Properties

Label 3344.2.a.s.1.4
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13676.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1672)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.18363\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18363 q^{3} +0.493910 q^{5} -1.18363 q^{7} +1.76823 q^{9} -1.00000 q^{11} -1.80419 q^{13} +1.07852 q^{15} -6.21401 q^{17} -1.00000 q^{19} -2.58461 q^{21} -4.62940 q^{23} -4.75605 q^{25} -2.68972 q^{27} +4.44577 q^{29} -0.457953 q^{31} -2.18363 q^{33} -0.584606 q^{35} -3.58461 q^{37} -3.93968 q^{39} -1.33688 q^{41} +2.75605 q^{43} +0.873348 q^{45} -3.97564 q^{47} -5.59902 q^{49} -13.5691 q^{51} -6.98782 q^{53} -0.493910 q^{55} -2.18363 q^{57} -0.415394 q^{59} +7.75048 q^{61} -2.09293 q^{63} -0.891107 q^{65} -3.28874 q^{67} -10.1089 q^{69} +15.9911 q^{71} -0.391619 q^{73} -10.3855 q^{75} +1.18363 q^{77} +1.14107 q^{79} -11.1781 q^{81} +15.3617 q^{83} -3.06916 q^{85} +9.70792 q^{87} -12.4762 q^{89} +2.13549 q^{91} -1.00000 q^{93} -0.493910 q^{95} -3.06032 q^{97} -1.76823 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 3 q^{5} + 3 q^{7} + q^{9} - 4 q^{11} - 5 q^{13} + q^{15} - 4 q^{19} - 12 q^{21} + 8 q^{23} - 3 q^{25} - 8 q^{27} - q^{29} + 7 q^{31} - q^{33} - 4 q^{35} - 16 q^{37} + 8 q^{39} - 7 q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.18363 1.26072 0.630359 0.776304i \(-0.282908\pi\)
0.630359 + 0.776304i \(0.282908\pi\)
\(4\) 0 0
\(5\) 0.493910 0.220883 0.110442 0.993883i \(-0.464774\pi\)
0.110442 + 0.993883i \(0.464774\pi\)
\(6\) 0 0
\(7\) −1.18363 −0.447370 −0.223685 0.974662i \(-0.571809\pi\)
−0.223685 + 0.974662i \(0.571809\pi\)
\(8\) 0 0
\(9\) 1.76823 0.589411
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.80419 −0.500392 −0.250196 0.968195i \(-0.580495\pi\)
−0.250196 + 0.968195i \(0.580495\pi\)
\(14\) 0 0
\(15\) 1.07852 0.278471
\(16\) 0 0
\(17\) −6.21401 −1.50712 −0.753559 0.657380i \(-0.771665\pi\)
−0.753559 + 0.657380i \(0.771665\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.58461 −0.564007
\(22\) 0 0
\(23\) −4.62940 −0.965297 −0.482648 0.875814i \(-0.660325\pi\)
−0.482648 + 0.875814i \(0.660325\pi\)
\(24\) 0 0
\(25\) −4.75605 −0.951211
\(26\) 0 0
\(27\) −2.68972 −0.517637
\(28\) 0 0
\(29\) 4.44577 0.825559 0.412780 0.910831i \(-0.364558\pi\)
0.412780 + 0.910831i \(0.364558\pi\)
\(30\) 0 0
\(31\) −0.457953 −0.0822508 −0.0411254 0.999154i \(-0.513094\pi\)
−0.0411254 + 0.999154i \(0.513094\pi\)
\(32\) 0 0
\(33\) −2.18363 −0.380121
\(34\) 0 0
\(35\) −0.584606 −0.0988164
\(36\) 0 0
\(37\) −3.58461 −0.589306 −0.294653 0.955604i \(-0.595204\pi\)
−0.294653 + 0.955604i \(0.595204\pi\)
\(38\) 0 0
\(39\) −3.93968 −0.630854
\(40\) 0 0
\(41\) −1.33688 −0.208785 −0.104393 0.994536i \(-0.533290\pi\)
−0.104393 + 0.994536i \(0.533290\pi\)
\(42\) 0 0
\(43\) 2.75605 0.420294 0.210147 0.977670i \(-0.432606\pi\)
0.210147 + 0.977670i \(0.432606\pi\)
\(44\) 0 0
\(45\) 0.873348 0.130191
\(46\) 0 0
\(47\) −3.97564 −0.579906 −0.289953 0.957041i \(-0.593640\pi\)
−0.289953 + 0.957041i \(0.593640\pi\)
\(48\) 0 0
\(49\) −5.59902 −0.799860
\(50\) 0 0
\(51\) −13.5691 −1.90005
\(52\) 0 0
\(53\) −6.98782 −0.959851 −0.479925 0.877309i \(-0.659336\pi\)
−0.479925 + 0.877309i \(0.659336\pi\)
\(54\) 0 0
\(55\) −0.493910 −0.0665988
\(56\) 0 0
\(57\) −2.18363 −0.289229
\(58\) 0 0
\(59\) −0.415394 −0.0540798 −0.0270399 0.999634i \(-0.508608\pi\)
−0.0270399 + 0.999634i \(0.508608\pi\)
\(60\) 0 0
\(61\) 7.75048 0.992347 0.496173 0.868223i \(-0.334738\pi\)
0.496173 + 0.868223i \(0.334738\pi\)
\(62\) 0 0
\(63\) −2.09293 −0.263685
\(64\) 0 0
\(65\) −0.891107 −0.110528
\(66\) 0 0
\(67\) −3.28874 −0.401784 −0.200892 0.979613i \(-0.564384\pi\)
−0.200892 + 0.979613i \(0.564384\pi\)
\(68\) 0 0
\(69\) −10.1089 −1.21697
\(70\) 0 0
\(71\) 15.9911 1.89779 0.948896 0.315589i \(-0.102202\pi\)
0.948896 + 0.315589i \(0.102202\pi\)
\(72\) 0 0
\(73\) −0.391619 −0.0458355 −0.0229178 0.999737i \(-0.507296\pi\)
−0.0229178 + 0.999737i \(0.507296\pi\)
\(74\) 0 0
\(75\) −10.3855 −1.19921
\(76\) 0 0
\(77\) 1.18363 0.134887
\(78\) 0 0
\(79\) 1.14107 0.128380 0.0641902 0.997938i \(-0.479554\pi\)
0.0641902 + 0.997938i \(0.479554\pi\)
\(80\) 0 0
\(81\) −11.1781 −1.24201
\(82\) 0 0
\(83\) 15.3617 1.68616 0.843082 0.537786i \(-0.180739\pi\)
0.843082 + 0.537786i \(0.180739\pi\)
\(84\) 0 0
\(85\) −3.06916 −0.332897
\(86\) 0 0
\(87\) 9.70792 1.04080
\(88\) 0 0
\(89\) −12.4762 −1.32247 −0.661235 0.750179i \(-0.729967\pi\)
−0.661235 + 0.750179i \(0.729967\pi\)
\(90\) 0 0
\(91\) 2.13549 0.223860
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −0.493910 −0.0506741
\(96\) 0 0
\(97\) −3.06032 −0.310728 −0.155364 0.987857i \(-0.549655\pi\)
−0.155364 + 0.987857i \(0.549655\pi\)
\(98\) 0 0
\(99\) −1.76823 −0.177714
\(100\) 0 0
\(101\) 3.68972 0.367141 0.183570 0.983007i \(-0.441234\pi\)
0.183570 + 0.983007i \(0.441234\pi\)
\(102\) 0 0
\(103\) 3.19522 0.314835 0.157417 0.987532i \(-0.449683\pi\)
0.157417 + 0.987532i \(0.449683\pi\)
\(104\) 0 0
\(105\) −1.27656 −0.124580
\(106\) 0 0
\(107\) 19.7831 1.91250 0.956252 0.292545i \(-0.0945021\pi\)
0.956252 + 0.292545i \(0.0945021\pi\)
\(108\) 0 0
\(109\) −10.7345 −1.02818 −0.514090 0.857736i \(-0.671870\pi\)
−0.514090 + 0.857736i \(0.671870\pi\)
\(110\) 0 0
\(111\) −7.82745 −0.742948
\(112\) 0 0
\(113\) −3.89111 −0.366045 −0.183022 0.983109i \(-0.558588\pi\)
−0.183022 + 0.983109i \(0.558588\pi\)
\(114\) 0 0
\(115\) −2.28651 −0.213218
\(116\) 0 0
\(117\) −3.19023 −0.294937
\(118\) 0 0
\(119\) 7.35508 0.674239
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −2.91925 −0.263220
\(124\) 0 0
\(125\) −4.81861 −0.430989
\(126\) 0 0
\(127\) 16.1177 1.43022 0.715109 0.699013i \(-0.246377\pi\)
0.715109 + 0.699013i \(0.246377\pi\)
\(128\) 0 0
\(129\) 6.01820 0.529873
\(130\) 0 0
\(131\) −12.5425 −1.09584 −0.547921 0.836530i \(-0.684581\pi\)
−0.547921 + 0.836530i \(0.684581\pi\)
\(132\) 0 0
\(133\) 1.18363 0.102634
\(134\) 0 0
\(135\) −1.32848 −0.114337
\(136\) 0 0
\(137\) −17.0868 −1.45982 −0.729911 0.683543i \(-0.760438\pi\)
−0.729911 + 0.683543i \(0.760438\pi\)
\(138\) 0 0
\(139\) −18.7411 −1.58960 −0.794800 0.606871i \(-0.792424\pi\)
−0.794800 + 0.606871i \(0.792424\pi\)
\(140\) 0 0
\(141\) −8.68132 −0.731099
\(142\) 0 0
\(143\) 1.80419 0.150874
\(144\) 0 0
\(145\) 2.19581 0.182352
\(146\) 0 0
\(147\) −12.2262 −1.00840
\(148\) 0 0
\(149\) −5.30753 −0.434809 −0.217405 0.976082i \(-0.569759\pi\)
−0.217405 + 0.976082i \(0.569759\pi\)
\(150\) 0 0
\(151\) 6.11395 0.497546 0.248773 0.968562i \(-0.419973\pi\)
0.248773 + 0.968562i \(0.419973\pi\)
\(152\) 0 0
\(153\) −10.9878 −0.888313
\(154\) 0 0
\(155\) −0.226188 −0.0181678
\(156\) 0 0
\(157\) 12.6686 1.01107 0.505533 0.862807i \(-0.331296\pi\)
0.505533 + 0.862807i \(0.331296\pi\)
\(158\) 0 0
\(159\) −15.2588 −1.21010
\(160\) 0 0
\(161\) 5.47949 0.431844
\(162\) 0 0
\(163\) 0.673759 0.0527729 0.0263864 0.999652i \(-0.491600\pi\)
0.0263864 + 0.999652i \(0.491600\pi\)
\(164\) 0 0
\(165\) −1.07852 −0.0839623
\(166\) 0 0
\(167\) 8.58126 0.664038 0.332019 0.943273i \(-0.392270\pi\)
0.332019 + 0.943273i \(0.392270\pi\)
\(168\) 0 0
\(169\) −9.74490 −0.749607
\(170\) 0 0
\(171\) −1.76823 −0.135220
\(172\) 0 0
\(173\) 2.78867 0.212019 0.106009 0.994365i \(-0.466193\pi\)
0.106009 + 0.994365i \(0.466193\pi\)
\(174\) 0 0
\(175\) 5.62940 0.425543
\(176\) 0 0
\(177\) −0.907067 −0.0681794
\(178\) 0 0
\(179\) −0.0906960 −0.00677893 −0.00338947 0.999994i \(-0.501079\pi\)
−0.00338947 + 0.999994i \(0.501079\pi\)
\(180\) 0 0
\(181\) 20.3799 1.51482 0.757412 0.652937i \(-0.226463\pi\)
0.757412 + 0.652937i \(0.226463\pi\)
\(182\) 0 0
\(183\) 16.9242 1.25107
\(184\) 0 0
\(185\) −1.77047 −0.130168
\(186\) 0 0
\(187\) 6.21401 0.454413
\(188\) 0 0
\(189\) 3.18363 0.231575
\(190\) 0 0
\(191\) −15.8594 −1.14754 −0.573772 0.819015i \(-0.694520\pi\)
−0.573772 + 0.819015i \(0.694520\pi\)
\(192\) 0 0
\(193\) −16.8700 −1.21433 −0.607165 0.794576i \(-0.707693\pi\)
−0.607165 + 0.794576i \(0.707693\pi\)
\(194\) 0 0
\(195\) −1.94585 −0.139345
\(196\) 0 0
\(197\) 11.1775 0.796361 0.398181 0.917307i \(-0.369642\pi\)
0.398181 + 0.917307i \(0.369642\pi\)
\(198\) 0 0
\(199\) −14.6494 −1.03847 −0.519234 0.854632i \(-0.673783\pi\)
−0.519234 + 0.854632i \(0.673783\pi\)
\(200\) 0 0
\(201\) −7.18139 −0.506536
\(202\) 0 0
\(203\) −5.26214 −0.369330
\(204\) 0 0
\(205\) −0.660298 −0.0461172
\(206\) 0 0
\(207\) −8.18587 −0.568957
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 15.6830 1.07966 0.539832 0.841773i \(-0.318488\pi\)
0.539832 + 0.841773i \(0.318488\pi\)
\(212\) 0 0
\(213\) 34.9186 2.39258
\(214\) 0 0
\(215\) 1.36124 0.0928359
\(216\) 0 0
\(217\) 0.542047 0.0367965
\(218\) 0 0
\(219\) −0.855151 −0.0577857
\(220\) 0 0
\(221\) 11.2113 0.754150
\(222\) 0 0
\(223\) 9.98070 0.668357 0.334178 0.942510i \(-0.391541\pi\)
0.334178 + 0.942510i \(0.391541\pi\)
\(224\) 0 0
\(225\) −8.40982 −0.560654
\(226\) 0 0
\(227\) 2.62434 0.174184 0.0870918 0.996200i \(-0.472243\pi\)
0.0870918 + 0.996200i \(0.472243\pi\)
\(228\) 0 0
\(229\) −11.5347 −0.762232 −0.381116 0.924527i \(-0.624460\pi\)
−0.381116 + 0.924527i \(0.624460\pi\)
\(230\) 0 0
\(231\) 2.58461 0.170055
\(232\) 0 0
\(233\) 1.53269 0.100410 0.0502049 0.998739i \(-0.484013\pi\)
0.0502049 + 0.998739i \(0.484013\pi\)
\(234\) 0 0
\(235\) −1.96361 −0.128092
\(236\) 0 0
\(237\) 2.49167 0.161852
\(238\) 0 0
\(239\) −11.2560 −0.728089 −0.364044 0.931382i \(-0.618604\pi\)
−0.364044 + 0.931382i \(0.618604\pi\)
\(240\) 0 0
\(241\) −4.48507 −0.288909 −0.144454 0.989511i \(-0.546143\pi\)
−0.144454 + 0.989511i \(0.546143\pi\)
\(242\) 0 0
\(243\) −16.3396 −1.04818
\(244\) 0 0
\(245\) −2.76541 −0.176676
\(246\) 0 0
\(247\) 1.80419 0.114798
\(248\) 0 0
\(249\) 33.5442 2.12578
\(250\) 0 0
\(251\) 14.6902 0.927234 0.463617 0.886036i \(-0.346551\pi\)
0.463617 + 0.886036i \(0.346551\pi\)
\(252\) 0 0
\(253\) 4.62940 0.291048
\(254\) 0 0
\(255\) −6.70190 −0.419689
\(256\) 0 0
\(257\) 14.3429 0.894685 0.447343 0.894363i \(-0.352370\pi\)
0.447343 + 0.894363i \(0.352370\pi\)
\(258\) 0 0
\(259\) 4.24284 0.263637
\(260\) 0 0
\(261\) 7.86117 0.486594
\(262\) 0 0
\(263\) 12.0747 0.744560 0.372280 0.928120i \(-0.378576\pi\)
0.372280 + 0.928120i \(0.378576\pi\)
\(264\) 0 0
\(265\) −3.45135 −0.212015
\(266\) 0 0
\(267\) −27.2433 −1.66726
\(268\) 0 0
\(269\) −26.9568 −1.64358 −0.821792 0.569788i \(-0.807025\pi\)
−0.821792 + 0.569788i \(0.807025\pi\)
\(270\) 0 0
\(271\) −18.2284 −1.10730 −0.553649 0.832750i \(-0.686765\pi\)
−0.553649 + 0.832750i \(0.686765\pi\)
\(272\) 0 0
\(273\) 4.66312 0.282225
\(274\) 0 0
\(275\) 4.75605 0.286801
\(276\) 0 0
\(277\) 17.1382 1.02973 0.514866 0.857270i \(-0.327842\pi\)
0.514866 + 0.857270i \(0.327842\pi\)
\(278\) 0 0
\(279\) −0.809769 −0.0484796
\(280\) 0 0
\(281\) −8.08229 −0.482149 −0.241075 0.970507i \(-0.577500\pi\)
−0.241075 + 0.970507i \(0.577500\pi\)
\(282\) 0 0
\(283\) −20.1471 −1.19762 −0.598810 0.800891i \(-0.704360\pi\)
−0.598810 + 0.800891i \(0.704360\pi\)
\(284\) 0 0
\(285\) −1.07852 −0.0638857
\(286\) 0 0
\(287\) 1.58237 0.0934043
\(288\) 0 0
\(289\) 21.6139 1.27140
\(290\) 0 0
\(291\) −6.68260 −0.391741
\(292\) 0 0
\(293\) 2.84521 0.166219 0.0831094 0.996540i \(-0.473515\pi\)
0.0831094 + 0.996540i \(0.473515\pi\)
\(294\) 0 0
\(295\) −0.205167 −0.0119453
\(296\) 0 0
\(297\) 2.68972 0.156073
\(298\) 0 0
\(299\) 8.35232 0.483027
\(300\) 0 0
\(301\) −3.26214 −0.188027
\(302\) 0 0
\(303\) 8.05698 0.462861
\(304\) 0 0
\(305\) 3.82803 0.219193
\(306\) 0 0
\(307\) 8.97288 0.512109 0.256055 0.966662i \(-0.417577\pi\)
0.256055 + 0.966662i \(0.417577\pi\)
\(308\) 0 0
\(309\) 6.97718 0.396918
\(310\) 0 0
\(311\) 7.63274 0.432813 0.216407 0.976303i \(-0.430566\pi\)
0.216407 + 0.976303i \(0.430566\pi\)
\(312\) 0 0
\(313\) −22.0956 −1.24892 −0.624459 0.781058i \(-0.714680\pi\)
−0.624459 + 0.781058i \(0.714680\pi\)
\(314\) 0 0
\(315\) −1.03372 −0.0582435
\(316\) 0 0
\(317\) 22.8798 1.28506 0.642529 0.766261i \(-0.277885\pi\)
0.642529 + 0.766261i \(0.277885\pi\)
\(318\) 0 0
\(319\) −4.44577 −0.248915
\(320\) 0 0
\(321\) 43.1989 2.41113
\(322\) 0 0
\(323\) 6.21401 0.345757
\(324\) 0 0
\(325\) 8.58083 0.475979
\(326\) 0 0
\(327\) −23.4402 −1.29625
\(328\) 0 0
\(329\) 4.70568 0.259433
\(330\) 0 0
\(331\) −29.6714 −1.63089 −0.815443 0.578837i \(-0.803507\pi\)
−0.815443 + 0.578837i \(0.803507\pi\)
\(332\) 0 0
\(333\) −6.33842 −0.347343
\(334\) 0 0
\(335\) −1.62434 −0.0887472
\(336\) 0 0
\(337\) 8.81637 0.480258 0.240129 0.970741i \(-0.422810\pi\)
0.240129 + 0.970741i \(0.422810\pi\)
\(338\) 0 0
\(339\) −8.49673 −0.461479
\(340\) 0 0
\(341\) 0.457953 0.0247996
\(342\) 0 0
\(343\) 14.9126 0.805203
\(344\) 0 0
\(345\) −4.99288 −0.268808
\(346\) 0 0
\(347\) −9.96070 −0.534719 −0.267359 0.963597i \(-0.586151\pi\)
−0.267359 + 0.963597i \(0.586151\pi\)
\(348\) 0 0
\(349\) −1.31578 −0.0704320 −0.0352160 0.999380i \(-0.511212\pi\)
−0.0352160 + 0.999380i \(0.511212\pi\)
\(350\) 0 0
\(351\) 4.85277 0.259021
\(352\) 0 0
\(353\) −2.76324 −0.147073 −0.0735363 0.997293i \(-0.523428\pi\)
−0.0735363 + 0.997293i \(0.523428\pi\)
\(354\) 0 0
\(355\) 7.89815 0.419190
\(356\) 0 0
\(357\) 16.0608 0.850025
\(358\) 0 0
\(359\) −16.2892 −0.859710 −0.429855 0.902898i \(-0.641435\pi\)
−0.429855 + 0.902898i \(0.641435\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 2.18363 0.114611
\(364\) 0 0
\(365\) −0.193424 −0.0101243
\(366\) 0 0
\(367\) −32.0873 −1.67494 −0.837471 0.546482i \(-0.815967\pi\)
−0.837471 + 0.546482i \(0.815967\pi\)
\(368\) 0 0
\(369\) −2.36392 −0.123061
\(370\) 0 0
\(371\) 8.27098 0.429408
\(372\) 0 0
\(373\) −30.8345 −1.59655 −0.798275 0.602294i \(-0.794254\pi\)
−0.798275 + 0.602294i \(0.794254\pi\)
\(374\) 0 0
\(375\) −10.5221 −0.543356
\(376\) 0 0
\(377\) −8.02102 −0.413104
\(378\) 0 0
\(379\) −19.2112 −0.986812 −0.493406 0.869799i \(-0.664248\pi\)
−0.493406 + 0.869799i \(0.664248\pi\)
\(380\) 0 0
\(381\) 35.1951 1.80310
\(382\) 0 0
\(383\) 36.1803 1.84873 0.924363 0.381514i \(-0.124597\pi\)
0.924363 + 0.381514i \(0.124597\pi\)
\(384\) 0 0
\(385\) 0.584606 0.0297943
\(386\) 0 0
\(387\) 4.87335 0.247726
\(388\) 0 0
\(389\) −16.0481 −0.813669 −0.406834 0.913502i \(-0.633367\pi\)
−0.406834 + 0.913502i \(0.633367\pi\)
\(390\) 0 0
\(391\) 28.7671 1.45482
\(392\) 0 0
\(393\) −27.3881 −1.38155
\(394\) 0 0
\(395\) 0.563585 0.0283571
\(396\) 0 0
\(397\) 31.4584 1.57885 0.789426 0.613846i \(-0.210378\pi\)
0.789426 + 0.613846i \(0.210378\pi\)
\(398\) 0 0
\(399\) 2.58461 0.129392
\(400\) 0 0
\(401\) −19.8262 −0.990072 −0.495036 0.868873i \(-0.664845\pi\)
−0.495036 + 0.868873i \(0.664845\pi\)
\(402\) 0 0
\(403\) 0.826235 0.0411577
\(404\) 0 0
\(405\) −5.52095 −0.274338
\(406\) 0 0
\(407\) 3.58461 0.177682
\(408\) 0 0
\(409\) 34.3540 1.69869 0.849347 0.527834i \(-0.176996\pi\)
0.849347 + 0.527834i \(0.176996\pi\)
\(410\) 0 0
\(411\) −37.3112 −1.84042
\(412\) 0 0
\(413\) 0.491673 0.0241936
\(414\) 0 0
\(415\) 7.58728 0.372445
\(416\) 0 0
\(417\) −40.9236 −2.00404
\(418\) 0 0
\(419\) −6.78324 −0.331383 −0.165691 0.986178i \(-0.552986\pi\)
−0.165691 + 0.986178i \(0.552986\pi\)
\(420\) 0 0
\(421\) −7.08409 −0.345258 −0.172629 0.984987i \(-0.555226\pi\)
−0.172629 + 0.984987i \(0.555226\pi\)
\(422\) 0 0
\(423\) −7.02986 −0.341803
\(424\) 0 0
\(425\) 29.5541 1.43359
\(426\) 0 0
\(427\) −9.17368 −0.443946
\(428\) 0 0
\(429\) 3.93968 0.190210
\(430\) 0 0
\(431\) −18.6139 −0.896599 −0.448299 0.893883i \(-0.647970\pi\)
−0.448299 + 0.893883i \(0.647970\pi\)
\(432\) 0 0
\(433\) 9.88751 0.475163 0.237582 0.971368i \(-0.423645\pi\)
0.237582 + 0.971368i \(0.423645\pi\)
\(434\) 0 0
\(435\) 4.79483 0.229895
\(436\) 0 0
\(437\) 4.62940 0.221454
\(438\) 0 0
\(439\) −1.49270 −0.0712425 −0.0356213 0.999365i \(-0.511341\pi\)
−0.0356213 + 0.999365i \(0.511341\pi\)
\(440\) 0 0
\(441\) −9.90038 −0.471447
\(442\) 0 0
\(443\) 16.0276 0.761492 0.380746 0.924680i \(-0.375667\pi\)
0.380746 + 0.924680i \(0.375667\pi\)
\(444\) 0 0
\(445\) −6.16209 −0.292111
\(446\) 0 0
\(447\) −11.5897 −0.548172
\(448\) 0 0
\(449\) 6.40975 0.302495 0.151247 0.988496i \(-0.451671\pi\)
0.151247 + 0.988496i \(0.451671\pi\)
\(450\) 0 0
\(451\) 1.33688 0.0629512
\(452\) 0 0
\(453\) 13.3506 0.627266
\(454\) 0 0
\(455\) 1.05474 0.0494470
\(456\) 0 0
\(457\) 24.9906 1.16901 0.584505 0.811390i \(-0.301289\pi\)
0.584505 + 0.811390i \(0.301289\pi\)
\(458\) 0 0
\(459\) 16.7139 0.780140
\(460\) 0 0
\(461\) −25.8318 −1.20311 −0.601554 0.798832i \(-0.705451\pi\)
−0.601554 + 0.798832i \(0.705451\pi\)
\(462\) 0 0
\(463\) 14.5762 0.677414 0.338707 0.940892i \(-0.390011\pi\)
0.338707 + 0.940892i \(0.390011\pi\)
\(464\) 0 0
\(465\) −0.493910 −0.0229045
\(466\) 0 0
\(467\) 17.9445 0.830372 0.415186 0.909737i \(-0.363717\pi\)
0.415186 + 0.909737i \(0.363717\pi\)
\(468\) 0 0
\(469\) 3.89265 0.179746
\(470\) 0 0
\(471\) 27.6636 1.27467
\(472\) 0 0
\(473\) −2.75605 −0.126723
\(474\) 0 0
\(475\) 4.75605 0.218223
\(476\) 0 0
\(477\) −12.3561 −0.565747
\(478\) 0 0
\(479\) −1.82187 −0.0832433 −0.0416217 0.999133i \(-0.513252\pi\)
−0.0416217 + 0.999133i \(0.513252\pi\)
\(480\) 0 0
\(481\) 6.46731 0.294884
\(482\) 0 0
\(483\) 11.9652 0.544434
\(484\) 0 0
\(485\) −1.51152 −0.0686346
\(486\) 0 0
\(487\) 24.2489 1.09882 0.549410 0.835553i \(-0.314852\pi\)
0.549410 + 0.835553i \(0.314852\pi\)
\(488\) 0 0
\(489\) 1.47124 0.0665317
\(490\) 0 0
\(491\) −5.86495 −0.264681 −0.132341 0.991204i \(-0.542249\pi\)
−0.132341 + 0.991204i \(0.542249\pi\)
\(492\) 0 0
\(493\) −27.6261 −1.24422
\(494\) 0 0
\(495\) −0.873348 −0.0392541
\(496\) 0 0
\(497\) −18.9275 −0.849014
\(498\) 0 0
\(499\) −31.5830 −1.41385 −0.706924 0.707289i \(-0.749918\pi\)
−0.706924 + 0.707289i \(0.749918\pi\)
\(500\) 0 0
\(501\) 18.7383 0.837165
\(502\) 0 0
\(503\) −24.5160 −1.09311 −0.546556 0.837422i \(-0.684062\pi\)
−0.546556 + 0.837422i \(0.684062\pi\)
\(504\) 0 0
\(505\) 1.82239 0.0810952
\(506\) 0 0
\(507\) −21.2792 −0.945044
\(508\) 0 0
\(509\) −22.3423 −0.990305 −0.495153 0.868806i \(-0.664888\pi\)
−0.495153 + 0.868806i \(0.664888\pi\)
\(510\) 0 0
\(511\) 0.463532 0.0205054
\(512\) 0 0
\(513\) 2.68972 0.118754
\(514\) 0 0
\(515\) 1.57815 0.0695417
\(516\) 0 0
\(517\) 3.97564 0.174848
\(518\) 0 0
\(519\) 6.08942 0.267296
\(520\) 0 0
\(521\) 27.5779 1.20821 0.604105 0.796904i \(-0.293531\pi\)
0.604105 + 0.796904i \(0.293531\pi\)
\(522\) 0 0
\(523\) −20.7289 −0.906410 −0.453205 0.891406i \(-0.649719\pi\)
−0.453205 + 0.891406i \(0.649719\pi\)
\(524\) 0 0
\(525\) 12.2925 0.536490
\(526\) 0 0
\(527\) 2.84572 0.123962
\(528\) 0 0
\(529\) −1.56865 −0.0682020
\(530\) 0 0
\(531\) −0.734515 −0.0318752
\(532\) 0 0
\(533\) 2.41199 0.104475
\(534\) 0 0
\(535\) 9.77106 0.422440
\(536\) 0 0
\(537\) −0.198046 −0.00854633
\(538\) 0 0
\(539\) 5.59902 0.241167
\(540\) 0 0
\(541\) −5.19735 −0.223452 −0.111726 0.993739i \(-0.535638\pi\)
−0.111726 + 0.993739i \(0.535638\pi\)
\(542\) 0 0
\(543\) 44.5021 1.90977
\(544\) 0 0
\(545\) −5.30188 −0.227108
\(546\) 0 0
\(547\) −45.0887 −1.92786 −0.963928 0.266164i \(-0.914244\pi\)
−0.963928 + 0.266164i \(0.914244\pi\)
\(548\) 0 0
\(549\) 13.7047 0.584900
\(550\) 0 0
\(551\) −4.44577 −0.189396
\(552\) 0 0
\(553\) −1.35060 −0.0574335
\(554\) 0 0
\(555\) −3.86605 −0.164105
\(556\) 0 0
\(557\) −44.0905 −1.86817 −0.934087 0.357047i \(-0.883784\pi\)
−0.934087 + 0.357047i \(0.883784\pi\)
\(558\) 0 0
\(559\) −4.97245 −0.210312
\(560\) 0 0
\(561\) 13.5691 0.572887
\(562\) 0 0
\(563\) 25.2372 1.06362 0.531810 0.846864i \(-0.321512\pi\)
0.531810 + 0.846864i \(0.321512\pi\)
\(564\) 0 0
\(565\) −1.92185 −0.0808530
\(566\) 0 0
\(567\) 13.2307 0.555636
\(568\) 0 0
\(569\) −3.44258 −0.144320 −0.0721602 0.997393i \(-0.522989\pi\)
−0.0721602 + 0.997393i \(0.522989\pi\)
\(570\) 0 0
\(571\) −2.16389 −0.0905559 −0.0452780 0.998974i \(-0.514417\pi\)
−0.0452780 + 0.998974i \(0.514417\pi\)
\(572\) 0 0
\(573\) −34.6310 −1.44673
\(574\) 0 0
\(575\) 22.0177 0.918201
\(576\) 0 0
\(577\) −19.1000 −0.795142 −0.397571 0.917571i \(-0.630147\pi\)
−0.397571 + 0.917571i \(0.630147\pi\)
\(578\) 0 0
\(579\) −36.8378 −1.53093
\(580\) 0 0
\(581\) −18.1825 −0.754338
\(582\) 0 0
\(583\) 6.98782 0.289406
\(584\) 0 0
\(585\) −1.57569 −0.0651466
\(586\) 0 0
\(587\) −7.78221 −0.321206 −0.160603 0.987019i \(-0.551344\pi\)
−0.160603 + 0.987019i \(0.551344\pi\)
\(588\) 0 0
\(589\) 0.457953 0.0188696
\(590\) 0 0
\(591\) 24.4074 1.00399
\(592\) 0 0
\(593\) −40.6214 −1.66812 −0.834061 0.551672i \(-0.813990\pi\)
−0.834061 + 0.551672i \(0.813990\pi\)
\(594\) 0 0
\(595\) 3.63274 0.148928
\(596\) 0 0
\(597\) −31.9888 −1.30922
\(598\) 0 0
\(599\) −17.6299 −0.720339 −0.360169 0.932887i \(-0.617281\pi\)
−0.360169 + 0.932887i \(0.617281\pi\)
\(600\) 0 0
\(601\) −12.5751 −0.512949 −0.256475 0.966551i \(-0.582561\pi\)
−0.256475 + 0.966551i \(0.582561\pi\)
\(602\) 0 0
\(603\) −5.81527 −0.236816
\(604\) 0 0
\(605\) 0.493910 0.0200803
\(606\) 0 0
\(607\) −23.4661 −0.952461 −0.476230 0.879321i \(-0.657997\pi\)
−0.476230 + 0.879321i \(0.657997\pi\)
\(608\) 0 0
\(609\) −11.4906 −0.465621
\(610\) 0 0
\(611\) 7.17281 0.290181
\(612\) 0 0
\(613\) −18.8159 −0.759965 −0.379983 0.924994i \(-0.624070\pi\)
−0.379983 + 0.924994i \(0.624070\pi\)
\(614\) 0 0
\(615\) −1.44184 −0.0581408
\(616\) 0 0
\(617\) 1.65094 0.0664643 0.0332322 0.999448i \(-0.489420\pi\)
0.0332322 + 0.999448i \(0.489420\pi\)
\(618\) 0 0
\(619\) 20.4799 0.823158 0.411579 0.911374i \(-0.364977\pi\)
0.411579 + 0.911374i \(0.364977\pi\)
\(620\) 0 0
\(621\) 12.4518 0.499673
\(622\) 0 0
\(623\) 14.7671 0.591633
\(624\) 0 0
\(625\) 21.4003 0.856012
\(626\) 0 0
\(627\) 2.18363 0.0872057
\(628\) 0 0
\(629\) 22.2748 0.888153
\(630\) 0 0
\(631\) 26.8892 1.07044 0.535222 0.844712i \(-0.320228\pi\)
0.535222 + 0.844712i \(0.320228\pi\)
\(632\) 0 0
\(633\) 34.2459 1.36115
\(634\) 0 0
\(635\) 7.96070 0.315911
\(636\) 0 0
\(637\) 10.1017 0.400244
\(638\) 0 0
\(639\) 28.2760 1.11858
\(640\) 0 0
\(641\) 12.0171 0.474647 0.237323 0.971431i \(-0.423730\pi\)
0.237323 + 0.971431i \(0.423730\pi\)
\(642\) 0 0
\(643\) 2.84527 0.112207 0.0561033 0.998425i \(-0.482132\pi\)
0.0561033 + 0.998425i \(0.482132\pi\)
\(644\) 0 0
\(645\) 2.97245 0.117040
\(646\) 0 0
\(647\) 19.2975 0.758664 0.379332 0.925261i \(-0.376154\pi\)
0.379332 + 0.925261i \(0.376154\pi\)
\(648\) 0 0
\(649\) 0.415394 0.0163057
\(650\) 0 0
\(651\) 1.18363 0.0463901
\(652\) 0 0
\(653\) 34.7017 1.35798 0.678991 0.734147i \(-0.262418\pi\)
0.678991 + 0.734147i \(0.262418\pi\)
\(654\) 0 0
\(655\) −6.19485 −0.242053
\(656\) 0 0
\(657\) −0.692474 −0.0270160
\(658\) 0 0
\(659\) −4.36057 −0.169864 −0.0849319 0.996387i \(-0.527067\pi\)
−0.0849319 + 0.996387i \(0.527067\pi\)
\(660\) 0 0
\(661\) 4.43307 0.172427 0.0862133 0.996277i \(-0.472523\pi\)
0.0862133 + 0.996277i \(0.472523\pi\)
\(662\) 0 0
\(663\) 24.4812 0.950771
\(664\) 0 0
\(665\) 0.584606 0.0226700
\(666\) 0 0
\(667\) −20.5813 −0.796910
\(668\) 0 0
\(669\) 21.7941 0.842610
\(670\) 0 0
\(671\) −7.75048 −0.299204
\(672\) 0 0
\(673\) 21.9264 0.845200 0.422600 0.906316i \(-0.361117\pi\)
0.422600 + 0.906316i \(0.361117\pi\)
\(674\) 0 0
\(675\) 12.7924 0.492382
\(676\) 0 0
\(677\) 35.2924 1.35640 0.678198 0.734879i \(-0.262761\pi\)
0.678198 + 0.734879i \(0.262761\pi\)
\(678\) 0 0
\(679\) 3.62228 0.139010
\(680\) 0 0
\(681\) 5.73059 0.219597
\(682\) 0 0
\(683\) 41.1138 1.57318 0.786588 0.617478i \(-0.211846\pi\)
0.786588 + 0.617478i \(0.211846\pi\)
\(684\) 0 0
\(685\) −8.43932 −0.322450
\(686\) 0 0
\(687\) −25.1874 −0.960961
\(688\) 0 0
\(689\) 12.6074 0.480302
\(690\) 0 0
\(691\) −21.6912 −0.825171 −0.412586 0.910919i \(-0.635374\pi\)
−0.412586 + 0.910919i \(0.635374\pi\)
\(692\) 0 0
\(693\) 2.09293 0.0795039
\(694\) 0 0
\(695\) −9.25642 −0.351116
\(696\) 0 0
\(697\) 8.30738 0.314664
\(698\) 0 0
\(699\) 3.34682 0.126588
\(700\) 0 0
\(701\) −16.6458 −0.628703 −0.314352 0.949307i \(-0.601787\pi\)
−0.314352 + 0.949307i \(0.601787\pi\)
\(702\) 0 0
\(703\) 3.58461 0.135196
\(704\) 0 0
\(705\) −4.28779 −0.161487
\(706\) 0 0
\(707\) −4.36726 −0.164248
\(708\) 0 0
\(709\) −23.1731 −0.870282 −0.435141 0.900362i \(-0.643302\pi\)
−0.435141 + 0.900362i \(0.643302\pi\)
\(710\) 0 0
\(711\) 2.01768 0.0756689
\(712\) 0 0
\(713\) 2.12005 0.0793965
\(714\) 0 0
\(715\) 0.891107 0.0333255
\(716\) 0 0
\(717\) −24.5789 −0.917915
\(718\) 0 0
\(719\) 27.3892 1.02144 0.510722 0.859746i \(-0.329378\pi\)
0.510722 + 0.859746i \(0.329378\pi\)
\(720\) 0 0
\(721\) −3.78196 −0.140847
\(722\) 0 0
\(723\) −9.79373 −0.364233
\(724\) 0 0
\(725\) −21.1443 −0.785281
\(726\) 0 0
\(727\) 2.97898 0.110484 0.0552421 0.998473i \(-0.482407\pi\)
0.0552421 + 0.998473i \(0.482407\pi\)
\(728\) 0 0
\(729\) −2.14537 −0.0794581
\(730\) 0 0
\(731\) −17.1261 −0.633433
\(732\) 0 0
\(733\) 12.6851 0.468535 0.234267 0.972172i \(-0.424731\pi\)
0.234267 + 0.972172i \(0.424731\pi\)
\(734\) 0 0
\(735\) −6.03863 −0.222738
\(736\) 0 0
\(737\) 3.28874 0.121142
\(738\) 0 0
\(739\) −18.6272 −0.685211 −0.342606 0.939479i \(-0.611309\pi\)
−0.342606 + 0.939479i \(0.611309\pi\)
\(740\) 0 0
\(741\) 3.93968 0.144728
\(742\) 0 0
\(743\) 40.8878 1.50003 0.750013 0.661423i \(-0.230047\pi\)
0.750013 + 0.661423i \(0.230047\pi\)
\(744\) 0 0
\(745\) −2.62144 −0.0960420
\(746\) 0 0
\(747\) 27.1630 0.993844
\(748\) 0 0
\(749\) −23.4158 −0.855596
\(750\) 0 0
\(751\) −15.2482 −0.556416 −0.278208 0.960521i \(-0.589740\pi\)
−0.278208 + 0.960521i \(0.589740\pi\)
\(752\) 0 0
\(753\) 32.0778 1.16898
\(754\) 0 0
\(755\) 3.01974 0.109900
\(756\) 0 0
\(757\) 1.09565 0.0398220 0.0199110 0.999802i \(-0.493662\pi\)
0.0199110 + 0.999802i \(0.493662\pi\)
\(758\) 0 0
\(759\) 10.1089 0.366930
\(760\) 0 0
\(761\) 47.6858 1.72861 0.864304 0.502970i \(-0.167759\pi\)
0.864304 + 0.502970i \(0.167759\pi\)
\(762\) 0 0
\(763\) 12.7057 0.459976
\(764\) 0 0
\(765\) −5.42699 −0.196213
\(766\) 0 0
\(767\) 0.749451 0.0270611
\(768\) 0 0
\(769\) −7.70913 −0.277998 −0.138999 0.990293i \(-0.544389\pi\)
−0.138999 + 0.990293i \(0.544389\pi\)
\(770\) 0 0
\(771\) 31.3196 1.12795
\(772\) 0 0
\(773\) 17.5085 0.629737 0.314869 0.949135i \(-0.398040\pi\)
0.314869 + 0.949135i \(0.398040\pi\)
\(774\) 0 0
\(775\) 2.17805 0.0782379
\(776\) 0 0
\(777\) 9.26479 0.332373
\(778\) 0 0
\(779\) 1.33688 0.0478987
\(780\) 0 0
\(781\) −15.9911 −0.572206
\(782\) 0 0
\(783\) −11.9579 −0.427340
\(784\) 0 0
\(785\) 6.25715 0.223327
\(786\) 0 0
\(787\) −5.47468 −0.195151 −0.0975756 0.995228i \(-0.531109\pi\)
−0.0975756 + 0.995228i \(0.531109\pi\)
\(788\) 0 0
\(789\) 26.3667 0.938681
\(790\) 0 0
\(791\) 4.60563 0.163757
\(792\) 0 0
\(793\) −13.9833 −0.496563
\(794\) 0 0
\(795\) −7.53647 −0.267291
\(796\) 0 0
\(797\) −33.0404 −1.17035 −0.585176 0.810906i \(-0.698975\pi\)
−0.585176 + 0.810906i \(0.698975\pi\)
\(798\) 0 0
\(799\) 24.7046 0.873987
\(800\) 0 0
\(801\) −22.0608 −0.779478
\(802\) 0 0
\(803\) 0.391619 0.0138199
\(804\) 0 0
\(805\) 2.70637 0.0953871
\(806\) 0 0
\(807\) −58.8636 −2.07210
\(808\) 0 0
\(809\) −14.1534 −0.497608 −0.248804 0.968554i \(-0.580038\pi\)
−0.248804 + 0.968554i \(0.580038\pi\)
\(810\) 0 0
\(811\) −43.2514 −1.51876 −0.759381 0.650646i \(-0.774498\pi\)
−0.759381 + 0.650646i \(0.774498\pi\)
\(812\) 0 0
\(813\) −39.8041 −1.39599
\(814\) 0 0
\(815\) 0.332776 0.0116566
\(816\) 0 0
\(817\) −2.75605 −0.0964221
\(818\) 0 0
\(819\) 3.77605 0.131946
\(820\) 0 0
\(821\) 47.1419 1.64527 0.822633 0.568573i \(-0.192504\pi\)
0.822633 + 0.568573i \(0.192504\pi\)
\(822\) 0 0
\(823\) 29.3098 1.02168 0.510838 0.859677i \(-0.329335\pi\)
0.510838 + 0.859677i \(0.329335\pi\)
\(824\) 0 0
\(825\) 10.3855 0.361575
\(826\) 0 0
\(827\) −11.8963 −0.413677 −0.206838 0.978375i \(-0.566317\pi\)
−0.206838 + 0.978375i \(0.566317\pi\)
\(828\) 0 0
\(829\) 8.91532 0.309642 0.154821 0.987943i \(-0.450520\pi\)
0.154821 + 0.987943i \(0.450520\pi\)
\(830\) 0 0
\(831\) 37.4234 1.29820
\(832\) 0 0
\(833\) 34.7924 1.20548
\(834\) 0 0
\(835\) 4.23837 0.146675
\(836\) 0 0
\(837\) 1.23177 0.0425761
\(838\) 0 0
\(839\) 47.2566 1.63148 0.815739 0.578420i \(-0.196331\pi\)
0.815739 + 0.578420i \(0.196331\pi\)
\(840\) 0 0
\(841\) −9.23511 −0.318452
\(842\) 0 0
\(843\) −17.6487 −0.607855
\(844\) 0 0
\(845\) −4.81310 −0.165576
\(846\) 0 0
\(847\) −1.18363 −0.0406700
\(848\) 0 0
\(849\) −43.9938 −1.50986
\(850\) 0 0
\(851\) 16.5946 0.568855
\(852\) 0 0
\(853\) −7.04189 −0.241110 −0.120555 0.992707i \(-0.538467\pi\)
−0.120555 + 0.992707i \(0.538467\pi\)
\(854\) 0 0
\(855\) −0.873348 −0.0298679
\(856\) 0 0
\(857\) 51.1303 1.74658 0.873288 0.487204i \(-0.161983\pi\)
0.873288 + 0.487204i \(0.161983\pi\)
\(858\) 0 0
\(859\) −9.52646 −0.325038 −0.162519 0.986705i \(-0.551962\pi\)
−0.162519 + 0.986705i \(0.551962\pi\)
\(860\) 0 0
\(861\) 3.45531 0.117757
\(862\) 0 0
\(863\) −35.2935 −1.20140 −0.600702 0.799473i \(-0.705112\pi\)
−0.600702 + 0.799473i \(0.705112\pi\)
\(864\) 0 0
\(865\) 1.37735 0.0468313
\(866\) 0 0
\(867\) 47.1967 1.60288
\(868\) 0 0
\(869\) −1.14107 −0.0387081
\(870\) 0 0
\(871\) 5.93352 0.201050
\(872\) 0 0
\(873\) −5.41136 −0.183147
\(874\) 0 0
\(875\) 5.70344 0.192812
\(876\) 0 0
\(877\) −22.5103 −0.760119 −0.380060 0.924962i \(-0.624097\pi\)
−0.380060 + 0.924962i \(0.624097\pi\)
\(878\) 0 0
\(879\) 6.21287 0.209555
\(880\) 0 0
\(881\) −34.4317 −1.16003 −0.580017 0.814604i \(-0.696954\pi\)
−0.580017 + 0.814604i \(0.696954\pi\)
\(882\) 0 0
\(883\) −14.3992 −0.484571 −0.242285 0.970205i \(-0.577897\pi\)
−0.242285 + 0.970205i \(0.577897\pi\)
\(884\) 0 0
\(885\) −0.448009 −0.0150597
\(886\) 0 0
\(887\) 43.3560 1.45575 0.727875 0.685710i \(-0.240508\pi\)
0.727875 + 0.685710i \(0.240508\pi\)
\(888\) 0 0
\(889\) −19.0774 −0.639836
\(890\) 0 0
\(891\) 11.1781 0.374479
\(892\) 0 0
\(893\) 3.97564 0.133040
\(894\) 0 0
\(895\) −0.0447956 −0.00149735
\(896\) 0 0
\(897\) 18.2384 0.608961
\(898\) 0 0
\(899\) −2.03596 −0.0679029
\(900\) 0 0
\(901\) 43.4224 1.44661
\(902\) 0 0
\(903\) −7.12331 −0.237049
\(904\) 0 0
\(905\) 10.0658 0.334599
\(906\) 0 0
\(907\) −0.306501 −0.0101772 −0.00508861 0.999987i \(-0.501620\pi\)
−0.00508861 + 0.999987i \(0.501620\pi\)
\(908\) 0 0
\(909\) 6.52429 0.216397
\(910\) 0 0
\(911\) 12.0563 0.399442 0.199721 0.979853i \(-0.435996\pi\)
0.199721 + 0.979853i \(0.435996\pi\)
\(912\) 0 0
\(913\) −15.3617 −0.508397
\(914\) 0 0
\(915\) 8.35900 0.276340
\(916\) 0 0
\(917\) 14.8456 0.490246
\(918\) 0 0
\(919\) 10.0917 0.332895 0.166448 0.986050i \(-0.446770\pi\)
0.166448 + 0.986050i \(0.446770\pi\)
\(920\) 0 0
\(921\) 19.5934 0.645626
\(922\) 0 0
\(923\) −28.8510 −0.949641
\(924\) 0 0
\(925\) 17.0486 0.560554
\(926\) 0 0
\(927\) 5.64990 0.185567
\(928\) 0 0
\(929\) 48.6178 1.59510 0.797550 0.603253i \(-0.206129\pi\)
0.797550 + 0.603253i \(0.206129\pi\)
\(930\) 0 0
\(931\) 5.59902 0.183501
\(932\) 0 0
\(933\) 16.6671 0.545656
\(934\) 0 0
\(935\) 3.06916 0.100372
\(936\) 0 0
\(937\) 13.8047 0.450980 0.225490 0.974245i \(-0.427602\pi\)
0.225490 + 0.974245i \(0.427602\pi\)
\(938\) 0 0
\(939\) −48.2486 −1.57453
\(940\) 0 0
\(941\) 33.4773 1.09133 0.545664 0.838004i \(-0.316277\pi\)
0.545664 + 0.838004i \(0.316277\pi\)
\(942\) 0 0
\(943\) 6.18895 0.201540
\(944\) 0 0
\(945\) 1.57242 0.0511510
\(946\) 0 0
\(947\) 25.9114 0.842007 0.421004 0.907059i \(-0.361678\pi\)
0.421004 + 0.907059i \(0.361678\pi\)
\(948\) 0 0
\(949\) 0.706555 0.0229358
\(950\) 0 0
\(951\) 49.9610 1.62010
\(952\) 0 0
\(953\) 25.8963 0.838865 0.419433 0.907787i \(-0.362229\pi\)
0.419433 + 0.907787i \(0.362229\pi\)
\(954\) 0 0
\(955\) −7.83309 −0.253473
\(956\) 0 0
\(957\) −9.70792 −0.313812
\(958\) 0 0
\(959\) 20.2244 0.653080
\(960\) 0 0
\(961\) −30.7903 −0.993235
\(962\) 0 0
\(963\) 34.9811 1.12725
\(964\) 0 0
\(965\) −8.33226 −0.268225
\(966\) 0 0
\(967\) 1.73280 0.0557230 0.0278615 0.999612i \(-0.491130\pi\)
0.0278615 + 0.999612i \(0.491130\pi\)
\(968\) 0 0
\(969\) 13.5691 0.435902
\(970\) 0 0
\(971\) 15.0088 0.481654 0.240827 0.970568i \(-0.422581\pi\)
0.240827 + 0.970568i \(0.422581\pi\)
\(972\) 0 0
\(973\) 22.1825 0.711139
\(974\) 0 0
\(975\) 18.7373 0.600075
\(976\) 0 0
\(977\) −9.33234 −0.298568 −0.149284 0.988794i \(-0.547697\pi\)
−0.149284 + 0.988794i \(0.547697\pi\)
\(978\) 0 0
\(979\) 12.4762 0.398739
\(980\) 0 0
\(981\) −18.9811 −0.606021
\(982\) 0 0
\(983\) 4.83086 0.154080 0.0770402 0.997028i \(-0.475453\pi\)
0.0770402 + 0.997028i \(0.475453\pi\)
\(984\) 0 0
\(985\) 5.52066 0.175903
\(986\) 0 0
\(987\) 10.2755 0.327071
\(988\) 0 0
\(989\) −12.7589 −0.405709
\(990\) 0 0
\(991\) −35.0069 −1.11203 −0.556015 0.831172i \(-0.687670\pi\)
−0.556015 + 0.831172i \(0.687670\pi\)
\(992\) 0 0
\(993\) −64.7913 −2.05609
\(994\) 0 0
\(995\) −7.23548 −0.229380
\(996\) 0 0
\(997\) −22.1287 −0.700824 −0.350412 0.936596i \(-0.613958\pi\)
−0.350412 + 0.936596i \(0.613958\pi\)
\(998\) 0 0
\(999\) 9.64158 0.305046
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.s.1.4 4
4.3 odd 2 1672.2.a.f.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1672.2.a.f.1.1 4 4.3 odd 2
3344.2.a.s.1.4 4 1.1 even 1 trivial