Properties

Label 336.3.f.c
Level 336336
Weight 33
Character orbit 336.f
Analytic conductor 9.1559.155
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(97,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.97");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 336.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.155336882519.15533688251
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q3+(2β2β1)q5+(β3+β2+2β12)q73q9+(β3+6)q11+(8β2+2β1)q13+(β3+6)q15++(3β318)q99+O(q100) q - \beta_{2} q^{3} + (2 \beta_{2} - \beta_1) q^{5} + (\beta_{3} + \beta_{2} + 2 \beta_1 - 2) q^{7} - 3 q^{9} + (\beta_{3} + 6) q^{11} + ( - 8 \beta_{2} + 2 \beta_1) q^{13} + ( - \beta_{3} + 6) q^{15}+ \cdots + ( - 3 \beta_{3} - 18) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q712q9+24q11+24q15+12q2124q23+28q25+120q29+24q3580q3796q39+128q4320q49+24q51216q5324q57+24q63+72q99+O(q100) 4 q - 8 q^{7} - 12 q^{9} + 24 q^{11} + 24 q^{15} + 12 q^{21} - 24 q^{23} + 28 q^{25} + 120 q^{29} + 24 q^{35} - 80 q^{37} - 96 q^{39} + 128 q^{43} - 20 q^{49} + 24 q^{51} - 216 q^{53} - 24 q^{57} + 24 q^{63}+ \cdots - 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν3+4ν)/2 ( \nu^{3} + 4\nu ) / 2 Copy content Toggle raw display
β2\beta_{2}== ν2+1 \nu^{2} + 1 Copy content Toggle raw display
β3\beta_{3}== (3ν3)/2 ( -3\nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== (β3+3β1)/6 ( \beta_{3} + 3\beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== β21 \beta_{2} - 1 Copy content Toggle raw display
ν3\nu^{3}== (2β3)/3 ( -2\beta_{3} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
97.1
0.707107 + 1.22474i
−0.707107 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 1.73205i 0 1.01461i 0 2.24264 + 6.63103i 0 −3.00000 0
97.2 0 1.73205i 0 5.91359i 0 −6.24264 3.16693i 0 −3.00000 0
97.3 0 1.73205i 0 5.91359i 0 −6.24264 + 3.16693i 0 −3.00000 0
97.4 0 1.73205i 0 1.01461i 0 2.24264 6.63103i 0 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.3.f.c 4
3.b odd 2 1 1008.3.f.g 4
4.b odd 2 1 42.3.c.a 4
7.b odd 2 1 inner 336.3.f.c 4
8.b even 2 1 1344.3.f.e 4
8.d odd 2 1 1344.3.f.f 4
12.b even 2 1 126.3.c.b 4
20.d odd 2 1 1050.3.f.a 4
20.e even 4 2 1050.3.h.a 8
21.c even 2 1 1008.3.f.g 4
28.d even 2 1 42.3.c.a 4
28.f even 6 1 294.3.g.b 4
28.f even 6 1 294.3.g.c 4
28.g odd 6 1 294.3.g.b 4
28.g odd 6 1 294.3.g.c 4
56.e even 2 1 1344.3.f.f 4
56.h odd 2 1 1344.3.f.e 4
84.h odd 2 1 126.3.c.b 4
84.j odd 6 1 882.3.n.a 4
84.j odd 6 1 882.3.n.d 4
84.n even 6 1 882.3.n.a 4
84.n even 6 1 882.3.n.d 4
140.c even 2 1 1050.3.f.a 4
140.j odd 4 2 1050.3.h.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.3.c.a 4 4.b odd 2 1
42.3.c.a 4 28.d even 2 1
126.3.c.b 4 12.b even 2 1
126.3.c.b 4 84.h odd 2 1
294.3.g.b 4 28.f even 6 1
294.3.g.b 4 28.g odd 6 1
294.3.g.c 4 28.f even 6 1
294.3.g.c 4 28.g odd 6 1
336.3.f.c 4 1.a even 1 1 trivial
336.3.f.c 4 7.b odd 2 1 inner
882.3.n.a 4 84.j odd 6 1
882.3.n.a 4 84.n even 6 1
882.3.n.d 4 84.j odd 6 1
882.3.n.d 4 84.n even 6 1
1008.3.f.g 4 3.b odd 2 1
1008.3.f.g 4 21.c even 2 1
1050.3.f.a 4 20.d odd 2 1
1050.3.f.a 4 140.c even 2 1
1050.3.h.a 8 20.e even 4 2
1050.3.h.a 8 140.j odd 4 2
1344.3.f.e 4 8.b even 2 1
1344.3.f.e 4 56.h odd 2 1
1344.3.f.f 4 8.d odd 2 1
1344.3.f.f 4 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(336,[χ])S_{3}^{\mathrm{new}}(336, [\chi]):

T54+36T52+36 T_{5}^{4} + 36T_{5}^{2} + 36 Copy content Toggle raw display
T11212T11+18 T_{11}^{2} - 12T_{11} + 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
55 T4+36T2+36 T^{4} + 36T^{2} + 36 Copy content Toggle raw display
77 T4+8T3++2401 T^{4} + 8 T^{3} + \cdots + 2401 Copy content Toggle raw display
1111 (T212T+18)2 (T^{2} - 12 T + 18)^{2} Copy content Toggle raw display
1313 T4+432T2+28224 T^{4} + 432 T^{2} + 28224 Copy content Toggle raw display
1717 T4+1476T2+509796 T^{4} + 1476 T^{2} + 509796 Copy content Toggle raw display
1919 T4+792T2+138384 T^{4} + 792 T^{2} + 138384 Copy content Toggle raw display
2323 (T2+12T126)2 (T^{2} + 12 T - 126)^{2} Copy content Toggle raw display
2929 (T30)4 (T - 30)^{4} Copy content Toggle raw display
3131 T4+2592T2+186624 T^{4} + 2592 T^{2} + 186624 Copy content Toggle raw display
3737 (T2+40T2192)2 (T^{2} + 40 T - 2192)^{2} Copy content Toggle raw display
4141 T4+1764T2+86436 T^{4} + 1764 T^{2} + 86436 Copy content Toggle raw display
4343 (T264T776)2 (T^{2} - 64 T - 776)^{2} Copy content Toggle raw display
4747 T4+4896T2+5089536 T^{4} + 4896 T^{2} + 5089536 Copy content Toggle raw display
5353 (T2+108T+2628)2 (T^{2} + 108 T + 2628)^{2} Copy content Toggle raw display
5959 T4+9504T2+2304 T^{4} + 9504 T^{2} + 2304 Copy content Toggle raw display
6161 T4+288T2+2304 T^{4} + 288T^{2} + 2304 Copy content Toggle raw display
6767 (T2+88T+1648)2 (T^{2} + 88 T + 1648)^{2} Copy content Toggle raw display
7171 (T260T5598)2 (T^{2} - 60 T - 5598)^{2} Copy content Toggle raw display
7373 T4+8208T2+16064064 T^{4} + 8208 T^{2} + 16064064 Copy content Toggle raw display
7979 (T2+64T9344)2 (T^{2} + 64 T - 9344)^{2} Copy content Toggle raw display
8383 T4+10944T2+451584 T^{4} + 10944 T^{2} + 451584 Copy content Toggle raw display
8989 T4+22788T2+37234404 T^{4} + 22788 T^{2} + 37234404 Copy content Toggle raw display
9797 T4+12816T2+27123264 T^{4} + 12816 T^{2} + 27123264 Copy content Toggle raw display
show more
show less