Properties

Label 336.3.bh.h.145.2
Level $336$
Weight $3$
Character 336.145
Analytic conductor $9.155$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(145,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.145");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.126303473664.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 2x^{5} + 92x^{4} + 14x^{3} - 441x^{2} - 686x + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.2
Root \(2.64247 + 0.131782i\) of defining polynomial
Character \(\chi\) \(=\) 336.145
Dual form 336.3.bh.h.241.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{3} +(-2.05105 - 1.18418i) q^{5} +(-4.55981 + 5.31113i) q^{7} +(1.50000 - 2.59808i) q^{9} +(-4.00876 - 6.94337i) q^{11} -23.8428i q^{13} -4.10211 q^{15} +(27.9857 - 16.1575i) q^{17} +(-12.6133 - 7.28227i) q^{19} +(-2.24014 + 11.9156i) q^{21} +(2.82843 - 4.89898i) q^{23} +(-9.69545 - 16.7930i) q^{25} -5.19615i q^{27} -34.3864 q^{29} +(-23.5479 + 13.5954i) q^{31} +(-12.0263 - 6.94337i) q^{33} +(15.6417 - 5.49379i) q^{35} +(4.04599 - 7.00786i) q^{37} +(-20.6485 - 35.7642i) q^{39} +50.6069i q^{41} +39.8591 q^{43} +(-6.15316 + 3.55253i) q^{45} +(8.13954 + 4.69937i) q^{47} +(-7.41622 - 48.4355i) q^{49} +(27.9857 - 48.4726i) q^{51} +(27.0592 + 46.8680i) q^{53} +18.9883i q^{55} -25.2265 q^{57} +(38.1831 - 22.0450i) q^{59} +(-30.0000 - 17.3205i) q^{61} +(6.95900 + 19.8134i) q^{63} +(-28.2341 + 48.9029i) q^{65} +(-58.9453 - 102.096i) q^{67} -9.79796i q^{69} +38.2807 q^{71} +(50.4867 - 29.1485i) q^{73} +(-29.0864 - 16.7930i) q^{75} +(55.1564 + 10.3694i) q^{77} +(-38.2995 + 66.3366i) q^{79} +(-4.50000 - 7.79423i) q^{81} +58.2873i q^{83} -76.5335 q^{85} +(-51.5796 + 29.7795i) q^{87} +(12.5005 + 7.21720i) q^{89} +(126.632 + 108.719i) q^{91} +(-23.5479 + 40.7861i) q^{93} +(17.2470 + 29.8727i) q^{95} +120.336i q^{97} -24.0526 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} + 6 q^{5} + 4 q^{7} + 12 q^{9} - 14 q^{11} + 12 q^{15} + 12 q^{17} - 78 q^{19} + 18 q^{21} - 6 q^{25} - 4 q^{29} + 24 q^{31} - 42 q^{33} + 156 q^{35} + 50 q^{37} + 6 q^{39} + 20 q^{43} + 18 q^{45}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) 0 0
\(5\) −2.05105 1.18418i −0.410211 0.236835i 0.280670 0.959804i \(-0.409443\pi\)
−0.690880 + 0.722969i \(0.742777\pi\)
\(6\) 0 0
\(7\) −4.55981 + 5.31113i −0.651402 + 0.758733i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −4.00876 6.94337i −0.364433 0.631216i 0.624252 0.781223i \(-0.285404\pi\)
−0.988685 + 0.150007i \(0.952070\pi\)
\(12\) 0 0
\(13\) 23.8428i 1.83406i −0.398814 0.917032i \(-0.630578\pi\)
0.398814 0.917032i \(-0.369422\pi\)
\(14\) 0 0
\(15\) −4.10211 −0.273474
\(16\) 0 0
\(17\) 27.9857 16.1575i 1.64622 0.950444i 0.667660 0.744466i \(-0.267296\pi\)
0.978557 0.205977i \(-0.0660373\pi\)
\(18\) 0 0
\(19\) −12.6133 7.28227i −0.663856 0.383277i 0.129889 0.991529i \(-0.458538\pi\)
−0.793745 + 0.608251i \(0.791871\pi\)
\(20\) 0 0
\(21\) −2.24014 + 11.9156i −0.106674 + 0.567410i
\(22\) 0 0
\(23\) 2.82843 4.89898i 0.122975 0.212999i −0.797965 0.602704i \(-0.794090\pi\)
0.920940 + 0.389705i \(0.127423\pi\)
\(24\) 0 0
\(25\) −9.69545 16.7930i −0.387818 0.671721i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −34.3864 −1.18574 −0.592869 0.805299i \(-0.702005\pi\)
−0.592869 + 0.805299i \(0.702005\pi\)
\(30\) 0 0
\(31\) −23.5479 + 13.5954i −0.759609 + 0.438561i −0.829156 0.559018i \(-0.811178\pi\)
0.0695460 + 0.997579i \(0.477845\pi\)
\(32\) 0 0
\(33\) −12.0263 6.94337i −0.364433 0.210405i
\(34\) 0 0
\(35\) 15.6417 5.49379i 0.446907 0.156965i
\(36\) 0 0
\(37\) 4.04599 7.00786i 0.109351 0.189402i −0.806156 0.591702i \(-0.798456\pi\)
0.915508 + 0.402301i \(0.131789\pi\)
\(38\) 0 0
\(39\) −20.6485 35.7642i −0.529449 0.917032i
\(40\) 0 0
\(41\) 50.6069i 1.23431i 0.786840 + 0.617157i \(0.211716\pi\)
−0.786840 + 0.617157i \(0.788284\pi\)
\(42\) 0 0
\(43\) 39.8591 0.926957 0.463478 0.886108i \(-0.346601\pi\)
0.463478 + 0.886108i \(0.346601\pi\)
\(44\) 0 0
\(45\) −6.15316 + 3.55253i −0.136737 + 0.0789451i
\(46\) 0 0
\(47\) 8.13954 + 4.69937i 0.173182 + 0.0999865i 0.584085 0.811692i \(-0.301453\pi\)
−0.410904 + 0.911679i \(0.634787\pi\)
\(48\) 0 0
\(49\) −7.41622 48.4355i −0.151351 0.988480i
\(50\) 0 0
\(51\) 27.9857 48.4726i 0.548739 0.950444i
\(52\) 0 0
\(53\) 27.0592 + 46.8680i 0.510552 + 0.884302i 0.999925 + 0.0122274i \(0.00389219\pi\)
−0.489373 + 0.872074i \(0.662774\pi\)
\(54\) 0 0
\(55\) 18.9883i 0.345242i
\(56\) 0 0
\(57\) −25.2265 −0.442571
\(58\) 0 0
\(59\) 38.1831 22.0450i 0.647171 0.373644i −0.140201 0.990123i \(-0.544775\pi\)
0.787371 + 0.616479i \(0.211441\pi\)
\(60\) 0 0
\(61\) −30.0000 17.3205i −0.491803 0.283943i 0.233519 0.972352i \(-0.424976\pi\)
−0.725322 + 0.688409i \(0.758309\pi\)
\(62\) 0 0
\(63\) 6.95900 + 19.8134i 0.110460 + 0.314499i
\(64\) 0 0
\(65\) −28.2341 + 48.9029i −0.434371 + 0.752353i
\(66\) 0 0
\(67\) −58.9453 102.096i −0.879781 1.52382i −0.851581 0.524222i \(-0.824356\pi\)
−0.0281991 0.999602i \(-0.508977\pi\)
\(68\) 0 0
\(69\) 9.79796i 0.141999i
\(70\) 0 0
\(71\) 38.2807 0.539165 0.269582 0.962977i \(-0.413114\pi\)
0.269582 + 0.962977i \(0.413114\pi\)
\(72\) 0 0
\(73\) 50.4867 29.1485i 0.691599 0.399295i −0.112612 0.993639i \(-0.535922\pi\)
0.804211 + 0.594344i \(0.202588\pi\)
\(74\) 0 0
\(75\) −29.0864 16.7930i −0.387818 0.223907i
\(76\) 0 0
\(77\) 55.1564 + 10.3694i 0.716316 + 0.134668i
\(78\) 0 0
\(79\) −38.2995 + 66.3366i −0.484803 + 0.839704i −0.999848 0.0174596i \(-0.994442\pi\)
0.515044 + 0.857164i \(0.327776\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 58.2873i 0.702257i 0.936327 + 0.351129i \(0.114202\pi\)
−0.936327 + 0.351129i \(0.885798\pi\)
\(84\) 0 0
\(85\) −76.5335 −0.900394
\(86\) 0 0
\(87\) −51.5796 + 29.7795i −0.592869 + 0.342293i
\(88\) 0 0
\(89\) 12.5005 + 7.21720i 0.140456 + 0.0810921i 0.568581 0.822627i \(-0.307493\pi\)
−0.428126 + 0.903719i \(0.640826\pi\)
\(90\) 0 0
\(91\) 126.632 + 108.719i 1.39156 + 1.19471i
\(92\) 0 0
\(93\) −23.5479 + 40.7861i −0.253203 + 0.438561i
\(94\) 0 0
\(95\) 17.2470 + 29.8727i 0.181547 + 0.314449i
\(96\) 0 0
\(97\) 120.336i 1.24058i 0.784374 + 0.620289i \(0.212985\pi\)
−0.784374 + 0.620289i \(0.787015\pi\)
\(98\) 0 0
\(99\) −24.0526 −0.242955
\(100\) 0 0
\(101\) 157.876 91.1498i 1.56313 0.902473i 0.566192 0.824274i \(-0.308416\pi\)
0.996938 0.0781997i \(-0.0249172\pi\)
\(102\) 0 0
\(103\) −21.0409 12.1479i −0.204280 0.117941i 0.394370 0.918952i \(-0.370963\pi\)
−0.598650 + 0.801010i \(0.704296\pi\)
\(104\) 0 0
\(105\) 18.7048 21.7868i 0.178141 0.207494i
\(106\) 0 0
\(107\) 20.4419 35.4064i 0.191046 0.330901i −0.754551 0.656241i \(-0.772145\pi\)
0.945597 + 0.325340i \(0.105479\pi\)
\(108\) 0 0
\(109\) 34.1243 + 59.1049i 0.313067 + 0.542247i 0.979025 0.203742i \(-0.0653104\pi\)
−0.665958 + 0.745989i \(0.731977\pi\)
\(110\) 0 0
\(111\) 14.0157i 0.126268i
\(112\) 0 0
\(113\) −36.4622 −0.322674 −0.161337 0.986899i \(-0.551581\pi\)
−0.161337 + 0.986899i \(0.551581\pi\)
\(114\) 0 0
\(115\) −11.6025 + 6.69871i −0.100891 + 0.0582497i
\(116\) 0 0
\(117\) −61.9455 35.7642i −0.529449 0.305677i
\(118\) 0 0
\(119\) −41.7947 + 222.311i −0.351216 + 1.86816i
\(120\) 0 0
\(121\) 28.3597 49.1204i 0.234378 0.405954i
\(122\) 0 0
\(123\) 43.8268 + 75.9103i 0.356316 + 0.617157i
\(124\) 0 0
\(125\) 105.133i 0.841066i
\(126\) 0 0
\(127\) −184.703 −1.45436 −0.727178 0.686449i \(-0.759169\pi\)
−0.727178 + 0.686449i \(0.759169\pi\)
\(128\) 0 0
\(129\) 59.7887 34.5190i 0.463478 0.267589i
\(130\) 0 0
\(131\) 174.145 + 100.543i 1.32935 + 0.767502i 0.985200 0.171411i \(-0.0548326\pi\)
0.344153 + 0.938913i \(0.388166\pi\)
\(132\) 0 0
\(133\) 96.1912 33.7849i 0.723242 0.254022i
\(134\) 0 0
\(135\) −6.15316 + 10.6576i −0.0455790 + 0.0789451i
\(136\) 0 0
\(137\) 69.2606 + 119.963i 0.505552 + 0.875641i 0.999979 + 0.00642244i \(0.00204434\pi\)
−0.494428 + 0.869219i \(0.664622\pi\)
\(138\) 0 0
\(139\) 53.0062i 0.381340i −0.981654 0.190670i \(-0.938934\pi\)
0.981654 0.190670i \(-0.0610660\pi\)
\(140\) 0 0
\(141\) 16.2791 0.115454
\(142\) 0 0
\(143\) −165.550 + 95.5802i −1.15769 + 0.668393i
\(144\) 0 0
\(145\) 70.5283 + 40.7195i 0.486402 + 0.280824i
\(146\) 0 0
\(147\) −53.0707 66.2306i −0.361025 0.450549i
\(148\) 0 0
\(149\) 44.4896 77.0583i 0.298588 0.517170i −0.677225 0.735776i \(-0.736818\pi\)
0.975813 + 0.218606i \(0.0701510\pi\)
\(150\) 0 0
\(151\) −23.9271 41.4429i −0.158458 0.274457i 0.775855 0.630911i \(-0.217319\pi\)
−0.934313 + 0.356455i \(0.883985\pi\)
\(152\) 0 0
\(153\) 96.9453i 0.633629i
\(154\) 0 0
\(155\) 64.3973 0.415467
\(156\) 0 0
\(157\) −140.598 + 81.1745i −0.895531 + 0.517035i −0.875748 0.482769i \(-0.839631\pi\)
−0.0197835 + 0.999804i \(0.506298\pi\)
\(158\) 0 0
\(159\) 81.1777 + 46.8680i 0.510552 + 0.294767i
\(160\) 0 0
\(161\) 13.1220 + 37.3606i 0.0815032 + 0.232053i
\(162\) 0 0
\(163\) 142.372 246.596i 0.873450 1.51286i 0.0150459 0.999887i \(-0.495211\pi\)
0.858404 0.512974i \(-0.171456\pi\)
\(164\) 0 0
\(165\) 16.4444 + 28.4825i 0.0996628 + 0.172621i
\(166\) 0 0
\(167\) 240.554i 1.44044i 0.693743 + 0.720222i \(0.255960\pi\)
−0.693743 + 0.720222i \(0.744040\pi\)
\(168\) 0 0
\(169\) −399.481 −2.36379
\(170\) 0 0
\(171\) −37.8398 + 21.8468i −0.221285 + 0.127759i
\(172\) 0 0
\(173\) −156.689 90.4643i −0.905715 0.522915i −0.0266652 0.999644i \(-0.508489\pi\)
−0.879050 + 0.476729i \(0.841822\pi\)
\(174\) 0 0
\(175\) 133.399 + 25.0792i 0.762282 + 0.143310i
\(176\) 0 0
\(177\) 38.1831 66.1350i 0.215724 0.373644i
\(178\) 0 0
\(179\) −149.437 258.833i −0.834845 1.44599i −0.894156 0.447755i \(-0.852224\pi\)
0.0593107 0.998240i \(-0.481110\pi\)
\(180\) 0 0
\(181\) 209.210i 1.15586i 0.816087 + 0.577928i \(0.196139\pi\)
−0.816087 + 0.577928i \(0.803861\pi\)
\(182\) 0 0
\(183\) −60.0000 −0.327869
\(184\) 0 0
\(185\) −16.5971 + 9.58233i −0.0897139 + 0.0517964i
\(186\) 0 0
\(187\) −224.376 129.543i −1.19987 0.692745i
\(188\) 0 0
\(189\) 27.5974 + 23.6935i 0.146018 + 0.125362i
\(190\) 0 0
\(191\) 171.740 297.462i 0.899160 1.55739i 0.0705895 0.997505i \(-0.477512\pi\)
0.828570 0.559885i \(-0.189155\pi\)
\(192\) 0 0
\(193\) 46.9612 + 81.3392i 0.243322 + 0.421447i 0.961659 0.274249i \(-0.0884294\pi\)
−0.718336 + 0.695696i \(0.755096\pi\)
\(194\) 0 0
\(195\) 97.8058i 0.501568i
\(196\) 0 0
\(197\) 163.468 0.829786 0.414893 0.909870i \(-0.363819\pi\)
0.414893 + 0.909870i \(0.363819\pi\)
\(198\) 0 0
\(199\) 235.308 135.855i 1.18245 0.682690i 0.225872 0.974157i \(-0.427477\pi\)
0.956581 + 0.291467i \(0.0941435\pi\)
\(200\) 0 0
\(201\) −176.836 102.096i −0.879781 0.507942i
\(202\) 0 0
\(203\) 156.795 182.631i 0.772391 0.899658i
\(204\) 0 0
\(205\) 59.9274 103.797i 0.292329 0.506329i
\(206\) 0 0
\(207\) −8.48528 14.6969i −0.0409917 0.0709997i
\(208\) 0 0
\(209\) 116.771i 0.558715i
\(210\) 0 0
\(211\) 122.158 0.578947 0.289474 0.957186i \(-0.406520\pi\)
0.289474 + 0.957186i \(0.406520\pi\)
\(212\) 0 0
\(213\) 57.4210 33.1521i 0.269582 0.155643i
\(214\) 0 0
\(215\) −81.7532 47.2002i −0.380247 0.219536i
\(216\) 0 0
\(217\) 35.1671 187.058i 0.162061 0.862020i
\(218\) 0 0
\(219\) 50.4867 87.4455i 0.230533 0.399295i
\(220\) 0 0
\(221\) −385.242 667.258i −1.74317 3.01927i
\(222\) 0 0
\(223\) 182.325i 0.817603i −0.912623 0.408801i \(-0.865947\pi\)
0.912623 0.408801i \(-0.134053\pi\)
\(224\) 0 0
\(225\) −58.1727 −0.258545
\(226\) 0 0
\(227\) 19.4602 11.2353i 0.0857277 0.0494949i −0.456523 0.889711i \(-0.650906\pi\)
0.542251 + 0.840217i \(0.317572\pi\)
\(228\) 0 0
\(229\) 248.673 + 143.571i 1.08591 + 0.626949i 0.932484 0.361212i \(-0.117637\pi\)
0.153423 + 0.988161i \(0.450970\pi\)
\(230\) 0 0
\(231\) 91.7147 32.2126i 0.397034 0.139449i
\(232\) 0 0
\(233\) −26.7700 + 46.3669i −0.114893 + 0.199000i −0.917737 0.397189i \(-0.869986\pi\)
0.802844 + 0.596189i \(0.203319\pi\)
\(234\) 0 0
\(235\) −11.1298 19.2773i −0.0473607 0.0820311i
\(236\) 0 0
\(237\) 132.673i 0.559803i
\(238\) 0 0
\(239\) −340.188 −1.42338 −0.711691 0.702493i \(-0.752070\pi\)
−0.711691 + 0.702493i \(0.752070\pi\)
\(240\) 0 0
\(241\) −22.3377 + 12.8967i −0.0926877 + 0.0535132i −0.545627 0.838028i \(-0.683709\pi\)
0.452940 + 0.891541i \(0.350375\pi\)
\(242\) 0 0
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) −42.1451 + 108.126i −0.172021 + 0.441330i
\(246\) 0 0
\(247\) −173.630 + 300.736i −0.702955 + 1.21755i
\(248\) 0 0
\(249\) 50.4783 + 87.4310i 0.202724 + 0.351129i
\(250\) 0 0
\(251\) 143.218i 0.570590i 0.958440 + 0.285295i \(0.0920915\pi\)
−0.958440 + 0.285295i \(0.907908\pi\)
\(252\) 0 0
\(253\) −45.3539 −0.179265
\(254\) 0 0
\(255\) −114.800 + 66.2800i −0.450197 + 0.259921i
\(256\) 0 0
\(257\) 34.0477 + 19.6575i 0.132481 + 0.0764882i 0.564776 0.825244i \(-0.308963\pi\)
−0.432295 + 0.901732i \(0.642296\pi\)
\(258\) 0 0
\(259\) 18.7707 + 53.4433i 0.0724737 + 0.206345i
\(260\) 0 0
\(261\) −51.5796 + 89.3384i −0.197623 + 0.342293i
\(262\) 0 0
\(263\) −86.2864 149.452i −0.328085 0.568260i 0.654047 0.756454i \(-0.273070\pi\)
−0.982132 + 0.188194i \(0.939737\pi\)
\(264\) 0 0
\(265\) 128.172i 0.483667i
\(266\) 0 0
\(267\) 25.0011 0.0936371
\(268\) 0 0
\(269\) 125.662 72.5509i 0.467144 0.269706i −0.247899 0.968786i \(-0.579740\pi\)
0.715043 + 0.699080i \(0.246407\pi\)
\(270\) 0 0
\(271\) 3.61372 + 2.08638i 0.0133348 + 0.00769883i 0.506653 0.862150i \(-0.330883\pi\)
−0.493318 + 0.869849i \(0.664216\pi\)
\(272\) 0 0
\(273\) 284.102 + 53.4114i 1.04067 + 0.195646i
\(274\) 0 0
\(275\) −77.7335 + 134.638i −0.282667 + 0.489594i
\(276\) 0 0
\(277\) −8.06909 13.9761i −0.0291303 0.0504551i 0.851093 0.525015i \(-0.175940\pi\)
−0.880223 + 0.474560i \(0.842607\pi\)
\(278\) 0 0
\(279\) 81.5723i 0.292374i
\(280\) 0 0
\(281\) −404.197 −1.43843 −0.719213 0.694790i \(-0.755497\pi\)
−0.719213 + 0.694790i \(0.755497\pi\)
\(282\) 0 0
\(283\) −10.7861 + 6.22734i −0.0381133 + 0.0220047i −0.518936 0.854813i \(-0.673672\pi\)
0.480822 + 0.876818i \(0.340338\pi\)
\(284\) 0 0
\(285\) 51.7409 + 29.8727i 0.181547 + 0.104816i
\(286\) 0 0
\(287\) −268.780 230.758i −0.936515 0.804034i
\(288\) 0 0
\(289\) 377.632 654.078i 1.30669 2.26325i
\(290\) 0 0
\(291\) 104.214 + 180.504i 0.358124 + 0.620289i
\(292\) 0 0
\(293\) 267.174i 0.911858i −0.890016 0.455929i \(-0.849307\pi\)
0.890016 0.455929i \(-0.150693\pi\)
\(294\) 0 0
\(295\) −104.421 −0.353968
\(296\) 0 0
\(297\) −36.0788 + 20.8301i −0.121478 + 0.0701351i
\(298\) 0 0
\(299\) −116.806 67.4377i −0.390654 0.225544i
\(300\) 0 0
\(301\) −181.750 + 211.697i −0.603821 + 0.703312i
\(302\) 0 0
\(303\) 157.876 273.449i 0.521043 0.902473i
\(304\) 0 0
\(305\) 41.0211 + 71.0506i 0.134495 + 0.232953i
\(306\) 0 0
\(307\) 417.532i 1.36004i 0.733193 + 0.680020i \(0.238029\pi\)
−0.733193 + 0.680020i \(0.761971\pi\)
\(308\) 0 0
\(309\) −42.0817 −0.136187
\(310\) 0 0
\(311\) 478.894 276.489i 1.53985 0.889033i 0.541004 0.841020i \(-0.318044\pi\)
0.998847 0.0480134i \(-0.0152890\pi\)
\(312\) 0 0
\(313\) 133.600 + 77.1343i 0.426839 + 0.246435i 0.697999 0.716099i \(-0.254074\pi\)
−0.271160 + 0.962534i \(0.587407\pi\)
\(314\) 0 0
\(315\) 9.18931 48.8791i 0.0291724 0.155172i
\(316\) 0 0
\(317\) 82.1807 142.341i 0.259245 0.449026i −0.706795 0.707419i \(-0.749860\pi\)
0.966040 + 0.258393i \(0.0831929\pi\)
\(318\) 0 0
\(319\) 137.847 + 238.758i 0.432121 + 0.748456i
\(320\) 0 0
\(321\) 70.8128i 0.220601i
\(322\) 0 0
\(323\) −470.654 −1.45713
\(324\) 0 0
\(325\) −400.393 + 231.167i −1.23198 + 0.711283i
\(326\) 0 0
\(327\) 102.373 + 59.1049i 0.313067 + 0.180749i
\(328\) 0 0
\(329\) −62.0737 + 21.8019i −0.188674 + 0.0662673i
\(330\) 0 0
\(331\) −262.136 + 454.033i −0.791952 + 1.37170i 0.132805 + 0.991142i \(0.457602\pi\)
−0.924757 + 0.380558i \(0.875732\pi\)
\(332\) 0 0
\(333\) −12.1380 21.0236i −0.0364503 0.0631339i
\(334\) 0 0
\(335\) 279.206i 0.833452i
\(336\) 0 0
\(337\) 479.725 1.42352 0.711758 0.702424i \(-0.247899\pi\)
0.711758 + 0.702424i \(0.247899\pi\)
\(338\) 0 0
\(339\) −54.6933 + 31.5772i −0.161337 + 0.0931481i
\(340\) 0 0
\(341\) 188.796 + 109.001i 0.553653 + 0.319652i
\(342\) 0 0
\(343\) 291.064 + 181.468i 0.848583 + 0.529062i
\(344\) 0 0
\(345\) −11.6025 + 20.0961i −0.0336305 + 0.0582497i
\(346\) 0 0
\(347\) 21.5704 + 37.3610i 0.0621624 + 0.107669i 0.895432 0.445199i \(-0.146867\pi\)
−0.833269 + 0.552867i \(0.813534\pi\)
\(348\) 0 0
\(349\) 20.2166i 0.0579273i 0.999580 + 0.0289636i \(0.00922070\pi\)
−0.999580 + 0.0289636i \(0.990779\pi\)
\(350\) 0 0
\(351\) −123.891 −0.352966
\(352\) 0 0
\(353\) 227.795 131.517i 0.645310 0.372570i −0.141347 0.989960i \(-0.545143\pi\)
0.786657 + 0.617390i \(0.211810\pi\)
\(354\) 0 0
\(355\) −78.5157 45.3311i −0.221171 0.127693i
\(356\) 0 0
\(357\) 129.835 + 369.662i 0.363683 + 1.03547i
\(358\) 0 0
\(359\) 256.794 444.781i 0.715305 1.23894i −0.247537 0.968878i \(-0.579621\pi\)
0.962842 0.270066i \(-0.0870456\pi\)
\(360\) 0 0
\(361\) −74.4371 128.929i −0.206197 0.357143i
\(362\) 0 0
\(363\) 98.2409i 0.270636i
\(364\) 0 0
\(365\) −138.068 −0.378268
\(366\) 0 0
\(367\) 76.4289 44.1262i 0.208253 0.120235i −0.392246 0.919860i \(-0.628302\pi\)
0.600499 + 0.799625i \(0.294969\pi\)
\(368\) 0 0
\(369\) 131.481 + 75.9103i 0.356316 + 0.205719i
\(370\) 0 0
\(371\) −372.307 69.9941i −1.00352 0.188663i
\(372\) 0 0
\(373\) 193.918 335.877i 0.519889 0.900474i −0.479844 0.877354i \(-0.659307\pi\)
0.999733 0.0231198i \(-0.00735993\pi\)
\(374\) 0 0
\(375\) 91.0481 + 157.700i 0.242795 + 0.420533i
\(376\) 0 0
\(377\) 819.869i 2.17472i
\(378\) 0 0
\(379\) −215.531 −0.568682 −0.284341 0.958723i \(-0.591775\pi\)
−0.284341 + 0.958723i \(0.591775\pi\)
\(380\) 0 0
\(381\) −277.055 + 159.958i −0.727178 + 0.419836i
\(382\) 0 0
\(383\) 448.533 + 258.961i 1.17111 + 0.676138i 0.953940 0.299997i \(-0.0969856\pi\)
0.217165 + 0.976135i \(0.430319\pi\)
\(384\) 0 0
\(385\) −100.849 86.5831i −0.261946 0.224891i
\(386\) 0 0
\(387\) 59.7887 103.557i 0.154493 0.267589i
\(388\) 0 0
\(389\) −148.316 256.891i −0.381275 0.660387i 0.609970 0.792424i \(-0.291181\pi\)
−0.991245 + 0.132037i \(0.957848\pi\)
\(390\) 0 0
\(391\) 182.802i 0.467524i
\(392\) 0 0
\(393\) 348.291 0.886235
\(394\) 0 0
\(395\) 157.108 90.7066i 0.397743 0.229637i
\(396\) 0 0
\(397\) 140.243 + 80.9692i 0.353256 + 0.203953i 0.666119 0.745846i \(-0.267954\pi\)
−0.312862 + 0.949799i \(0.601288\pi\)
\(398\) 0 0
\(399\) 115.028 133.981i 0.288291 0.335793i
\(400\) 0 0
\(401\) −370.716 + 642.098i −0.924478 + 1.60124i −0.132079 + 0.991239i \(0.542165\pi\)
−0.792399 + 0.610004i \(0.791168\pi\)
\(402\) 0 0
\(403\) 324.152 + 561.448i 0.804348 + 1.39317i
\(404\) 0 0
\(405\) 21.3152i 0.0526301i
\(406\) 0 0
\(407\) −64.8776 −0.159404
\(408\) 0 0
\(409\) −143.889 + 83.0741i −0.351806 + 0.203115i −0.665480 0.746415i \(-0.731773\pi\)
0.313675 + 0.949531i \(0.398440\pi\)
\(410\) 0 0
\(411\) 207.782 + 119.963i 0.505552 + 0.291880i
\(412\) 0 0
\(413\) −57.0237 + 303.316i −0.138072 + 0.734422i
\(414\) 0 0
\(415\) 69.0225 119.550i 0.166319 0.288073i
\(416\) 0 0
\(417\) −45.9047 79.5094i −0.110083 0.190670i
\(418\) 0 0
\(419\) 210.967i 0.503502i 0.967792 + 0.251751i \(0.0810064\pi\)
−0.967792 + 0.251751i \(0.918994\pi\)
\(420\) 0 0
\(421\) 191.145 0.454027 0.227013 0.973892i \(-0.427104\pi\)
0.227013 + 0.973892i \(0.427104\pi\)
\(422\) 0 0
\(423\) 24.4186 14.0981i 0.0577272 0.0333288i
\(424\) 0 0
\(425\) −542.668 313.309i −1.27687 0.737199i
\(426\) 0 0
\(427\) 228.786 80.3556i 0.535798 0.188187i
\(428\) 0 0
\(429\) −165.550 + 286.741i −0.385897 + 0.668393i
\(430\) 0 0
\(431\) −47.6578 82.5457i −0.110575 0.191521i 0.805427 0.592695i \(-0.201936\pi\)
−0.916002 + 0.401173i \(0.868603\pi\)
\(432\) 0 0
\(433\) 393.461i 0.908685i 0.890827 + 0.454343i \(0.150126\pi\)
−0.890827 + 0.454343i \(0.849874\pi\)
\(434\) 0 0
\(435\) 141.057 0.324268
\(436\) 0 0
\(437\) −71.3514 + 41.1947i −0.163275 + 0.0942672i
\(438\) 0 0
\(439\) −540.002 311.770i −1.23007 0.710183i −0.263028 0.964788i \(-0.584721\pi\)
−0.967045 + 0.254605i \(0.918054\pi\)
\(440\) 0 0
\(441\) −136.964 53.3854i −0.310575 0.121055i
\(442\) 0 0
\(443\) −280.200 + 485.321i −0.632507 + 1.09553i 0.354531 + 0.935044i \(0.384641\pi\)
−0.987038 + 0.160489i \(0.948693\pi\)
\(444\) 0 0
\(445\) −17.0929 29.6057i −0.0384109 0.0665297i
\(446\) 0 0
\(447\) 154.117i 0.344780i
\(448\) 0 0
\(449\) 387.654 0.863372 0.431686 0.902024i \(-0.357919\pi\)
0.431686 + 0.902024i \(0.357919\pi\)
\(450\) 0 0
\(451\) 351.382 202.871i 0.779119 0.449824i
\(452\) 0 0
\(453\) −71.7813 41.4429i −0.158458 0.0914855i
\(454\) 0 0
\(455\) −130.988 372.943i −0.287885 0.819655i
\(456\) 0 0
\(457\) −243.867 + 422.391i −0.533627 + 0.924268i 0.465602 + 0.884994i \(0.345838\pi\)
−0.999228 + 0.0392740i \(0.987495\pi\)
\(458\) 0 0
\(459\) −83.9571 145.418i −0.182913 0.316815i
\(460\) 0 0
\(461\) 300.713i 0.652307i −0.945317 0.326153i \(-0.894247\pi\)
0.945317 0.326153i \(-0.105753\pi\)
\(462\) 0 0
\(463\) 661.184 1.42804 0.714022 0.700124i \(-0.246872\pi\)
0.714022 + 0.700124i \(0.246872\pi\)
\(464\) 0 0
\(465\) 96.5960 55.7697i 0.207733 0.119935i
\(466\) 0 0
\(467\) −286.324 165.309i −0.613114 0.353982i 0.161069 0.986943i \(-0.448506\pi\)
−0.774183 + 0.632961i \(0.781839\pi\)
\(468\) 0 0
\(469\) 811.026 + 152.474i 1.72927 + 0.325104i
\(470\) 0 0
\(471\) −140.598 + 243.524i −0.298510 + 0.517035i
\(472\) 0 0
\(473\) −159.786 276.757i −0.337813 0.585110i
\(474\) 0 0
\(475\) 282.420i 0.594568i
\(476\) 0 0
\(477\) 162.355 0.340368
\(478\) 0 0
\(479\) 542.813 313.393i 1.13322 0.654266i 0.188479 0.982077i \(-0.439644\pi\)
0.944743 + 0.327811i \(0.106311\pi\)
\(480\) 0 0
\(481\) −167.087 96.4678i −0.347375 0.200557i
\(482\) 0 0
\(483\) 52.0382 + 44.6769i 0.107740 + 0.0924987i
\(484\) 0 0
\(485\) 142.499 246.816i 0.293812 0.508898i
\(486\) 0 0
\(487\) 16.5404 + 28.6488i 0.0339639 + 0.0588272i 0.882508 0.470298i \(-0.155854\pi\)
−0.848544 + 0.529125i \(0.822520\pi\)
\(488\) 0 0
\(489\) 493.192i 1.00857i
\(490\) 0 0
\(491\) 460.309 0.937493 0.468747 0.883333i \(-0.344706\pi\)
0.468747 + 0.883333i \(0.344706\pi\)
\(492\) 0 0
\(493\) −962.326 + 555.599i −1.95198 + 1.12698i
\(494\) 0 0
\(495\) 49.3331 + 28.4825i 0.0996628 + 0.0575403i
\(496\) 0 0
\(497\) −174.553 + 203.314i −0.351213 + 0.409082i
\(498\) 0 0
\(499\) −0.462513 + 0.801097i −0.000926881 + 0.00160540i −0.866488 0.499197i \(-0.833628\pi\)
0.865562 + 0.500802i \(0.166962\pi\)
\(500\) 0 0
\(501\) 208.326 + 360.831i 0.415820 + 0.720222i
\(502\) 0 0
\(503\) 457.206i 0.908959i −0.890757 0.454479i \(-0.849825\pi\)
0.890757 0.454479i \(-0.150175\pi\)
\(504\) 0 0
\(505\) −431.750 −0.854950
\(506\) 0 0
\(507\) −599.221 + 345.960i −1.18190 + 0.682368i
\(508\) 0 0
\(509\) 28.4048 + 16.3995i 0.0558051 + 0.0322191i 0.527643 0.849466i \(-0.323076\pi\)
−0.471838 + 0.881685i \(0.656409\pi\)
\(510\) 0 0
\(511\) −75.3984 + 401.053i −0.147551 + 0.784840i
\(512\) 0 0
\(513\) −37.8398 + 65.5404i −0.0737618 + 0.127759i
\(514\) 0 0
\(515\) 28.7706 + 49.8321i 0.0558652 + 0.0967614i
\(516\) 0 0
\(517\) 75.3545i 0.145753i
\(518\) 0 0
\(519\) −313.377 −0.603810
\(520\) 0 0
\(521\) 416.501 240.467i 0.799425 0.461548i −0.0438448 0.999038i \(-0.513961\pi\)
0.843270 + 0.537490i \(0.180627\pi\)
\(522\) 0 0
\(523\) −370.870 214.122i −0.709120 0.409411i 0.101615 0.994824i \(-0.467599\pi\)
−0.810735 + 0.585413i \(0.800932\pi\)
\(524\) 0 0
\(525\) 221.818 77.9084i 0.422511 0.148397i
\(526\) 0 0
\(527\) −439.336 + 760.952i −0.833655 + 1.44393i
\(528\) 0 0
\(529\) 248.500 + 430.415i 0.469754 + 0.813638i
\(530\) 0 0
\(531\) 132.270i 0.249096i
\(532\) 0 0
\(533\) 1206.61 2.26381
\(534\) 0 0
\(535\) −83.8548 + 48.4136i −0.156738 + 0.0904927i
\(536\) 0 0
\(537\) −448.312 258.833i −0.834845 0.481998i
\(538\) 0 0
\(539\) −306.576 + 245.660i −0.568787 + 0.455770i
\(540\) 0 0
\(541\) 211.392 366.142i 0.390743 0.676787i −0.601804 0.798644i \(-0.705551\pi\)
0.992548 + 0.121856i \(0.0388846\pi\)
\(542\) 0 0
\(543\) 181.181 + 313.815i 0.333667 + 0.577928i
\(544\) 0 0
\(545\) 161.637i 0.296581i
\(546\) 0 0
\(547\) −962.311 −1.75925 −0.879626 0.475665i \(-0.842207\pi\)
−0.879626 + 0.475665i \(0.842207\pi\)
\(548\) 0 0
\(549\) −90.0000 + 51.9615i −0.163934 + 0.0946476i
\(550\) 0 0
\(551\) 433.724 + 250.411i 0.787159 + 0.454466i
\(552\) 0 0
\(553\) −177.684 505.896i −0.321309 0.914821i
\(554\) 0 0
\(555\) −16.5971 + 28.7470i −0.0299046 + 0.0517964i
\(556\) 0 0
\(557\) −458.690 794.474i −0.823501 1.42634i −0.903060 0.429515i \(-0.858685\pi\)
0.0795593 0.996830i \(-0.474649\pi\)
\(558\) 0 0
\(559\) 950.355i 1.70010i
\(560\) 0 0
\(561\) −448.751 −0.799914
\(562\) 0 0
\(563\) −337.941 + 195.111i −0.600251 + 0.346555i −0.769140 0.639080i \(-0.779315\pi\)
0.168889 + 0.985635i \(0.445982\pi\)
\(564\) 0 0
\(565\) 74.7859 + 43.1777i 0.132364 + 0.0764207i
\(566\) 0 0
\(567\) 61.9153 + 11.6401i 0.109198 + 0.0205293i
\(568\) 0 0
\(569\) −76.9559 + 133.292i −0.135248 + 0.234256i −0.925692 0.378278i \(-0.876516\pi\)
0.790444 + 0.612534i \(0.209850\pi\)
\(570\) 0 0
\(571\) −179.223 310.424i −0.313876 0.543650i 0.665322 0.746557i \(-0.268294\pi\)
−0.979198 + 0.202907i \(0.934961\pi\)
\(572\) 0 0
\(573\) 594.923i 1.03826i
\(574\) 0 0
\(575\) −109.692 −0.190768
\(576\) 0 0
\(577\) 771.351 445.340i 1.33683 0.771820i 0.350494 0.936565i \(-0.386014\pi\)
0.986336 + 0.164745i \(0.0526802\pi\)
\(578\) 0 0
\(579\) 140.884 + 81.3392i 0.243322 + 0.140482i
\(580\) 0 0
\(581\) −309.572 265.779i −0.532826 0.457451i
\(582\) 0 0
\(583\) 216.948 375.765i 0.372124 0.644537i
\(584\) 0 0
\(585\) 84.7023 + 146.709i 0.144790 + 0.250784i
\(586\) 0 0
\(587\) 85.2525i 0.145234i 0.997360 + 0.0726171i \(0.0231351\pi\)
−0.997360 + 0.0726171i \(0.976865\pi\)
\(588\) 0 0
\(589\) 396.021 0.672362
\(590\) 0 0
\(591\) 245.202 141.567i 0.414893 0.239539i
\(592\) 0 0
\(593\) 949.757 + 548.343i 1.60161 + 0.924692i 0.991165 + 0.132637i \(0.0423444\pi\)
0.610449 + 0.792055i \(0.290989\pi\)
\(594\) 0 0
\(595\) 348.978 406.479i 0.586518 0.683159i
\(596\) 0 0
\(597\) 235.308 407.566i 0.394151 0.682690i
\(598\) 0 0
\(599\) −36.5134 63.2431i −0.0609573 0.105581i 0.833936 0.551861i \(-0.186082\pi\)
−0.894894 + 0.446280i \(0.852749\pi\)
\(600\) 0 0
\(601\) 911.924i 1.51734i −0.651472 0.758672i \(-0.725848\pi\)
0.651472 0.758672i \(-0.274152\pi\)
\(602\) 0 0
\(603\) −353.672 −0.586520
\(604\) 0 0
\(605\) −116.334 + 67.1658i −0.192288 + 0.111018i
\(606\) 0 0
\(607\) −101.592 58.6544i −0.167368 0.0966299i 0.413976 0.910288i \(-0.364140\pi\)
−0.581344 + 0.813658i \(0.697473\pi\)
\(608\) 0 0
\(609\) 77.0305 409.735i 0.126487 0.672799i
\(610\) 0 0
\(611\) 112.046 194.070i 0.183382 0.317626i
\(612\) 0 0
\(613\) −9.52481 16.4975i −0.0155380 0.0269127i 0.858152 0.513396i \(-0.171613\pi\)
−0.873690 + 0.486483i \(0.838279\pi\)
\(614\) 0 0
\(615\) 207.595i 0.337552i
\(616\) 0 0
\(617\) −688.725 −1.11625 −0.558124 0.829758i \(-0.688479\pi\)
−0.558124 + 0.829758i \(0.688479\pi\)
\(618\) 0 0
\(619\) −145.813 + 84.1853i −0.235562 + 0.136002i −0.613135 0.789978i \(-0.710092\pi\)
0.377573 + 0.925980i \(0.376759\pi\)
\(620\) 0 0
\(621\) −25.4558 14.6969i −0.0409917 0.0236666i
\(622\) 0 0
\(623\) −95.3316 + 33.4830i −0.153020 + 0.0537448i
\(624\) 0 0
\(625\) −117.890 + 204.191i −0.188624 + 0.326706i
\(626\) 0 0
\(627\) 101.127 + 175.157i 0.161287 + 0.279358i
\(628\) 0 0
\(629\) 261.493i 0.415728i
\(630\) 0 0
\(631\) 730.669 1.15795 0.578977 0.815344i \(-0.303452\pi\)
0.578977 + 0.815344i \(0.303452\pi\)
\(632\) 0 0
\(633\) 183.237 105.792i 0.289474 0.167128i
\(634\) 0 0
\(635\) 378.836 + 218.721i 0.596592 + 0.344443i
\(636\) 0 0
\(637\) −1154.84 + 176.824i −1.81294 + 0.277588i
\(638\) 0 0
\(639\) 57.4210 99.4562i 0.0898608 0.155643i
\(640\) 0 0
\(641\) 138.862 + 240.516i 0.216633 + 0.375220i 0.953777 0.300517i \(-0.0971591\pi\)
−0.737143 + 0.675736i \(0.763826\pi\)
\(642\) 0 0
\(643\) 1069.73i 1.66366i −0.555029 0.831831i \(-0.687293\pi\)
0.555029 0.831831i \(-0.312707\pi\)
\(644\) 0 0
\(645\) −163.506 −0.253498
\(646\) 0 0
\(647\) −738.214 + 426.208i −1.14098 + 0.658745i −0.946673 0.322195i \(-0.895579\pi\)
−0.194307 + 0.980941i \(0.562246\pi\)
\(648\) 0 0
\(649\) −306.134 176.746i −0.471700 0.272336i
\(650\) 0 0
\(651\) −109.247 311.043i −0.167813 0.477793i
\(652\) 0 0
\(653\) −85.5358 + 148.152i −0.130989 + 0.226880i −0.924058 0.382252i \(-0.875149\pi\)
0.793069 + 0.609132i \(0.208482\pi\)
\(654\) 0 0
\(655\) −238.121 412.437i −0.363543 0.629675i
\(656\) 0 0
\(657\) 174.891i 0.266196i
\(658\) 0 0
\(659\) 1237.16 1.87732 0.938661 0.344840i \(-0.112067\pi\)
0.938661 + 0.344840i \(0.112067\pi\)
\(660\) 0 0
\(661\) −222.784 + 128.624i −0.337040 + 0.194590i −0.658962 0.752176i \(-0.729004\pi\)
0.321922 + 0.946766i \(0.395671\pi\)
\(662\) 0 0
\(663\) −1155.72 667.258i −1.74317 1.00642i
\(664\) 0 0
\(665\) −237.301 44.6127i −0.356843 0.0670868i
\(666\) 0 0
\(667\) −97.2594 + 168.458i −0.145816 + 0.252561i
\(668\) 0 0
\(669\) −157.898 273.488i −0.236022 0.408801i
\(670\) 0 0
\(671\) 277.735i 0.413912i
\(672\) 0 0
\(673\) −792.478 −1.17753 −0.588765 0.808304i \(-0.700386\pi\)
−0.588765 + 0.808304i \(0.700386\pi\)
\(674\) 0 0
\(675\) −87.2591 + 50.3791i −0.129273 + 0.0746356i
\(676\) 0 0
\(677\) 208.935 + 120.629i 0.308619 + 0.178181i 0.646308 0.763076i \(-0.276312\pi\)
−0.337689 + 0.941258i \(0.609645\pi\)
\(678\) 0 0
\(679\) −639.120 548.710i −0.941267 0.808114i
\(680\) 0 0
\(681\) 19.4602 33.7060i 0.0285759 0.0494949i
\(682\) 0 0
\(683\) −307.939 533.366i −0.450863 0.780917i 0.547577 0.836755i \(-0.315550\pi\)
−0.998440 + 0.0558381i \(0.982217\pi\)
\(684\) 0 0
\(685\) 328.067i 0.478930i
\(686\) 0 0
\(687\) 497.345 0.723938
\(688\) 0 0
\(689\) 1117.47 645.169i 1.62187 0.936385i
\(690\) 0 0
\(691\) 20.1639 + 11.6416i 0.0291807 + 0.0168475i 0.514519 0.857479i \(-0.327970\pi\)
−0.485339 + 0.874326i \(0.661304\pi\)
\(692\) 0 0
\(693\) 109.675 127.746i 0.158261 0.184338i
\(694\) 0 0
\(695\) −62.7687 + 108.719i −0.0903147 + 0.156430i
\(696\) 0 0
\(697\) 817.683 + 1416.27i 1.17315 + 2.03195i
\(698\) 0 0
\(699\) 92.7339i 0.132666i
\(700\) 0 0
\(701\) 164.723 0.234983 0.117491 0.993074i \(-0.462515\pi\)
0.117491 + 0.993074i \(0.462515\pi\)
\(702\) 0 0
\(703\) −102.066 + 58.9280i −0.145187 + 0.0838236i
\(704\) 0 0
\(705\) −33.3893 19.2773i −0.0473607 0.0273437i
\(706\) 0 0
\(707\) −235.777 + 1254.13i −0.333489 + 1.77387i
\(708\) 0 0
\(709\) −388.793 + 673.410i −0.548369 + 0.949802i 0.450018 + 0.893020i \(0.351418\pi\)
−0.998387 + 0.0567828i \(0.981916\pi\)
\(710\) 0 0
\(711\) 114.898 + 199.010i 0.161601 + 0.279901i
\(712\) 0 0
\(713\) 153.814i 0.215728i
\(714\) 0 0
\(715\) 452.735 0.633196
\(716\) 0 0
\(717\) −510.282 + 294.612i −0.711691 + 0.410895i
\(718\) 0 0
\(719\) 491.076 + 283.523i 0.682998 + 0.394329i 0.800984 0.598686i \(-0.204310\pi\)
−0.117985 + 0.993015i \(0.537644\pi\)
\(720\) 0 0
\(721\) 160.462 56.3584i 0.222554 0.0781670i
\(722\) 0 0
\(723\) −22.3377 + 38.6901i −0.0308959 + 0.0535132i
\(724\) 0 0
\(725\) 333.392 + 577.451i 0.459850 + 0.796484i
\(726\) 0 0
\(727\) 175.123i 0.240884i −0.992720 0.120442i \(-0.961569\pi\)
0.992720 0.120442i \(-0.0384313\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 1115.49 644.026i 1.52597 0.881020i
\(732\) 0 0
\(733\) −631.343 364.506i −0.861313 0.497280i 0.00313844 0.999995i \(-0.499001\pi\)
−0.864452 + 0.502716i \(0.832334\pi\)
\(734\) 0 0
\(735\) 30.4221 + 198.688i 0.0413906 + 0.270323i
\(736\) 0 0
\(737\) −472.595 + 818.559i −0.641242 + 1.11066i
\(738\) 0 0
\(739\) 245.926 + 425.957i 0.332782 + 0.576396i 0.983056 0.183304i \(-0.0586792\pi\)
−0.650274 + 0.759700i \(0.725346\pi\)
\(740\) 0 0
\(741\) 601.472i 0.811703i
\(742\) 0 0
\(743\) 1124.25 1.51313 0.756563 0.653920i \(-0.226877\pi\)
0.756563 + 0.653920i \(0.226877\pi\)
\(744\) 0 0
\(745\) −182.501 + 105.367i −0.244968 + 0.141432i
\(746\) 0 0
\(747\) 151.435 + 87.4310i 0.202724 + 0.117043i
\(748\) 0 0
\(749\) 94.8368 + 270.016i 0.126618 + 0.360502i
\(750\) 0 0
\(751\) −459.432 + 795.759i −0.611760 + 1.05960i 0.379184 + 0.925321i \(0.376205\pi\)
−0.990944 + 0.134278i \(0.957129\pi\)
\(752\) 0 0
\(753\) 124.030 + 214.827i 0.164715 + 0.285295i
\(754\) 0 0
\(755\) 113.336i 0.150113i
\(756\) 0 0
\(757\) 544.690 0.719538 0.359769 0.933041i \(-0.382856\pi\)
0.359769 + 0.933041i \(0.382856\pi\)
\(758\) 0 0
\(759\) −68.0309 + 39.2777i −0.0896323 + 0.0517492i
\(760\) 0 0
\(761\) −168.805 97.4598i −0.221820 0.128068i 0.384972 0.922928i \(-0.374211\pi\)
−0.606793 + 0.794860i \(0.707544\pi\)
\(762\) 0 0
\(763\) −469.514 88.2691i −0.615353 0.115687i
\(764\) 0 0
\(765\) −114.800 + 198.840i −0.150066 + 0.259921i
\(766\) 0 0
\(767\) −525.615 910.393i −0.685287 1.18695i
\(768\) 0 0
\(769\) 450.642i 0.586010i −0.956111 0.293005i \(-0.905345\pi\)
0.956111 0.293005i \(-0.0946553\pi\)
\(770\) 0 0
\(771\) 68.0954 0.0883209
\(772\) 0 0
\(773\) −132.382 + 76.4306i −0.171257 + 0.0988754i −0.583178 0.812344i \(-0.698191\pi\)
0.411921 + 0.911219i \(0.364858\pi\)
\(774\) 0 0
\(775\) 456.615 + 263.627i 0.589181 + 0.340164i
\(776\) 0 0
\(777\) 74.4393 + 63.9090i 0.0958035 + 0.0822510i
\(778\) 0 0
\(779\) 368.533 638.318i 0.473085 0.819407i
\(780\) 0 0
\(781\) −153.458 265.797i −0.196489 0.340329i
\(782\) 0 0
\(783\) 178.677i 0.228195i
\(784\) 0 0
\(785\) 384.500 0.489809
\(786\) 0 0
\(787\) −802.406 + 463.269i −1.01958 + 0.588652i −0.913981 0.405757i \(-0.867008\pi\)
−0.105595 + 0.994409i \(0.533675\pi\)
\(788\) 0 0
\(789\) −258.859 149.452i −0.328085 0.189420i
\(790\) 0 0
\(791\) 166.261 193.656i 0.210191 0.244824i
\(792\) 0 0
\(793\) −412.970 + 715.285i −0.520769 + 0.901999i
\(794\) 0 0
\(795\) −111.000 192.257i −0.139623 0.241833i
\(796\) 0 0
\(797\) 1277.11i 1.60239i 0.598401 + 0.801197i \(0.295803\pi\)
−0.598401 + 0.801197i \(0.704197\pi\)
\(798\) 0 0
\(799\) 303.721 0.380126
\(800\) 0 0
\(801\) 37.5016 21.6516i 0.0468185 0.0270307i
\(802\) 0 0
\(803\) −404.778 233.699i −0.504082 0.291032i
\(804\) 0 0
\(805\) 17.3275 92.1673i 0.0215249 0.114494i
\(806\) 0 0
\(807\) 125.662 217.653i 0.155715 0.269706i
\(808\) 0 0
\(809\) 332.688 + 576.233i 0.411234 + 0.712278i 0.995025 0.0996258i \(-0.0317646\pi\)
−0.583791 + 0.811904i \(0.698431\pi\)
\(810\) 0 0
\(811\) 355.325i 0.438132i −0.975710 0.219066i \(-0.929699\pi\)
0.975710 0.219066i \(-0.0703010\pi\)
\(812\) 0 0
\(813\) 7.22744 0.00888984
\(814\) 0 0
\(815\) −584.027 + 337.188i −0.716597 + 0.413728i
\(816\) 0 0
\(817\) −502.754 290.265i −0.615366 0.355282i
\(818\) 0 0
\(819\) 472.408 165.922i 0.576811 0.202591i
\(820\) 0 0
\(821\) −213.374 + 369.575i −0.259896 + 0.450153i −0.966214 0.257742i \(-0.917022\pi\)
0.706318 + 0.707895i \(0.250355\pi\)
\(822\) 0 0
\(823\) 489.430 + 847.717i 0.594690 + 1.03003i 0.993591 + 0.113039i \(0.0360585\pi\)
−0.398901 + 0.916994i \(0.630608\pi\)
\(824\) 0 0
\(825\) 269.277i 0.326396i
\(826\) 0 0
\(827\) 660.437 0.798594 0.399297 0.916822i \(-0.369254\pi\)
0.399297 + 0.916822i \(0.369254\pi\)
\(828\) 0 0
\(829\) 993.501 573.598i 1.19843 0.691916i 0.238227 0.971209i \(-0.423434\pi\)
0.960206 + 0.279294i \(0.0901004\pi\)
\(830\) 0 0
\(831\) −24.2073 13.9761i −0.0291303 0.0168184i
\(832\) 0 0
\(833\) −990.147 1235.67i −1.18865 1.48340i
\(834\) 0 0
\(835\) 284.859 493.389i 0.341148 0.590886i
\(836\) 0 0
\(837\) 70.6437 + 122.358i 0.0844011 + 0.146187i
\(838\) 0 0
\(839\) 1522.06i 1.81413i 0.420988 + 0.907066i \(0.361683\pi\)
−0.420988 + 0.907066i \(0.638317\pi\)
\(840\) 0 0
\(841\) 341.423 0.405973
\(842\) 0 0
\(843\) −606.296 + 350.045i −0.719213 + 0.415238i
\(844\) 0 0
\(845\) 819.356 + 473.055i 0.969652 + 0.559829i
\(846\) 0 0
\(847\) 131.570 + 374.602i 0.155337 + 0.442269i
\(848\) 0 0
\(849\) −10.7861 + 18.6820i −0.0127044 + 0.0220047i
\(850\) 0 0
\(851\) −22.8876 39.6424i −0.0268949 0.0465833i
\(852\) 0 0
\(853\) 616.510i 0.722755i −0.932420 0.361378i \(-0.882307\pi\)
0.932420 0.361378i \(-0.117693\pi\)
\(854\) 0 0
\(855\) 103.482 0.121031
\(856\) 0 0
\(857\) −150.722 + 87.0195i −0.175872 + 0.101540i −0.585352 0.810780i \(-0.699044\pi\)
0.409480 + 0.912319i \(0.365710\pi\)
\(858\) 0 0
\(859\) 1284.90 + 741.836i 1.49581 + 0.863605i 0.999988 0.00482143i \(-0.00153472\pi\)
0.495819 + 0.868426i \(0.334868\pi\)
\(860\) 0 0
\(861\) −603.012 113.367i −0.700362 0.131669i
\(862\) 0 0
\(863\) −394.655 + 683.562i −0.457305 + 0.792076i −0.998818 0.0486167i \(-0.984519\pi\)
0.541512 + 0.840693i \(0.317852\pi\)
\(864\) 0 0
\(865\) 214.251 + 371.094i 0.247689 + 0.429011i
\(866\) 0 0
\(867\) 1308.16i 1.50883i
\(868\) 0 0
\(869\) 614.133 0.706713
\(870\) 0 0
\(871\) −2434.26 + 1405.42i −2.79479 + 1.61357i
\(872\) 0 0
\(873\) 312.642 + 180.504i 0.358124 + 0.206763i
\(874\) 0 0
\(875\) −558.377 479.388i −0.638145 0.547872i
\(876\) 0 0
\(877\) −82.4017 + 142.724i −0.0939586 + 0.162741i −0.909174 0.416417i \(-0.863285\pi\)
0.815215 + 0.579159i \(0.196619\pi\)
\(878\) 0 0
\(879\) −231.380 400.762i −0.263231 0.455929i
\(880\) 0 0
\(881\) 150.440i 0.170761i 0.996348 + 0.0853804i \(0.0272105\pi\)
−0.996348 + 0.0853804i \(0.972789\pi\)
\(882\) 0 0
\(883\) 1260.13 1.42710 0.713550 0.700604i \(-0.247086\pi\)
0.713550 + 0.700604i \(0.247086\pi\)
\(884\) 0 0
\(885\) −156.631 + 90.4310i −0.176984 + 0.102182i
\(886\) 0 0
\(887\) 494.249 + 285.355i 0.557214 + 0.321708i 0.752027 0.659133i \(-0.229076\pi\)
−0.194812 + 0.980841i \(0.562410\pi\)
\(888\) 0 0
\(889\) 842.212 980.983i 0.947370 1.10347i
\(890\) 0 0
\(891\) −36.0788 + 62.4904i −0.0404925 + 0.0701351i
\(892\) 0 0
\(893\) −68.4441 118.549i −0.0766451 0.132753i
\(894\) 0 0
\(895\) 707.841i 0.790883i
\(896\) 0 0
\(897\) −233.611 −0.260436
\(898\) 0 0
\(899\) 809.727 467.496i 0.900697 0.520018i
\(900\) 0 0
\(901\) 1514.54 + 874.422i 1.68096 + 0.970502i
\(902\) 0 0
\(903\) −89.2902 + 474.946i −0.0988818 + 0.525964i
\(904\) 0 0
\(905\) 247.742 429.101i 0.273748 0.474145i
\(906\) 0 0
\(907\) −135.539 234.761i −0.149437 0.258832i 0.781583 0.623802i \(-0.214413\pi\)
−0.931019 + 0.364970i \(0.881079\pi\)
\(908\) 0 0
\(909\) 546.899i 0.601649i
\(910\) 0 0
\(911\) −1152.78 −1.26540 −0.632699 0.774398i \(-0.718053\pi\)
−0.632699 + 0.774398i \(0.718053\pi\)
\(912\) 0 0
\(913\) 404.711 233.660i 0.443276 0.255925i
\(914\) 0 0
\(915\) 123.063 + 71.0506i 0.134495 + 0.0776509i
\(916\) 0 0
\(917\) −1328.07 + 466.452i −1.44827 + 0.508672i
\(918\) 0 0
\(919\) 179.916 311.624i 0.195774 0.339090i −0.751380 0.659870i \(-0.770612\pi\)
0.947154 + 0.320780i \(0.103945\pi\)
\(920\) 0 0
\(921\) 361.594 + 626.299i 0.392610 + 0.680020i
\(922\) 0 0
\(923\) 912.720i 0.988863i
\(924\) 0 0
\(925\) −156.911 −0.169633
\(926\) 0 0
\(927\) −63.1226 + 36.4438i −0.0680934 + 0.0393137i
\(928\) 0 0
\(929\) 103.571 + 59.7966i 0.111486 + 0.0643667i 0.554706 0.832046i \(-0.312831\pi\)
−0.443220 + 0.896413i \(0.646164\pi\)
\(930\) 0 0
\(931\) −259.178 + 664.937i −0.278387 + 0.714218i
\(932\) 0 0
\(933\) 478.894 829.468i 0.513284 0.889033i
\(934\) 0 0
\(935\) 306.804 + 531.401i 0.328133 + 0.568343i
\(936\) 0 0
\(937\) 968.840i 1.03398i −0.855991 0.516990i \(-0.827052\pi\)
0.855991 0.516990i \(-0.172948\pi\)
\(938\) 0 0
\(939\) 267.201 0.284559
\(940\) 0 0
\(941\) 285.043 164.570i 0.302915 0.174888i −0.340837 0.940123i \(-0.610710\pi\)
0.643752 + 0.765235i \(0.277377\pi\)
\(942\) 0 0
\(943\) 247.922 + 143.138i 0.262908 + 0.151790i
\(944\) 0 0
\(945\) −28.5466 81.2768i −0.0302080 0.0860072i
\(946\) 0 0
\(947\) −898.178 + 1555.69i −0.948445 + 1.64276i −0.199743 + 0.979848i \(0.564011\pi\)
−0.748702 + 0.662907i \(0.769322\pi\)
\(948\) 0 0
\(949\) −694.983 1203.75i −0.732332 1.26844i
\(950\) 0 0
\(951\) 284.682i 0.299351i
\(952\) 0 0
\(953\) 121.924 0.127938 0.0639688 0.997952i \(-0.479624\pi\)
0.0639688 + 0.997952i \(0.479624\pi\)
\(954\) 0 0
\(955\) −704.494 + 406.740i −0.737690 + 0.425905i
\(956\) 0 0
\(957\) 413.540 + 238.758i 0.432121 + 0.249485i
\(958\) 0 0
\(959\) −952.954 179.156i −0.993695 0.186816i
\(960\) 0 0
\(961\) −110.831 + 191.965i −0.115329 + 0.199756i
\(962\) 0 0
\(963\) −61.3257 106.219i −0.0636819 0.110300i
\(964\) 0 0
\(965\) 222.441i 0.230509i
\(966\) 0 0
\(967\) −1228.86 −1.27080 −0.635399 0.772184i \(-0.719164\pi\)
−0.635399 + 0.772184i \(0.719164\pi\)
\(968\) 0 0
\(969\) −705.982 + 407.599i −0.728567 + 0.420638i
\(970\) 0 0
\(971\) 317.288 + 183.186i 0.326764 + 0.188658i 0.654404 0.756145i \(-0.272920\pi\)
−0.327639 + 0.944803i \(0.606253\pi\)
\(972\) 0 0
\(973\) 281.523 + 241.698i 0.289335 + 0.248405i
\(974\) 0 0
\(975\) −400.393 + 693.501i −0.410660 + 0.711283i
\(976\) 0 0
\(977\) 771.097 + 1335.58i 0.789249 + 1.36702i 0.926427 + 0.376474i \(0.122863\pi\)
−0.137178 + 0.990546i \(0.543803\pi\)
\(978\) 0 0
\(979\) 115.728i 0.118210i
\(980\) 0 0
\(981\) 204.746 0.208711
\(982\) 0 0
\(983\) 378.028 218.255i 0.384566 0.222029i −0.295237 0.955424i \(-0.595399\pi\)
0.679803 + 0.733395i \(0.262065\pi\)
\(984\) 0 0
\(985\) −335.281 193.575i −0.340387 0.196523i
\(986\) 0 0
\(987\) −74.2296 + 86.4603i −0.0752073 + 0.0875991i
\(988\) 0 0
\(989\) 112.739 195.269i 0.113993 0.197441i
\(990\) 0 0
\(991\) −41.9624 72.6811i −0.0423435 0.0733411i 0.844077 0.536222i \(-0.180149\pi\)
−0.886420 + 0.462881i \(0.846816\pi\)
\(992\) 0 0
\(993\) 908.066i 0.914467i
\(994\) 0 0
\(995\) −643.506 −0.646740
\(996\) 0 0
\(997\) −431.750 + 249.271i −0.433050 + 0.250021i −0.700645 0.713510i \(-0.747104\pi\)
0.267595 + 0.963531i \(0.413771\pi\)
\(998\) 0 0
\(999\) −36.4139 21.0236i −0.0364503 0.0210446i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.bh.h.145.2 8
3.2 odd 2 1008.3.cg.n.145.3 8
4.3 odd 2 168.3.z.a.145.2 yes 8
7.2 even 3 2352.3.f.k.97.7 8
7.3 odd 6 inner 336.3.bh.h.241.2 8
7.5 odd 6 2352.3.f.k.97.2 8
12.11 even 2 504.3.by.a.145.3 8
21.17 even 6 1008.3.cg.n.577.3 8
28.3 even 6 168.3.z.a.73.2 8
28.11 odd 6 1176.3.z.d.913.3 8
28.19 even 6 1176.3.f.a.97.6 8
28.23 odd 6 1176.3.f.a.97.3 8
28.27 even 2 1176.3.z.d.313.3 8
84.23 even 6 3528.3.f.f.2449.3 8
84.47 odd 6 3528.3.f.f.2449.6 8
84.59 odd 6 504.3.by.a.73.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.z.a.73.2 8 28.3 even 6
168.3.z.a.145.2 yes 8 4.3 odd 2
336.3.bh.h.145.2 8 1.1 even 1 trivial
336.3.bh.h.241.2 8 7.3 odd 6 inner
504.3.by.a.73.3 8 84.59 odd 6
504.3.by.a.145.3 8 12.11 even 2
1008.3.cg.n.145.3 8 3.2 odd 2
1008.3.cg.n.577.3 8 21.17 even 6
1176.3.f.a.97.3 8 28.23 odd 6
1176.3.f.a.97.6 8 28.19 even 6
1176.3.z.d.313.3 8 28.27 even 2
1176.3.z.d.913.3 8 28.11 odd 6
2352.3.f.k.97.2 8 7.5 odd 6
2352.3.f.k.97.7 8 7.2 even 3
3528.3.f.f.2449.3 8 84.23 even 6
3528.3.f.f.2449.6 8 84.47 odd 6