 0 0 0 5.10796 0
1.2 0 −2.31920 0 −1.31920 0 0 0 2.37868 0
1.3 0 0.260534 0 1.26053 0 0 0 −2.93212 0
1.4 0 2.90611 0 3.90611 0 0 0 5.44549 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3332.2.a.r 4
7.b odd 2 1 3332.2.a.s 4
7.d odd 6 2 476.2.i.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
476.2.i.e 8 7.d odd 6 2
3332.2.a.r 4 1.a even 1 1 trivial
3332.2.a.s 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3332))\):

\( T_{3}^{4} + 2T_{3}^{3} - 9T_{3}^{2} - 17T_{3} + 5 \) Copy content Toggle raw display
\( T_{5}^{4} - 2T_{5}^{3} - 9T_{5}^{2} + 3T_{5} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots + 12 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 11 T^{3} + \cdots - 147 \) Copy content Toggle raw display
$13$ \( T^{4} + 5 T^{3} + \cdots - 167 \) Copy content Toggle raw display
$17$ \( (T - 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 3 T^{3} + \cdots - 294 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 1440 \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + \cdots - 144 \) Copy content Toggle raw display
$31$ \( T^{4} + 10 T^{3} + \cdots - 1336 \) Copy content Toggle raw display
$37$ \( T^{4} - 11 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$41$ \( T^{4} - 18 T^{3} + \cdots - 3888 \) Copy content Toggle raw display
$43$ \( T^{4} - 15 T^{3} + \cdots - 18 \) Copy content Toggle raw display
$47$ \( T^{4} + 13 T^{3} + \cdots + 6 \) Copy content Toggle raw display
$53$ \( T^{4} + 13 T^{3} + \cdots - 3 \) Copy content Toggle raw display
$59$ \( T^{4} + 15 T^{3} + \cdots + 18 \) Copy content Toggle raw display
$61$ \( T^{4} - 105 T^{2} + \cdots + 1032 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots + 242 \) Copy content Toggle raw display
$71$ \( T^{4} - 4 T^{3} + \cdots + 13365 \) Copy content Toggle raw display
$73$ \( T^{4} + 29 T^{3} + \cdots - 608 \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 6051 \) Copy content Toggle raw display
$83$ \( T^{4} - 26 T^{3} + \cdots - 12 \) Copy content Toggle raw display
$89$ \( T^{4} - 11 T^{3} + \cdots + 192 \) Copy content Toggle raw display
$97$ \( T^{4} - 9 T^{3} + \cdots - 822 \) Copy content Toggle raw display
show more
show less