Properties

Label 3344.2.a.ba.1.3
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 10x^{4} + 59x^{3} - 27x^{2} - 66x + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.45416\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.71116 q^{3} +2.59296 q^{5} +2.00933 q^{7} -0.0719365 q^{9} +1.00000 q^{11} -4.45988 q^{13} -4.43696 q^{15} +4.54435 q^{17} -1.00000 q^{19} -3.43828 q^{21} -7.48175 q^{23} +1.72344 q^{25} +5.25657 q^{27} -3.17425 q^{29} -9.34529 q^{31} -1.71116 q^{33} +5.21010 q^{35} -6.84486 q^{37} +7.63157 q^{39} +0.644299 q^{41} +8.07470 q^{43} -0.186528 q^{45} -11.6485 q^{47} -2.96260 q^{49} -7.77611 q^{51} -5.53442 q^{53} +2.59296 q^{55} +1.71116 q^{57} -9.16829 q^{59} +9.45268 q^{61} -0.144544 q^{63} -11.5643 q^{65} -0.113535 q^{67} +12.8025 q^{69} +9.84191 q^{71} -2.38027 q^{73} -2.94907 q^{75} +2.00933 q^{77} +2.01251 q^{79} -8.77902 q^{81} +2.90426 q^{83} +11.7833 q^{85} +5.43164 q^{87} -8.82031 q^{89} -8.96136 q^{91} +15.9913 q^{93} -2.59296 q^{95} +11.0100 q^{97} -0.0719365 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{3} + 2 q^{5} - 10 q^{7} + 11 q^{9} + 7 q^{11} - 4 q^{13} - 12 q^{15} + 2 q^{17} - 7 q^{19} - 14 q^{21} - 10 q^{23} + 9 q^{25} + 4 q^{27} - 18 q^{29} - 24 q^{31} - 2 q^{33} - 8 q^{35} - 24 q^{39}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71116 −0.987938 −0.493969 0.869480i \(-0.664454\pi\)
−0.493969 + 0.869480i \(0.664454\pi\)
\(4\) 0 0
\(5\) 2.59296 1.15961 0.579803 0.814756i \(-0.303129\pi\)
0.579803 + 0.814756i \(0.303129\pi\)
\(6\) 0 0
\(7\) 2.00933 0.759454 0.379727 0.925099i \(-0.376018\pi\)
0.379727 + 0.925099i \(0.376018\pi\)
\(8\) 0 0
\(9\) −0.0719365 −0.0239788
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.45988 −1.23695 −0.618475 0.785805i \(-0.712249\pi\)
−0.618475 + 0.785805i \(0.712249\pi\)
\(14\) 0 0
\(15\) −4.43696 −1.14562
\(16\) 0 0
\(17\) 4.54435 1.10217 0.551084 0.834450i \(-0.314214\pi\)
0.551084 + 0.834450i \(0.314214\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −3.43828 −0.750294
\(22\) 0 0
\(23\) −7.48175 −1.56005 −0.780026 0.625747i \(-0.784794\pi\)
−0.780026 + 0.625747i \(0.784794\pi\)
\(24\) 0 0
\(25\) 1.72344 0.344687
\(26\) 0 0
\(27\) 5.25657 1.01163
\(28\) 0 0
\(29\) −3.17425 −0.589443 −0.294722 0.955583i \(-0.595227\pi\)
−0.294722 + 0.955583i \(0.595227\pi\)
\(30\) 0 0
\(31\) −9.34529 −1.67846 −0.839232 0.543774i \(-0.816995\pi\)
−0.839232 + 0.543774i \(0.816995\pi\)
\(32\) 0 0
\(33\) −1.71116 −0.297874
\(34\) 0 0
\(35\) 5.21010 0.880668
\(36\) 0 0
\(37\) −6.84486 −1.12529 −0.562644 0.826699i \(-0.690216\pi\)
−0.562644 + 0.826699i \(0.690216\pi\)
\(38\) 0 0
\(39\) 7.63157 1.22203
\(40\) 0 0
\(41\) 0.644299 0.100623 0.0503113 0.998734i \(-0.483979\pi\)
0.0503113 + 0.998734i \(0.483979\pi\)
\(42\) 0 0
\(43\) 8.07470 1.23138 0.615690 0.787988i \(-0.288877\pi\)
0.615690 + 0.787988i \(0.288877\pi\)
\(44\) 0 0
\(45\) −0.186528 −0.0278060
\(46\) 0 0
\(47\) −11.6485 −1.69911 −0.849557 0.527497i \(-0.823131\pi\)
−0.849557 + 0.527497i \(0.823131\pi\)
\(48\) 0 0
\(49\) −2.96260 −0.423229
\(50\) 0 0
\(51\) −7.77611 −1.08887
\(52\) 0 0
\(53\) −5.53442 −0.760211 −0.380105 0.924943i \(-0.624112\pi\)
−0.380105 + 0.924943i \(0.624112\pi\)
\(54\) 0 0
\(55\) 2.59296 0.349635
\(56\) 0 0
\(57\) 1.71116 0.226648
\(58\) 0 0
\(59\) −9.16829 −1.19361 −0.596805 0.802386i \(-0.703563\pi\)
−0.596805 + 0.802386i \(0.703563\pi\)
\(60\) 0 0
\(61\) 9.45268 1.21029 0.605146 0.796115i \(-0.293115\pi\)
0.605146 + 0.796115i \(0.293115\pi\)
\(62\) 0 0
\(63\) −0.144544 −0.0182108
\(64\) 0 0
\(65\) −11.5643 −1.43437
\(66\) 0 0
\(67\) −0.113535 −0.0138705 −0.00693524 0.999976i \(-0.502208\pi\)
−0.00693524 + 0.999976i \(0.502208\pi\)
\(68\) 0 0
\(69\) 12.8025 1.54123
\(70\) 0 0
\(71\) 9.84191 1.16802 0.584010 0.811746i \(-0.301483\pi\)
0.584010 + 0.811746i \(0.301483\pi\)
\(72\) 0 0
\(73\) −2.38027 −0.278590 −0.139295 0.990251i \(-0.544484\pi\)
−0.139295 + 0.990251i \(0.544484\pi\)
\(74\) 0 0
\(75\) −2.94907 −0.340530
\(76\) 0 0
\(77\) 2.00933 0.228984
\(78\) 0 0
\(79\) 2.01251 0.226425 0.113213 0.993571i \(-0.463886\pi\)
0.113213 + 0.993571i \(0.463886\pi\)
\(80\) 0 0
\(81\) −8.77902 −0.975446
\(82\) 0 0
\(83\) 2.90426 0.318784 0.159392 0.987215i \(-0.449047\pi\)
0.159392 + 0.987215i \(0.449047\pi\)
\(84\) 0 0
\(85\) 11.7833 1.27808
\(86\) 0 0
\(87\) 5.43164 0.582333
\(88\) 0 0
\(89\) −8.82031 −0.934951 −0.467475 0.884006i \(-0.654836\pi\)
−0.467475 + 0.884006i \(0.654836\pi\)
\(90\) 0 0
\(91\) −8.96136 −0.939406
\(92\) 0 0
\(93\) 15.9913 1.65822
\(94\) 0 0
\(95\) −2.59296 −0.266032
\(96\) 0 0
\(97\) 11.0100 1.11790 0.558949 0.829202i \(-0.311205\pi\)
0.558949 + 0.829202i \(0.311205\pi\)
\(98\) 0 0
\(99\) −0.0719365 −0.00722989
\(100\) 0 0
\(101\) 0.864844 0.0860552 0.0430276 0.999074i \(-0.486300\pi\)
0.0430276 + 0.999074i \(0.486300\pi\)
\(102\) 0 0
\(103\) −2.64855 −0.260969 −0.130485 0.991450i \(-0.541653\pi\)
−0.130485 + 0.991450i \(0.541653\pi\)
\(104\) 0 0
\(105\) −8.91531 −0.870045
\(106\) 0 0
\(107\) 0.180382 0.0174382 0.00871910 0.999962i \(-0.497225\pi\)
0.00871910 + 0.999962i \(0.497225\pi\)
\(108\) 0 0
\(109\) 6.60778 0.632910 0.316455 0.948607i \(-0.397507\pi\)
0.316455 + 0.948607i \(0.397507\pi\)
\(110\) 0 0
\(111\) 11.7126 1.11172
\(112\) 0 0
\(113\) 4.22599 0.397548 0.198774 0.980045i \(-0.436304\pi\)
0.198774 + 0.980045i \(0.436304\pi\)
\(114\) 0 0
\(115\) −19.3999 −1.80905
\(116\) 0 0
\(117\) 0.320828 0.0296606
\(118\) 0 0
\(119\) 9.13110 0.837046
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −1.10250 −0.0994089
\(124\) 0 0
\(125\) −8.49599 −0.759905
\(126\) 0 0
\(127\) −14.0808 −1.24947 −0.624734 0.780838i \(-0.714793\pi\)
−0.624734 + 0.780838i \(0.714793\pi\)
\(128\) 0 0
\(129\) −13.8171 −1.21653
\(130\) 0 0
\(131\) −10.1097 −0.883290 −0.441645 0.897190i \(-0.645605\pi\)
−0.441645 + 0.897190i \(0.645605\pi\)
\(132\) 0 0
\(133\) −2.00933 −0.174231
\(134\) 0 0
\(135\) 13.6301 1.17309
\(136\) 0 0
\(137\) −2.86731 −0.244971 −0.122485 0.992470i \(-0.539086\pi\)
−0.122485 + 0.992470i \(0.539086\pi\)
\(138\) 0 0
\(139\) 21.3049 1.80706 0.903529 0.428526i \(-0.140967\pi\)
0.903529 + 0.428526i \(0.140967\pi\)
\(140\) 0 0
\(141\) 19.9325 1.67862
\(142\) 0 0
\(143\) −4.45988 −0.372954
\(144\) 0 0
\(145\) −8.23070 −0.683522
\(146\) 0 0
\(147\) 5.06949 0.418124
\(148\) 0 0
\(149\) −7.28860 −0.597105 −0.298553 0.954393i \(-0.596504\pi\)
−0.298553 + 0.954393i \(0.596504\pi\)
\(150\) 0 0
\(151\) −22.4316 −1.82546 −0.912731 0.408562i \(-0.866031\pi\)
−0.912731 + 0.408562i \(0.866031\pi\)
\(152\) 0 0
\(153\) −0.326905 −0.0264287
\(154\) 0 0
\(155\) −24.2320 −1.94636
\(156\) 0 0
\(157\) 15.9630 1.27399 0.636994 0.770869i \(-0.280178\pi\)
0.636994 + 0.770869i \(0.280178\pi\)
\(158\) 0 0
\(159\) 9.47027 0.751041
\(160\) 0 0
\(161\) −15.0333 −1.18479
\(162\) 0 0
\(163\) 2.04841 0.160444 0.0802218 0.996777i \(-0.474437\pi\)
0.0802218 + 0.996777i \(0.474437\pi\)
\(164\) 0 0
\(165\) −4.43696 −0.345417
\(166\) 0 0
\(167\) 6.99086 0.540969 0.270485 0.962724i \(-0.412816\pi\)
0.270485 + 0.962724i \(0.412816\pi\)
\(168\) 0 0
\(169\) 6.89056 0.530043
\(170\) 0 0
\(171\) 0.0719365 0.00550112
\(172\) 0 0
\(173\) −19.3508 −1.47122 −0.735609 0.677407i \(-0.763104\pi\)
−0.735609 + 0.677407i \(0.763104\pi\)
\(174\) 0 0
\(175\) 3.46295 0.261774
\(176\) 0 0
\(177\) 15.6884 1.17921
\(178\) 0 0
\(179\) 22.8792 1.71007 0.855037 0.518567i \(-0.173534\pi\)
0.855037 + 0.518567i \(0.173534\pi\)
\(180\) 0 0
\(181\) −1.33552 −0.0992682 −0.0496341 0.998767i \(-0.515806\pi\)
−0.0496341 + 0.998767i \(0.515806\pi\)
\(182\) 0 0
\(183\) −16.1750 −1.19569
\(184\) 0 0
\(185\) −17.7485 −1.30489
\(186\) 0 0
\(187\) 4.54435 0.332316
\(188\) 0 0
\(189\) 10.5622 0.768285
\(190\) 0 0
\(191\) −0.690960 −0.0499961 −0.0249981 0.999687i \(-0.507958\pi\)
−0.0249981 + 0.999687i \(0.507958\pi\)
\(192\) 0 0
\(193\) −19.3391 −1.39206 −0.696031 0.718012i \(-0.745052\pi\)
−0.696031 + 0.718012i \(0.745052\pi\)
\(194\) 0 0
\(195\) 19.7883 1.41707
\(196\) 0 0
\(197\) −12.7676 −0.909653 −0.454826 0.890580i \(-0.650299\pi\)
−0.454826 + 0.890580i \(0.650299\pi\)
\(198\) 0 0
\(199\) 1.78947 0.126852 0.0634261 0.997987i \(-0.479797\pi\)
0.0634261 + 0.997987i \(0.479797\pi\)
\(200\) 0 0
\(201\) 0.194276 0.0137032
\(202\) 0 0
\(203\) −6.37811 −0.447655
\(204\) 0 0
\(205\) 1.67064 0.116683
\(206\) 0 0
\(207\) 0.538210 0.0374082
\(208\) 0 0
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −10.5987 −0.729644 −0.364822 0.931077i \(-0.618870\pi\)
−0.364822 + 0.931077i \(0.618870\pi\)
\(212\) 0 0
\(213\) −16.8411 −1.15393
\(214\) 0 0
\(215\) 20.9374 1.42792
\(216\) 0 0
\(217\) −18.7777 −1.27472
\(218\) 0 0
\(219\) 4.07302 0.275229
\(220\) 0 0
\(221\) −20.2673 −1.36333
\(222\) 0 0
\(223\) 3.22342 0.215856 0.107928 0.994159i \(-0.465578\pi\)
0.107928 + 0.994159i \(0.465578\pi\)
\(224\) 0 0
\(225\) −0.123978 −0.00826520
\(226\) 0 0
\(227\) 19.1441 1.27064 0.635320 0.772249i \(-0.280868\pi\)
0.635320 + 0.772249i \(0.280868\pi\)
\(228\) 0 0
\(229\) −29.4688 −1.94735 −0.973676 0.227935i \(-0.926803\pi\)
−0.973676 + 0.227935i \(0.926803\pi\)
\(230\) 0 0
\(231\) −3.43828 −0.226222
\(232\) 0 0
\(233\) 19.5192 1.27875 0.639374 0.768896i \(-0.279194\pi\)
0.639374 + 0.768896i \(0.279194\pi\)
\(234\) 0 0
\(235\) −30.2042 −1.97030
\(236\) 0 0
\(237\) −3.44372 −0.223694
\(238\) 0 0
\(239\) −11.1392 −0.720535 −0.360267 0.932849i \(-0.617315\pi\)
−0.360267 + 0.932849i \(0.617315\pi\)
\(240\) 0 0
\(241\) −16.7483 −1.07885 −0.539427 0.842033i \(-0.681359\pi\)
−0.539427 + 0.842033i \(0.681359\pi\)
\(242\) 0 0
\(243\) −0.747423 −0.0479472
\(244\) 0 0
\(245\) −7.68191 −0.490779
\(246\) 0 0
\(247\) 4.45988 0.283776
\(248\) 0 0
\(249\) −4.96965 −0.314939
\(250\) 0 0
\(251\) −30.1448 −1.90272 −0.951360 0.308081i \(-0.900313\pi\)
−0.951360 + 0.308081i \(0.900313\pi\)
\(252\) 0 0
\(253\) −7.48175 −0.470373
\(254\) 0 0
\(255\) −20.1631 −1.26266
\(256\) 0 0
\(257\) −11.6015 −0.723680 −0.361840 0.932240i \(-0.617851\pi\)
−0.361840 + 0.932240i \(0.617851\pi\)
\(258\) 0 0
\(259\) −13.7536 −0.854605
\(260\) 0 0
\(261\) 0.228344 0.0141342
\(262\) 0 0
\(263\) 3.88242 0.239401 0.119700 0.992810i \(-0.461807\pi\)
0.119700 + 0.992810i \(0.461807\pi\)
\(264\) 0 0
\(265\) −14.3505 −0.881545
\(266\) 0 0
\(267\) 15.0929 0.923673
\(268\) 0 0
\(269\) 23.7542 1.44832 0.724160 0.689632i \(-0.242228\pi\)
0.724160 + 0.689632i \(0.242228\pi\)
\(270\) 0 0
\(271\) −17.3686 −1.05507 −0.527533 0.849535i \(-0.676883\pi\)
−0.527533 + 0.849535i \(0.676883\pi\)
\(272\) 0 0
\(273\) 15.3343 0.928075
\(274\) 0 0
\(275\) 1.72344 0.103927
\(276\) 0 0
\(277\) 6.47702 0.389167 0.194583 0.980886i \(-0.437665\pi\)
0.194583 + 0.980886i \(0.437665\pi\)
\(278\) 0 0
\(279\) 0.672267 0.0402476
\(280\) 0 0
\(281\) −11.8438 −0.706542 −0.353271 0.935521i \(-0.614931\pi\)
−0.353271 + 0.935521i \(0.614931\pi\)
\(282\) 0 0
\(283\) −11.1566 −0.663192 −0.331596 0.943421i \(-0.607587\pi\)
−0.331596 + 0.943421i \(0.607587\pi\)
\(284\) 0 0
\(285\) 4.43696 0.262823
\(286\) 0 0
\(287\) 1.29461 0.0764183
\(288\) 0 0
\(289\) 3.65116 0.214774
\(290\) 0 0
\(291\) −18.8399 −1.10441
\(292\) 0 0
\(293\) −25.7289 −1.50310 −0.751551 0.659675i \(-0.770694\pi\)
−0.751551 + 0.659675i \(0.770694\pi\)
\(294\) 0 0
\(295\) −23.7730 −1.38412
\(296\) 0 0
\(297\) 5.25657 0.305017
\(298\) 0 0
\(299\) 33.3677 1.92970
\(300\) 0 0
\(301\) 16.2247 0.935178
\(302\) 0 0
\(303\) −1.47989 −0.0850172
\(304\) 0 0
\(305\) 24.5104 1.40346
\(306\) 0 0
\(307\) −0.843227 −0.0481255 −0.0240627 0.999710i \(-0.507660\pi\)
−0.0240627 + 0.999710i \(0.507660\pi\)
\(308\) 0 0
\(309\) 4.53209 0.257821
\(310\) 0 0
\(311\) 3.89732 0.220997 0.110498 0.993876i \(-0.464755\pi\)
0.110498 + 0.993876i \(0.464755\pi\)
\(312\) 0 0
\(313\) 8.00036 0.452207 0.226104 0.974103i \(-0.427401\pi\)
0.226104 + 0.974103i \(0.427401\pi\)
\(314\) 0 0
\(315\) −0.374797 −0.0211174
\(316\) 0 0
\(317\) 24.3173 1.36579 0.682897 0.730515i \(-0.260720\pi\)
0.682897 + 0.730515i \(0.260720\pi\)
\(318\) 0 0
\(319\) −3.17425 −0.177724
\(320\) 0 0
\(321\) −0.308663 −0.0172279
\(322\) 0 0
\(323\) −4.54435 −0.252855
\(324\) 0 0
\(325\) −7.68633 −0.426361
\(326\) 0 0
\(327\) −11.3070 −0.625276
\(328\) 0 0
\(329\) −23.4057 −1.29040
\(330\) 0 0
\(331\) −1.00272 −0.0551145 −0.0275573 0.999620i \(-0.508773\pi\)
−0.0275573 + 0.999620i \(0.508773\pi\)
\(332\) 0 0
\(333\) 0.492395 0.0269831
\(334\) 0 0
\(335\) −0.294391 −0.0160843
\(336\) 0 0
\(337\) −24.3229 −1.32495 −0.662477 0.749082i \(-0.730495\pi\)
−0.662477 + 0.749082i \(0.730495\pi\)
\(338\) 0 0
\(339\) −7.23134 −0.392752
\(340\) 0 0
\(341\) −9.34529 −0.506076
\(342\) 0 0
\(343\) −20.0181 −1.08088
\(344\) 0 0
\(345\) 33.1962 1.78723
\(346\) 0 0
\(347\) 14.4536 0.775908 0.387954 0.921679i \(-0.373182\pi\)
0.387954 + 0.921679i \(0.373182\pi\)
\(348\) 0 0
\(349\) 34.9365 1.87011 0.935055 0.354503i \(-0.115350\pi\)
0.935055 + 0.354503i \(0.115350\pi\)
\(350\) 0 0
\(351\) −23.4437 −1.25133
\(352\) 0 0
\(353\) 1.66429 0.0885813 0.0442906 0.999019i \(-0.485897\pi\)
0.0442906 + 0.999019i \(0.485897\pi\)
\(354\) 0 0
\(355\) 25.5197 1.35444
\(356\) 0 0
\(357\) −15.6248 −0.826950
\(358\) 0 0
\(359\) −11.6721 −0.616032 −0.308016 0.951381i \(-0.599665\pi\)
−0.308016 + 0.951381i \(0.599665\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −1.71116 −0.0898125
\(364\) 0 0
\(365\) −6.17195 −0.323054
\(366\) 0 0
\(367\) 1.44184 0.0752633 0.0376317 0.999292i \(-0.488019\pi\)
0.0376317 + 0.999292i \(0.488019\pi\)
\(368\) 0 0
\(369\) −0.0463486 −0.00241281
\(370\) 0 0
\(371\) −11.1205 −0.577345
\(372\) 0 0
\(373\) 7.90630 0.409372 0.204686 0.978828i \(-0.434383\pi\)
0.204686 + 0.978828i \(0.434383\pi\)
\(374\) 0 0
\(375\) 14.5380 0.750739
\(376\) 0 0
\(377\) 14.1568 0.729111
\(378\) 0 0
\(379\) 25.0206 1.28522 0.642611 0.766192i \(-0.277851\pi\)
0.642611 + 0.766192i \(0.277851\pi\)
\(380\) 0 0
\(381\) 24.0945 1.23440
\(382\) 0 0
\(383\) −18.3767 −0.939005 −0.469503 0.882931i \(-0.655567\pi\)
−0.469503 + 0.882931i \(0.655567\pi\)
\(384\) 0 0
\(385\) 5.21010 0.265531
\(386\) 0 0
\(387\) −0.580866 −0.0295271
\(388\) 0 0
\(389\) 16.0386 0.813188 0.406594 0.913609i \(-0.366716\pi\)
0.406594 + 0.913609i \(0.366716\pi\)
\(390\) 0 0
\(391\) −33.9997 −1.71944
\(392\) 0 0
\(393\) 17.2993 0.872636
\(394\) 0 0
\(395\) 5.21836 0.262564
\(396\) 0 0
\(397\) −28.7655 −1.44370 −0.721849 0.692051i \(-0.756707\pi\)
−0.721849 + 0.692051i \(0.756707\pi\)
\(398\) 0 0
\(399\) 3.43828 0.172129
\(400\) 0 0
\(401\) −22.0831 −1.10278 −0.551389 0.834249i \(-0.685902\pi\)
−0.551389 + 0.834249i \(0.685902\pi\)
\(402\) 0 0
\(403\) 41.6789 2.07617
\(404\) 0 0
\(405\) −22.7636 −1.13113
\(406\) 0 0
\(407\) −6.84486 −0.339287
\(408\) 0 0
\(409\) 6.78338 0.335416 0.167708 0.985837i \(-0.446363\pi\)
0.167708 + 0.985837i \(0.446363\pi\)
\(410\) 0 0
\(411\) 4.90642 0.242016
\(412\) 0 0
\(413\) −18.4221 −0.906492
\(414\) 0 0
\(415\) 7.53063 0.369664
\(416\) 0 0
\(417\) −36.4561 −1.78526
\(418\) 0 0
\(419\) −18.6261 −0.909943 −0.454971 0.890506i \(-0.650351\pi\)
−0.454971 + 0.890506i \(0.650351\pi\)
\(420\) 0 0
\(421\) −1.65361 −0.0805921 −0.0402960 0.999188i \(-0.512830\pi\)
−0.0402960 + 0.999188i \(0.512830\pi\)
\(422\) 0 0
\(423\) 0.837955 0.0407428
\(424\) 0 0
\(425\) 7.83191 0.379903
\(426\) 0 0
\(427\) 18.9935 0.919161
\(428\) 0 0
\(429\) 7.63157 0.368456
\(430\) 0 0
\(431\) 22.0877 1.06393 0.531964 0.846767i \(-0.321454\pi\)
0.531964 + 0.846767i \(0.321454\pi\)
\(432\) 0 0
\(433\) −17.5885 −0.845249 −0.422625 0.906305i \(-0.638891\pi\)
−0.422625 + 0.906305i \(0.638891\pi\)
\(434\) 0 0
\(435\) 14.0840 0.675278
\(436\) 0 0
\(437\) 7.48175 0.357900
\(438\) 0 0
\(439\) −9.46754 −0.451861 −0.225931 0.974143i \(-0.572542\pi\)
−0.225931 + 0.974143i \(0.572542\pi\)
\(440\) 0 0
\(441\) 0.213119 0.0101485
\(442\) 0 0
\(443\) 14.0458 0.667337 0.333669 0.942690i \(-0.391713\pi\)
0.333669 + 0.942690i \(0.391713\pi\)
\(444\) 0 0
\(445\) −22.8707 −1.08418
\(446\) 0 0
\(447\) 12.4719 0.589903
\(448\) 0 0
\(449\) 18.8516 0.889660 0.444830 0.895615i \(-0.353264\pi\)
0.444830 + 0.895615i \(0.353264\pi\)
\(450\) 0 0
\(451\) 0.644299 0.0303389
\(452\) 0 0
\(453\) 38.3841 1.80344
\(454\) 0 0
\(455\) −23.2365 −1.08934
\(456\) 0 0
\(457\) 22.1917 1.03808 0.519041 0.854749i \(-0.326289\pi\)
0.519041 + 0.854749i \(0.326289\pi\)
\(458\) 0 0
\(459\) 23.8877 1.11498
\(460\) 0 0
\(461\) 29.0705 1.35395 0.676973 0.736008i \(-0.263291\pi\)
0.676973 + 0.736008i \(0.263291\pi\)
\(462\) 0 0
\(463\) −21.1214 −0.981594 −0.490797 0.871274i \(-0.663294\pi\)
−0.490797 + 0.871274i \(0.663294\pi\)
\(464\) 0 0
\(465\) 41.4647 1.92288
\(466\) 0 0
\(467\) 6.37732 0.295107 0.147554 0.989054i \(-0.452860\pi\)
0.147554 + 0.989054i \(0.452860\pi\)
\(468\) 0 0
\(469\) −0.228129 −0.0105340
\(470\) 0 0
\(471\) −27.3153 −1.25862
\(472\) 0 0
\(473\) 8.07470 0.371275
\(474\) 0 0
\(475\) −1.72344 −0.0790767
\(476\) 0 0
\(477\) 0.398127 0.0182290
\(478\) 0 0
\(479\) −29.3832 −1.34255 −0.671276 0.741208i \(-0.734253\pi\)
−0.671276 + 0.741208i \(0.734253\pi\)
\(480\) 0 0
\(481\) 30.5273 1.39193
\(482\) 0 0
\(483\) 25.7243 1.17050
\(484\) 0 0
\(485\) 28.5485 1.29632
\(486\) 0 0
\(487\) 34.3525 1.55666 0.778331 0.627854i \(-0.216066\pi\)
0.778331 + 0.627854i \(0.216066\pi\)
\(488\) 0 0
\(489\) −3.50515 −0.158508
\(490\) 0 0
\(491\) −23.0123 −1.03853 −0.519264 0.854614i \(-0.673794\pi\)
−0.519264 + 0.854614i \(0.673794\pi\)
\(492\) 0 0
\(493\) −14.4249 −0.649666
\(494\) 0 0
\(495\) −0.186528 −0.00838383
\(496\) 0 0
\(497\) 19.7756 0.887058
\(498\) 0 0
\(499\) 18.9873 0.849988 0.424994 0.905196i \(-0.360276\pi\)
0.424994 + 0.905196i \(0.360276\pi\)
\(500\) 0 0
\(501\) −11.9625 −0.534444
\(502\) 0 0
\(503\) 33.3366 1.48641 0.743203 0.669066i \(-0.233306\pi\)
0.743203 + 0.669066i \(0.233306\pi\)
\(504\) 0 0
\(505\) 2.24251 0.0997902
\(506\) 0 0
\(507\) −11.7908 −0.523650
\(508\) 0 0
\(509\) 10.1122 0.448217 0.224109 0.974564i \(-0.428053\pi\)
0.224109 + 0.974564i \(0.428053\pi\)
\(510\) 0 0
\(511\) −4.78274 −0.211576
\(512\) 0 0
\(513\) −5.25657 −0.232083
\(514\) 0 0
\(515\) −6.86758 −0.302622
\(516\) 0 0
\(517\) −11.6485 −0.512302
\(518\) 0 0
\(519\) 33.1124 1.45347
\(520\) 0 0
\(521\) 24.9735 1.09411 0.547055 0.837097i \(-0.315749\pi\)
0.547055 + 0.837097i \(0.315749\pi\)
\(522\) 0 0
\(523\) 27.5980 1.20678 0.603388 0.797448i \(-0.293817\pi\)
0.603388 + 0.797448i \(0.293817\pi\)
\(524\) 0 0
\(525\) −5.92566 −0.258617
\(526\) 0 0
\(527\) −42.4683 −1.84995
\(528\) 0 0
\(529\) 32.9765 1.43376
\(530\) 0 0
\(531\) 0.659535 0.0286214
\(532\) 0 0
\(533\) −2.87350 −0.124465
\(534\) 0 0
\(535\) 0.467724 0.0202215
\(536\) 0 0
\(537\) −39.1500 −1.68945
\(538\) 0 0
\(539\) −2.96260 −0.127608
\(540\) 0 0
\(541\) 8.78281 0.377603 0.188801 0.982015i \(-0.439540\pi\)
0.188801 + 0.982015i \(0.439540\pi\)
\(542\) 0 0
\(543\) 2.28528 0.0980708
\(544\) 0 0
\(545\) 17.1337 0.733927
\(546\) 0 0
\(547\) −20.2388 −0.865347 −0.432674 0.901551i \(-0.642430\pi\)
−0.432674 + 0.901551i \(0.642430\pi\)
\(548\) 0 0
\(549\) −0.679993 −0.0290214
\(550\) 0 0
\(551\) 3.17425 0.135228
\(552\) 0 0
\(553\) 4.04379 0.171959
\(554\) 0 0
\(555\) 30.3704 1.28915
\(556\) 0 0
\(557\) 21.6180 0.915985 0.457993 0.888956i \(-0.348569\pi\)
0.457993 + 0.888956i \(0.348569\pi\)
\(558\) 0 0
\(559\) −36.0122 −1.52316
\(560\) 0 0
\(561\) −7.77611 −0.328308
\(562\) 0 0
\(563\) 2.72687 0.114924 0.0574620 0.998348i \(-0.481699\pi\)
0.0574620 + 0.998348i \(0.481699\pi\)
\(564\) 0 0
\(565\) 10.9578 0.460999
\(566\) 0 0
\(567\) −17.6399 −0.740807
\(568\) 0 0
\(569\) 18.8953 0.792131 0.396065 0.918222i \(-0.370375\pi\)
0.396065 + 0.918222i \(0.370375\pi\)
\(570\) 0 0
\(571\) −32.7597 −1.37095 −0.685475 0.728096i \(-0.740405\pi\)
−0.685475 + 0.728096i \(0.740405\pi\)
\(572\) 0 0
\(573\) 1.18234 0.0493931
\(574\) 0 0
\(575\) −12.8943 −0.537730
\(576\) 0 0
\(577\) −39.3665 −1.63885 −0.819425 0.573186i \(-0.805707\pi\)
−0.819425 + 0.573186i \(0.805707\pi\)
\(578\) 0 0
\(579\) 33.0923 1.37527
\(580\) 0 0
\(581\) 5.83561 0.242102
\(582\) 0 0
\(583\) −5.53442 −0.229212
\(584\) 0 0
\(585\) 0.831895 0.0343946
\(586\) 0 0
\(587\) 46.0274 1.89976 0.949878 0.312621i \(-0.101207\pi\)
0.949878 + 0.312621i \(0.101207\pi\)
\(588\) 0 0
\(589\) 9.34529 0.385066
\(590\) 0 0
\(591\) 21.8474 0.898680
\(592\) 0 0
\(593\) −11.6575 −0.478715 −0.239358 0.970932i \(-0.576937\pi\)
−0.239358 + 0.970932i \(0.576937\pi\)
\(594\) 0 0
\(595\) 23.6766 0.970644
\(596\) 0 0
\(597\) −3.06207 −0.125322
\(598\) 0 0
\(599\) 36.7024 1.49962 0.749811 0.661653i \(-0.230145\pi\)
0.749811 + 0.661653i \(0.230145\pi\)
\(600\) 0 0
\(601\) −22.7859 −0.929456 −0.464728 0.885454i \(-0.653848\pi\)
−0.464728 + 0.885454i \(0.653848\pi\)
\(602\) 0 0
\(603\) 0.00816730 0.000332598 0
\(604\) 0 0
\(605\) 2.59296 0.105419
\(606\) 0 0
\(607\) −18.4924 −0.750584 −0.375292 0.926907i \(-0.622458\pi\)
−0.375292 + 0.926907i \(0.622458\pi\)
\(608\) 0 0
\(609\) 10.9140 0.442256
\(610\) 0 0
\(611\) 51.9511 2.10172
\(612\) 0 0
\(613\) 21.1249 0.853229 0.426614 0.904434i \(-0.359706\pi\)
0.426614 + 0.904434i \(0.359706\pi\)
\(614\) 0 0
\(615\) −2.85873 −0.115275
\(616\) 0 0
\(617\) 24.6204 0.991178 0.495589 0.868557i \(-0.334952\pi\)
0.495589 + 0.868557i \(0.334952\pi\)
\(618\) 0 0
\(619\) 8.89942 0.357698 0.178849 0.983877i \(-0.442763\pi\)
0.178849 + 0.983877i \(0.442763\pi\)
\(620\) 0 0
\(621\) −39.3283 −1.57819
\(622\) 0 0
\(623\) −17.7229 −0.710052
\(624\) 0 0
\(625\) −30.6470 −1.22588
\(626\) 0 0
\(627\) 1.71116 0.0683371
\(628\) 0 0
\(629\) −31.1055 −1.24026
\(630\) 0 0
\(631\) −15.2980 −0.609005 −0.304503 0.952512i \(-0.598490\pi\)
−0.304503 + 0.952512i \(0.598490\pi\)
\(632\) 0 0
\(633\) 18.1360 0.720843
\(634\) 0 0
\(635\) −36.5109 −1.44889
\(636\) 0 0
\(637\) 13.2129 0.523513
\(638\) 0 0
\(639\) −0.707993 −0.0280078
\(640\) 0 0
\(641\) −28.4765 −1.12475 −0.562377 0.826881i \(-0.690113\pi\)
−0.562377 + 0.826881i \(0.690113\pi\)
\(642\) 0 0
\(643\) 12.5264 0.493992 0.246996 0.969017i \(-0.420557\pi\)
0.246996 + 0.969017i \(0.420557\pi\)
\(644\) 0 0
\(645\) −35.8272 −1.41069
\(646\) 0 0
\(647\) 17.3701 0.682889 0.341445 0.939902i \(-0.389084\pi\)
0.341445 + 0.939902i \(0.389084\pi\)
\(648\) 0 0
\(649\) −9.16829 −0.359887
\(650\) 0 0
\(651\) 32.1317 1.25934
\(652\) 0 0
\(653\) −32.5362 −1.27324 −0.636621 0.771177i \(-0.719668\pi\)
−0.636621 + 0.771177i \(0.719668\pi\)
\(654\) 0 0
\(655\) −26.2141 −1.02427
\(656\) 0 0
\(657\) 0.171228 0.00668025
\(658\) 0 0
\(659\) −48.1592 −1.87602 −0.938008 0.346614i \(-0.887332\pi\)
−0.938008 + 0.346614i \(0.887332\pi\)
\(660\) 0 0
\(661\) −6.19327 −0.240890 −0.120445 0.992720i \(-0.538432\pi\)
−0.120445 + 0.992720i \(0.538432\pi\)
\(662\) 0 0
\(663\) 34.6805 1.34688
\(664\) 0 0
\(665\) −5.21010 −0.202039
\(666\) 0 0
\(667\) 23.7489 0.919562
\(668\) 0 0
\(669\) −5.51578 −0.213252
\(670\) 0 0
\(671\) 9.45268 0.364917
\(672\) 0 0
\(673\) 22.2416 0.857351 0.428676 0.903459i \(-0.358980\pi\)
0.428676 + 0.903459i \(0.358980\pi\)
\(674\) 0 0
\(675\) 9.05937 0.348695
\(676\) 0 0
\(677\) 45.2780 1.74018 0.870088 0.492897i \(-0.164062\pi\)
0.870088 + 0.492897i \(0.164062\pi\)
\(678\) 0 0
\(679\) 22.1227 0.848992
\(680\) 0 0
\(681\) −32.7586 −1.25531
\(682\) 0 0
\(683\) 36.8106 1.40852 0.704259 0.709943i \(-0.251279\pi\)
0.704259 + 0.709943i \(0.251279\pi\)
\(684\) 0 0
\(685\) −7.43482 −0.284070
\(686\) 0 0
\(687\) 50.4258 1.92386
\(688\) 0 0
\(689\) 24.6829 0.940342
\(690\) 0 0
\(691\) 35.0477 1.33328 0.666638 0.745382i \(-0.267733\pi\)
0.666638 + 0.745382i \(0.267733\pi\)
\(692\) 0 0
\(693\) −0.144544 −0.00549077
\(694\) 0 0
\(695\) 55.2428 2.09548
\(696\) 0 0
\(697\) 2.92793 0.110903
\(698\) 0 0
\(699\) −33.4005 −1.26332
\(700\) 0 0
\(701\) −29.2997 −1.10664 −0.553318 0.832970i \(-0.686639\pi\)
−0.553318 + 0.832970i \(0.686639\pi\)
\(702\) 0 0
\(703\) 6.84486 0.258159
\(704\) 0 0
\(705\) 51.6841 1.94654
\(706\) 0 0
\(707\) 1.73776 0.0653550
\(708\) 0 0
\(709\) 34.3627 1.29052 0.645259 0.763964i \(-0.276750\pi\)
0.645259 + 0.763964i \(0.276750\pi\)
\(710\) 0 0
\(711\) −0.144773 −0.00542941
\(712\) 0 0
\(713\) 69.9191 2.61849
\(714\) 0 0
\(715\) −11.5643 −0.432480
\(716\) 0 0
\(717\) 19.0609 0.711843
\(718\) 0 0
\(719\) −23.2839 −0.868345 −0.434172 0.900830i \(-0.642959\pi\)
−0.434172 + 0.900830i \(0.642959\pi\)
\(720\) 0 0
\(721\) −5.32180 −0.198194
\(722\) 0 0
\(723\) 28.6590 1.06584
\(724\) 0 0
\(725\) −5.47062 −0.203174
\(726\) 0 0
\(727\) 10.5331 0.390652 0.195326 0.980738i \(-0.437424\pi\)
0.195326 + 0.980738i \(0.437424\pi\)
\(728\) 0 0
\(729\) 27.6160 1.02282
\(730\) 0 0
\(731\) 36.6943 1.35719
\(732\) 0 0
\(733\) 46.7251 1.72583 0.862915 0.505349i \(-0.168636\pi\)
0.862915 + 0.505349i \(0.168636\pi\)
\(734\) 0 0
\(735\) 13.1450 0.484859
\(736\) 0 0
\(737\) −0.113535 −0.00418211
\(738\) 0 0
\(739\) −6.14537 −0.226061 −0.113031 0.993592i \(-0.536056\pi\)
−0.113031 + 0.993592i \(0.536056\pi\)
\(740\) 0 0
\(741\) −7.63157 −0.280353
\(742\) 0 0
\(743\) −5.00527 −0.183625 −0.0918127 0.995776i \(-0.529266\pi\)
−0.0918127 + 0.995776i \(0.529266\pi\)
\(744\) 0 0
\(745\) −18.8990 −0.692407
\(746\) 0 0
\(747\) −0.208922 −0.00764406
\(748\) 0 0
\(749\) 0.362447 0.0132435
\(750\) 0 0
\(751\) −45.1888 −1.64896 −0.824482 0.565889i \(-0.808533\pi\)
−0.824482 + 0.565889i \(0.808533\pi\)
\(752\) 0 0
\(753\) 51.5825 1.87977
\(754\) 0 0
\(755\) −58.1643 −2.11682
\(756\) 0 0
\(757\) −2.72001 −0.0988606 −0.0494303 0.998778i \(-0.515741\pi\)
−0.0494303 + 0.998778i \(0.515741\pi\)
\(758\) 0 0
\(759\) 12.8025 0.464700
\(760\) 0 0
\(761\) −9.10142 −0.329926 −0.164963 0.986300i \(-0.552751\pi\)
−0.164963 + 0.986300i \(0.552751\pi\)
\(762\) 0 0
\(763\) 13.2772 0.480666
\(764\) 0 0
\(765\) −0.847651 −0.0306469
\(766\) 0 0
\(767\) 40.8895 1.47644
\(768\) 0 0
\(769\) 37.2427 1.34301 0.671503 0.741002i \(-0.265649\pi\)
0.671503 + 0.741002i \(0.265649\pi\)
\(770\) 0 0
\(771\) 19.8520 0.714951
\(772\) 0 0
\(773\) −14.7996 −0.532306 −0.266153 0.963931i \(-0.585753\pi\)
−0.266153 + 0.963931i \(0.585753\pi\)
\(774\) 0 0
\(775\) −16.1060 −0.578545
\(776\) 0 0
\(777\) 23.5345 0.844297
\(778\) 0 0
\(779\) −0.644299 −0.0230844
\(780\) 0 0
\(781\) 9.84191 0.352171
\(782\) 0 0
\(783\) −16.6857 −0.596297
\(784\) 0 0
\(785\) 41.3915 1.47732
\(786\) 0 0
\(787\) 43.0866 1.53587 0.767936 0.640527i \(-0.221284\pi\)
0.767936 + 0.640527i \(0.221284\pi\)
\(788\) 0 0
\(789\) −6.64344 −0.236513
\(790\) 0 0
\(791\) 8.49140 0.301919
\(792\) 0 0
\(793\) −42.1579 −1.49707
\(794\) 0 0
\(795\) 24.5560 0.870912
\(796\) 0 0
\(797\) 29.2827 1.03724 0.518622 0.855003i \(-0.326445\pi\)
0.518622 + 0.855003i \(0.326445\pi\)
\(798\) 0 0
\(799\) −52.9351 −1.87271
\(800\) 0 0
\(801\) 0.634502 0.0224190
\(802\) 0 0
\(803\) −2.38027 −0.0839980
\(804\) 0 0
\(805\) −38.9807 −1.37389
\(806\) 0 0
\(807\) −40.6472 −1.43085
\(808\) 0 0
\(809\) −34.4478 −1.21112 −0.605560 0.795800i \(-0.707051\pi\)
−0.605560 + 0.795800i \(0.707051\pi\)
\(810\) 0 0
\(811\) −41.0171 −1.44031 −0.720153 0.693815i \(-0.755928\pi\)
−0.720153 + 0.693815i \(0.755928\pi\)
\(812\) 0 0
\(813\) 29.7204 1.04234
\(814\) 0 0
\(815\) 5.31144 0.186052
\(816\) 0 0
\(817\) −8.07470 −0.282498
\(818\) 0 0
\(819\) 0.644649 0.0225259
\(820\) 0 0
\(821\) 14.6696 0.511973 0.255987 0.966680i \(-0.417600\pi\)
0.255987 + 0.966680i \(0.417600\pi\)
\(822\) 0 0
\(823\) −8.16556 −0.284634 −0.142317 0.989821i \(-0.545455\pi\)
−0.142317 + 0.989821i \(0.545455\pi\)
\(824\) 0 0
\(825\) −2.94907 −0.102674
\(826\) 0 0
\(827\) 21.7995 0.758043 0.379021 0.925388i \(-0.376261\pi\)
0.379021 + 0.925388i \(0.376261\pi\)
\(828\) 0 0
\(829\) −13.3293 −0.462944 −0.231472 0.972842i \(-0.574354\pi\)
−0.231472 + 0.972842i \(0.574354\pi\)
\(830\) 0 0
\(831\) −11.0832 −0.384472
\(832\) 0 0
\(833\) −13.4631 −0.466470
\(834\) 0 0
\(835\) 18.1270 0.627311
\(836\) 0 0
\(837\) −49.1242 −1.69798
\(838\) 0 0
\(839\) −24.2904 −0.838598 −0.419299 0.907848i \(-0.637724\pi\)
−0.419299 + 0.907848i \(0.637724\pi\)
\(840\) 0 0
\(841\) −18.9241 −0.652557
\(842\) 0 0
\(843\) 20.2666 0.698019
\(844\) 0 0
\(845\) 17.8669 0.614641
\(846\) 0 0
\(847\) 2.00933 0.0690413
\(848\) 0 0
\(849\) 19.0907 0.655193
\(850\) 0 0
\(851\) 51.2115 1.75551
\(852\) 0 0
\(853\) −4.18601 −0.143326 −0.0716631 0.997429i \(-0.522831\pi\)
−0.0716631 + 0.997429i \(0.522831\pi\)
\(854\) 0 0
\(855\) 0.186528 0.00637914
\(856\) 0 0
\(857\) −14.1228 −0.482425 −0.241212 0.970472i \(-0.577545\pi\)
−0.241212 + 0.970472i \(0.577545\pi\)
\(858\) 0 0
\(859\) −24.1260 −0.823169 −0.411584 0.911372i \(-0.635024\pi\)
−0.411584 + 0.911372i \(0.635024\pi\)
\(860\) 0 0
\(861\) −2.21528 −0.0754966
\(862\) 0 0
\(863\) 28.2661 0.962188 0.481094 0.876669i \(-0.340240\pi\)
0.481094 + 0.876669i \(0.340240\pi\)
\(864\) 0 0
\(865\) −50.1759 −1.70603
\(866\) 0 0
\(867\) −6.24771 −0.212183
\(868\) 0 0
\(869\) 2.01251 0.0682697
\(870\) 0 0
\(871\) 0.506352 0.0171571
\(872\) 0 0
\(873\) −0.792022 −0.0268059
\(874\) 0 0
\(875\) −17.0712 −0.577113
\(876\) 0 0
\(877\) −28.4762 −0.961573 −0.480787 0.876838i \(-0.659649\pi\)
−0.480787 + 0.876838i \(0.659649\pi\)
\(878\) 0 0
\(879\) 44.0263 1.48497
\(880\) 0 0
\(881\) 13.0669 0.440234 0.220117 0.975473i \(-0.429356\pi\)
0.220117 + 0.975473i \(0.429356\pi\)
\(882\) 0 0
\(883\) −15.9805 −0.537786 −0.268893 0.963170i \(-0.586658\pi\)
−0.268893 + 0.963170i \(0.586658\pi\)
\(884\) 0 0
\(885\) 40.6794 1.36742
\(886\) 0 0
\(887\) 7.47191 0.250882 0.125441 0.992101i \(-0.459965\pi\)
0.125441 + 0.992101i \(0.459965\pi\)
\(888\) 0 0
\(889\) −28.2929 −0.948914
\(890\) 0 0
\(891\) −8.77902 −0.294108
\(892\) 0 0
\(893\) 11.6485 0.389803
\(894\) 0 0
\(895\) 59.3249 1.98301
\(896\) 0 0
\(897\) −57.0974 −1.90643
\(898\) 0 0
\(899\) 29.6643 0.989359
\(900\) 0 0
\(901\) −25.1504 −0.837880
\(902\) 0 0
\(903\) −27.7631 −0.923897
\(904\) 0 0
\(905\) −3.46294 −0.115112
\(906\) 0 0
\(907\) −48.3649 −1.60593 −0.802966 0.596025i \(-0.796746\pi\)
−0.802966 + 0.596025i \(0.796746\pi\)
\(908\) 0 0
\(909\) −0.0622139 −0.00206350
\(910\) 0 0
\(911\) −33.2104 −1.10031 −0.550154 0.835063i \(-0.685431\pi\)
−0.550154 + 0.835063i \(0.685431\pi\)
\(912\) 0 0
\(913\) 2.90426 0.0961170
\(914\) 0 0
\(915\) −41.9412 −1.38653
\(916\) 0 0
\(917\) −20.3137 −0.670818
\(918\) 0 0
\(919\) −55.5155 −1.83129 −0.915644 0.401990i \(-0.868319\pi\)
−0.915644 + 0.401990i \(0.868319\pi\)
\(920\) 0 0
\(921\) 1.44289 0.0475450
\(922\) 0 0
\(923\) −43.8938 −1.44478
\(924\) 0 0
\(925\) −11.7967 −0.387873
\(926\) 0 0
\(927\) 0.190527 0.00625774
\(928\) 0 0
\(929\) −19.2731 −0.632330 −0.316165 0.948704i \(-0.602395\pi\)
−0.316165 + 0.948704i \(0.602395\pi\)
\(930\) 0 0
\(931\) 2.96260 0.0970954
\(932\) 0 0
\(933\) −6.66893 −0.218331
\(934\) 0 0
\(935\) 11.7833 0.385356
\(936\) 0 0
\(937\) 33.0983 1.08127 0.540637 0.841256i \(-0.318183\pi\)
0.540637 + 0.841256i \(0.318183\pi\)
\(938\) 0 0
\(939\) −13.6899 −0.446753
\(940\) 0 0
\(941\) −6.91821 −0.225527 −0.112764 0.993622i \(-0.535970\pi\)
−0.112764 + 0.993622i \(0.535970\pi\)
\(942\) 0 0
\(943\) −4.82048 −0.156977
\(944\) 0 0
\(945\) 27.3873 0.890908
\(946\) 0 0
\(947\) −47.4763 −1.54277 −0.771386 0.636367i \(-0.780436\pi\)
−0.771386 + 0.636367i \(0.780436\pi\)
\(948\) 0 0
\(949\) 10.6157 0.344601
\(950\) 0 0
\(951\) −41.6107 −1.34932
\(952\) 0 0
\(953\) −12.5758 −0.407370 −0.203685 0.979036i \(-0.565292\pi\)
−0.203685 + 0.979036i \(0.565292\pi\)
\(954\) 0 0
\(955\) −1.79163 −0.0579758
\(956\) 0 0
\(957\) 5.43164 0.175580
\(958\) 0 0
\(959\) −5.76136 −0.186044
\(960\) 0 0
\(961\) 56.3345 1.81724
\(962\) 0 0
\(963\) −0.0129761 −0.000418148 0
\(964\) 0 0
\(965\) −50.1456 −1.61424
\(966\) 0 0
\(967\) 12.1925 0.392084 0.196042 0.980595i \(-0.437191\pi\)
0.196042 + 0.980595i \(0.437191\pi\)
\(968\) 0 0
\(969\) 7.77611 0.249805
\(970\) 0 0
\(971\) 15.2425 0.489155 0.244577 0.969630i \(-0.421351\pi\)
0.244577 + 0.969630i \(0.421351\pi\)
\(972\) 0 0
\(973\) 42.8085 1.37238
\(974\) 0 0
\(975\) 13.1525 0.421218
\(976\) 0 0
\(977\) −17.7548 −0.568027 −0.284013 0.958820i \(-0.591666\pi\)
−0.284013 + 0.958820i \(0.591666\pi\)
\(978\) 0 0
\(979\) −8.82031 −0.281898
\(980\) 0 0
\(981\) −0.475340 −0.0151764
\(982\) 0 0
\(983\) 41.1104 1.31122 0.655609 0.755100i \(-0.272412\pi\)
0.655609 + 0.755100i \(0.272412\pi\)
\(984\) 0 0
\(985\) −33.1058 −1.05484
\(986\) 0 0
\(987\) 40.0509 1.27483
\(988\) 0 0
\(989\) −60.4129 −1.92102
\(990\) 0 0
\(991\) 18.6736 0.593185 0.296593 0.955004i \(-0.404150\pi\)
0.296593 + 0.955004i \(0.404150\pi\)
\(992\) 0 0
\(993\) 1.71581 0.0544497
\(994\) 0 0
\(995\) 4.64002 0.147099
\(996\) 0 0
\(997\) −51.5507 −1.63263 −0.816313 0.577609i \(-0.803986\pi\)
−0.816313 + 0.577609i \(0.803986\pi\)
\(998\) 0 0
\(999\) −35.9805 −1.13837
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.ba.1.3 7
4.3 odd 2 209.2.a.d.1.5 7
12.11 even 2 1881.2.a.p.1.3 7
20.19 odd 2 5225.2.a.n.1.3 7
44.43 even 2 2299.2.a.q.1.3 7
76.75 even 2 3971.2.a.i.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.d.1.5 7 4.3 odd 2
1881.2.a.p.1.3 7 12.11 even 2
2299.2.a.q.1.3 7 44.43 even 2
3344.2.a.ba.1.3 7 1.1 even 1 trivial
3971.2.a.i.1.3 7 76.75 even 2
5225.2.a.n.1.3 7 20.19 odd 2