Properties

Label 3343.1.b.a.3342.4
Level $3343$
Weight $1$
Character 3343.3342
Self dual yes
Analytic conductor $1.668$
Analytic rank $0$
Dimension $9$
Projective image $D_{19}$
CM discriminant -3343
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3343,1,Mod(3342,3343)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3343, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3343.3342");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3343 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3343.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.66837433723\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{38})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 8x^{7} + 7x^{6} + 21x^{5} - 15x^{4} - 20x^{3} + 10x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{19}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{19} - \cdots)\)

Embedding invariants

Embedding label 3342.4
Root \(1.35456\) of defining polynomial
Character \(\chi\) \(=\) 3343.3342

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.803391 q^{2} -0.354563 q^{4} +1.08824 q^{8} +1.00000 q^{9} -1.97272 q^{11} -0.519722 q^{16} -0.803391 q^{18} +1.57828 q^{19} +1.58487 q^{22} +1.00000 q^{25} -1.75895 q^{31} -0.670704 q^{32} -0.354563 q^{36} -1.26798 q^{38} +1.09390 q^{43} +0.699455 q^{44} +1.00000 q^{49} -0.803391 q^{50} -0.165159 q^{53} +0.490971 q^{59} +0.490971 q^{61} +1.41312 q^{62} +1.05856 q^{64} +1.08824 q^{72} -0.559600 q^{76} +1.00000 q^{81} -0.878826 q^{86} -2.14680 q^{88} +1.09390 q^{89} -0.803391 q^{98} -1.97272 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} + 8 q^{4} - 2 q^{8} + 9 q^{9} - q^{11} + 7 q^{16} - q^{18} - q^{19} - 2 q^{22} + 9 q^{25} - q^{31} - 3 q^{32} + 8 q^{36} - 2 q^{38} - q^{43} - 3 q^{44} + 9 q^{49} - q^{50} - q^{53} - q^{59}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3343\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.354563 −0.354563
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.08824 1.08824
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.519722 −0.519722
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −0.803391 −0.803391
\(19\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.58487 1.58487
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(32\) −0.670704 −0.670704
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.354563 −0.354563
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −1.26798 −1.26798
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(44\) 0.699455 0.699455
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) −0.803391 −0.803391
\(51\) 0 0
\(52\) 0 0
\(53\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(60\) 0 0
\(61\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(62\) 1.41312 1.41312
\(63\) 0 0
\(64\) 1.05856 1.05856
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 1.08824 1.08824
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −0.559600 −0.559600
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.878826 −0.878826
\(87\) 0 0
\(88\) −2.14680 −2.14680
\(89\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.803391 −0.803391
\(99\) −1.97272 −1.97272
\(100\) −0.354563 −0.354563
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.132687 0.132687
\(107\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(108\) 0 0
\(109\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.394442 −0.394442
\(119\) 0 0
\(120\) 0 0
\(121\) 2.89163 2.89163
\(122\) −0.394442 −0.394442
\(123\) 0 0
\(124\) 0.623658 0.623658
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −0.179733 −0.179733
\(129\) 0 0
\(130\) 0 0
\(131\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.519722 −0.519722
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.71755 1.71755
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.803391 −0.803391
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 1.57828 1.57828
\(172\) −0.387855 −0.387855
\(173\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.02527 1.02527
\(177\) 0 0
\(178\) −0.878826 −0.878826
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.354563 −0.354563
\(197\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(198\) 1.58487 1.58487
\(199\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(200\) 1.08824 1.08824
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0.132687 0.132687
\(207\) 0 0
\(208\) 0 0
\(209\) −3.11351 −3.11351
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0.0585592 0.0585592
\(213\) 0 0
\(214\) −1.51972 −1.51972
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.41312 1.41312
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) 0 0
\(227\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.174080 −0.174080
\(237\) 0 0
\(238\) 0 0
\(239\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −2.32311 −2.32311
\(243\) 0 0
\(244\) −0.174080 −0.174080
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −1.91416 −1.91416
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.914163 −0.914163
\(257\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.132687 0.132687
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(270\) 0 0
\(271\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.97272 −1.97272
\(276\) 0 0
\(277\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(278\) 0 0
\(279\) −1.75895 −1.75895
\(280\) 0 0
\(281\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.670704 −0.670704
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.820267 −0.820267
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(312\) 0 0
\(313\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(314\) −1.51972 −1.51972
\(315\) 0 0
\(316\) 0 0
\(317\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.354563 −0.354563
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(338\) −0.803391 −0.803391
\(339\) 0 0
\(340\) 0 0
\(341\) 3.46992 3.46992
\(342\) −1.26798 −1.26798
\(343\) 0 0
\(344\) 1.19043 1.19043
\(345\) 0 0
\(346\) −0.878826 −0.878826
\(347\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(348\) 0 0
\(349\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.32311 1.32311
\(353\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.387855 −0.387855
\(357\) 0 0
\(358\) 0 0
\(359\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(360\) 0 0
\(361\) 1.49097 1.49097
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.26798 −1.26798
\(387\) 1.09390 1.09390
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.08824 1.08824
\(393\) 0 0
\(394\) −1.26798 −1.26798
\(395\) 0 0
\(396\) 0.699455 0.699455
\(397\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(398\) −1.51972 −1.51972
\(399\) 0 0
\(400\) −0.519722 −0.519722
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.0585592 0.0585592
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 2.50137 2.50137
\(419\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(420\) 0 0
\(421\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.179733 −0.179733
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.670704 −0.670704
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.623658 0.623658
\(437\) 0 0
\(438\) 0 0
\(439\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.08824 1.08824
\(447\) 0 0
\(448\) 0 0
\(449\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(450\) −0.803391 −0.803391
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 1.08824 1.08824
\(455\) 0 0
\(456\) 0 0
\(457\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.394442 −0.394442
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.534296 0.534296
\(473\) −2.15795 −2.15795
\(474\) 0 0
\(475\) 1.57828 1.57828
\(476\) 0 0
\(477\) −0.165159 −0.165159
\(478\) −0.394442 −0.394442
\(479\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.02527 −1.02527
\(485\) 0 0
\(486\) 0 0
\(487\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(488\) 0.534296 0.534296
\(489\) 0 0
\(490\) 0 0
\(491\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.914163 0.914163
\(497\) 0 0
\(498\) 0 0
\(499\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.914163 0.914163
\(513\) 0 0
\(514\) 1.41312 1.41312
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(524\) 0.0585592 0.0585592
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0.490971 0.490971
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.08824 1.08824
\(539\) −1.97272 −1.97272
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −1.51972 −1.51972
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(548\) 0 0
\(549\) 0.490971 0.490971
\(550\) 1.58487 1.58487
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.08824 1.08824
\(555\) 0 0
\(556\) 0 0
\(557\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(558\) 1.41312 1.41312
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.132687 0.132687
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(570\) 0 0
\(571\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.05856 1.05856
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.803391 −0.803391
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0.325812 0.325812
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(588\) 0 0
\(589\) −2.77611 −2.77611
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(600\) 0 0
\(601\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) −1.05856 −1.05856
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −0.878826 −0.878826
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 1.58487 1.58487
\(627\) 0 0
\(628\) −0.670704 −0.670704
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.58487 1.58487
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(642\) 0 0
\(643\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.08824 1.08824
\(649\) −0.968550 −0.968550
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.968550 −0.968550
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0.132687 0.132687
\(675\) 0 0
\(676\) −0.354563 −0.354563
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −2.78770 −2.78770
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −0.559600 −0.559600
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.568522 −0.568522
\(689\) 0 0
\(690\) 0 0
\(691\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(692\) −0.387855 −0.387855
\(693\) 0 0
\(694\) 1.08824 1.08824
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.878826 −0.878826
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.08824 −2.08824
\(705\) 0 0
\(706\) −1.26798 −1.26798
\(707\) 0 0
\(708\) 0 0
\(709\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.19043 1.19043
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 1.08824 1.08824
\(719\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.19783 −1.19783
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −0.394442 −0.394442
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.559600 −0.559600
\(773\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(774\) −0.878826 −0.878826
\(775\) −1.75895 −1.75895
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.519722 −0.519722
\(785\) 0 0
\(786\) 0 0
\(787\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(788\) −0.559600 −0.559600
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −2.14680 −2.14680
\(793\) 0 0
\(794\) 1.58487 1.58487
\(795\) 0 0
\(796\) −0.670704 −0.670704
\(797\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.670704 −0.670704
\(801\) 1.09390 1.09390
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.72648 1.72648
\(818\) 1.58487 1.58487
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) −0.179733 −0.179733
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 1.10394 1.10394
\(837\) 0 0
\(838\) 0.645437 0.645437
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0.645437 0.645437
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0.0858366 0.0858366
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.05856 2.05856
\(857\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0.645437 0.645437
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.91416 −1.91416
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(878\) 0.645437 0.645437
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.803391 −0.803391
\(883\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.41312 1.41312
\(887\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.97272 −1.97272
\(892\) 0.480278 0.480278
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.51972 −1.51972
\(899\) 0 0
\(900\) −0.354563 −0.354563
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(908\) 0.480278 0.480278
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.08824 1.08824
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.645437 0.645437
\(927\) −0.165159 −0.165159
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 1.57828 1.57828
\(932\) −0.174080 −0.174080
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.255168 −0.255168
\(945\) 0 0
\(946\) 1.73368 1.73368
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.26798 −1.26798
\(951\) 0 0
\(952\) 0 0
\(953\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(954\) 0.132687 0.132687
\(955\) 0 0
\(956\) −0.174080 −0.174080
\(957\) 0 0
\(958\) −0.878826 −0.878826
\(959\) 0 0
\(960\) 0 0
\(961\) 2.09390 2.09390
\(962\) 0 0
\(963\) 1.89163 1.89163
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(968\) 3.14680 3.14680
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.878826 −0.878826
\(975\) 0 0
\(976\) −0.255168 −0.255168
\(977\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(978\) 0 0
\(979\) −2.15795 −2.15795
\(980\) 0 0
\(981\) −1.75895 −1.75895
\(982\) 1.41312 1.41312
\(983\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(992\) 1.17973 1.17973
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(998\) 0.132687 0.132687
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3343.1.b.a.3342.4 9
3343.3342 odd 2 CM 3343.1.b.a.3342.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3343.1.b.a.3342.4 9 1.1 even 1 trivial
3343.1.b.a.3342.4 9 3343.3342 odd 2 CM