Properties

Label 3344.2.a.j
Level 33443344
Weight 22
Character orbit 3344.a
Self dual yes
Analytic conductor 26.70226.702
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3344=241119 3344 = 2^{4} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.701974435926.7019744359
Analytic rank: 11
Dimension: 22
Coefficient field: Q(13)\Q(\sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x3 x^{2} - x - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1672)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+13)\beta = \frac{1}{2}(1 + \sqrt{13}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq3βq5+(β1)q7+βq9+q11+(β3)q13+(β+3)q15+2βq17+q193q21+(2β+2)q23+(β2)q25++βq99+O(q100) q - \beta q^{3} - \beta q^{5} + (\beta - 1) q^{7} + \beta q^{9} + q^{11} + ( - \beta - 3) q^{13} + (\beta + 3) q^{15} + 2 \beta q^{17} + q^{19} - 3 q^{21} + ( - 2 \beta + 2) q^{23} + (\beta - 2) q^{25} + \cdots + \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3q5q7+q9+2q117q13+7q15+2q17+2q196q21+2q233q254q2715q29+5q31q336q35+16q37+10q39++q99+O(q100) 2 q - q^{3} - q^{5} - q^{7} + q^{9} + 2 q^{11} - 7 q^{13} + 7 q^{15} + 2 q^{17} + 2 q^{19} - 6 q^{21} + 2 q^{23} - 3 q^{25} - 4 q^{27} - 15 q^{29} + 5 q^{31} - q^{33} - 6 q^{35} + 16 q^{37} + 10 q^{39}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.30278
−1.30278
0 −2.30278 0 −2.30278 0 1.30278 0 2.30278 0
1.2 0 1.30278 0 1.30278 0 −2.30278 0 −1.30278 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1111 1 -1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3344.2.a.j 2
4.b odd 2 1 1672.2.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1672.2.a.d 2 4.b odd 2 1
3344.2.a.j 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3344))S_{2}^{\mathrm{new}}(\Gamma_0(3344)):

T32+T33 T_{3}^{2} + T_{3} - 3 Copy content Toggle raw display
T52+T53 T_{5}^{2} + T_{5} - 3 Copy content Toggle raw display
T72+T73 T_{7}^{2} + T_{7} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T3 T^{2} + T - 3 Copy content Toggle raw display
55 T2+T3 T^{2} + T - 3 Copy content Toggle raw display
77 T2+T3 T^{2} + T - 3 Copy content Toggle raw display
1111 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1313 T2+7T+9 T^{2} + 7T + 9 Copy content Toggle raw display
1717 T22T12 T^{2} - 2T - 12 Copy content Toggle raw display
1919 (T1)2 (T - 1)^{2} Copy content Toggle raw display
2323 T22T12 T^{2} - 2T - 12 Copy content Toggle raw display
2929 T2+15T+53 T^{2} + 15T + 53 Copy content Toggle raw display
3131 T25T23 T^{2} - 5T - 23 Copy content Toggle raw display
3737 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4141 T2+11T+27 T^{2} + 11T + 27 Copy content Toggle raw display
4343 T2T3 T^{2} - T - 3 Copy content Toggle raw display
4747 T28T36 T^{2} - 8T - 36 Copy content Toggle raw display
5353 T26T4 T^{2} - 6T - 4 Copy content Toggle raw display
5959 (T4)2 (T - 4)^{2} Copy content Toggle raw display
6161 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
6767 T2+7T69 T^{2} + 7T - 69 Copy content Toggle raw display
7171 T215T+27 T^{2} - 15T + 27 Copy content Toggle raw display
7373 T2+26T+156 T^{2} + 26T + 156 Copy content Toggle raw display
7979 T22T116 T^{2} - 2T - 116 Copy content Toggle raw display
8383 T2+11T+1 T^{2} + 11T + 1 Copy content Toggle raw display
8989 T26T108 T^{2} - 6T - 108 Copy content Toggle raw display
9797 T2208 T^{2} - 208 Copy content Toggle raw display
show more
show less