Properties

Label 336.4.a.f
Level 336336
Weight 44
Character orbit 336.a
Self dual yes
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,4,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3q318q57q7+9q9+36q1134q1354q15+42q17+124q1921q21+199q25+27q27+102q29+160q31+108q33+126q35+398q37++324q99+O(q100) q + 3 q^{3} - 18 q^{5} - 7 q^{7} + 9 q^{9} + 36 q^{11} - 34 q^{13} - 54 q^{15} + 42 q^{17} + 124 q^{19} - 21 q^{21} + 199 q^{25} + 27 q^{27} + 102 q^{29} + 160 q^{31} + 108 q^{33} + 126 q^{35} + 398 q^{37}+ \cdots + 324 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 −18.0000 0 −7.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.a.f 1
3.b odd 2 1 1008.4.a.v 1
4.b odd 2 1 21.4.a.a 1
7.b odd 2 1 2352.4.a.r 1
8.b even 2 1 1344.4.a.n 1
8.d odd 2 1 1344.4.a.ba 1
12.b even 2 1 63.4.a.c 1
20.d odd 2 1 525.4.a.g 1
20.e even 4 2 525.4.d.c 2
28.d even 2 1 147.4.a.c 1
28.f even 6 2 147.4.e.g 2
28.g odd 6 2 147.4.e.i 2
60.h even 2 1 1575.4.a.b 1
84.h odd 2 1 441.4.a.j 1
84.j odd 6 2 441.4.e.d 2
84.n even 6 2 441.4.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.a 1 4.b odd 2 1
63.4.a.c 1 12.b even 2 1
147.4.a.c 1 28.d even 2 1
147.4.e.g 2 28.f even 6 2
147.4.e.i 2 28.g odd 6 2
336.4.a.f 1 1.a even 1 1 trivial
441.4.a.j 1 84.h odd 2 1
441.4.e.b 2 84.n even 6 2
441.4.e.d 2 84.j odd 6 2
525.4.a.g 1 20.d odd 2 1
525.4.d.c 2 20.e even 4 2
1008.4.a.v 1 3.b odd 2 1
1344.4.a.n 1 8.b even 2 1
1344.4.a.ba 1 8.d odd 2 1
1575.4.a.b 1 60.h even 2 1
2352.4.a.r 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(336))S_{4}^{\mathrm{new}}(\Gamma_0(336)):

T5+18 T_{5} + 18 Copy content Toggle raw display
T1136 T_{11} - 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T+18 T + 18 Copy content Toggle raw display
77 T+7 T + 7 Copy content Toggle raw display
1111 T36 T - 36 Copy content Toggle raw display
1313 T+34 T + 34 Copy content Toggle raw display
1717 T42 T - 42 Copy content Toggle raw display
1919 T124 T - 124 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T102 T - 102 Copy content Toggle raw display
3131 T160 T - 160 Copy content Toggle raw display
3737 T398 T - 398 Copy content Toggle raw display
4141 T+318 T + 318 Copy content Toggle raw display
4343 T268 T - 268 Copy content Toggle raw display
4747 T+240 T + 240 Copy content Toggle raw display
5353 T+498 T + 498 Copy content Toggle raw display
5959 T132 T - 132 Copy content Toggle raw display
6161 T398 T - 398 Copy content Toggle raw display
6767 T+92 T + 92 Copy content Toggle raw display
7171 T720 T - 720 Copy content Toggle raw display
7373 T+502 T + 502 Copy content Toggle raw display
7979 T1024 T - 1024 Copy content Toggle raw display
8383 T204 T - 204 Copy content Toggle raw display
8989 T354 T - 354 Copy content Toggle raw display
9797 T+286 T + 286 Copy content Toggle raw display
show more
show less