Properties

Label 336.6.q.j.289.1
Level $336$
Weight $6$
Character 336.289
Analytic conductor $53.889$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(193,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.193");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.8889634572\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 98x^{6} + 83x^{5} + 9122x^{4} - 91x^{3} + 28567x^{2} + 2058x + 86436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(-0.874091 - 1.51397i\) of defining polynomial
Character \(\chi\) \(=\) 336.289
Dual form 336.6.q.j.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{3} +(-29.1836 + 50.5475i) q^{5} +(21.4366 - 127.857i) q^{7} +(-40.5000 + 70.1481i) q^{9} +(8.71205 + 15.0897i) q^{11} +889.933 q^{13} -525.305 q^{15} +(-513.318 - 889.092i) q^{17} +(-869.702 + 1506.37i) q^{19} +(1093.01 - 408.276i) q^{21} +(1968.11 - 3408.87i) q^{23} +(-140.869 - 243.993i) q^{25} -729.000 q^{27} +5633.53 q^{29} +(-1548.27 - 2681.68i) q^{31} +(-78.4084 + 135.807i) q^{33} +(5837.27 + 4814.91i) q^{35} +(-2513.43 + 4353.39i) q^{37} +(4004.70 + 6936.34i) q^{39} +18367.0 q^{41} +1630.91 q^{43} +(-2363.87 - 4094.35i) q^{45} +(-4802.62 + 8318.38i) q^{47} +(-15887.9 - 5481.65i) q^{49} +(4619.86 - 8001.83i) q^{51} +(11628.3 + 20140.7i) q^{53} -1017.00 q^{55} -15654.6 q^{57} +(-1801.62 - 3120.50i) q^{59} +(-11438.3 + 19811.7i) q^{61} +(8100.75 + 6681.95i) q^{63} +(-25971.5 + 44983.9i) q^{65} +(23506.4 + 40714.2i) q^{67} +35426.0 q^{69} +1599.63 q^{71} +(-2965.67 - 5136.70i) q^{73} +(1267.82 - 2195.93i) q^{75} +(2116.09 - 790.427i) q^{77} +(-44234.4 + 76616.3i) q^{79} +(-3280.50 - 5681.99i) q^{81} +95823.9 q^{83} +59921.9 q^{85} +(25350.9 + 43909.0i) q^{87} +(23253.9 - 40277.0i) q^{89} +(19077.1 - 113784. i) q^{91} +(13934.4 - 24135.1i) q^{93} +(-50762.1 - 87922.5i) q^{95} -75981.8 q^{97} -1411.35 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{3} - 258 q^{7} - 324 q^{9} + 402 q^{11} + 924 q^{13} - 276 q^{17} + 510 q^{19} - 3564 q^{21} + 6900 q^{23} - 2814 q^{25} - 5832 q^{27} + 1080 q^{29} - 6410 q^{31} - 3618 q^{33} + 33108 q^{35}+ \cdots - 65124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −29.1836 + 50.5475i −0.522053 + 0.904222i 0.477618 + 0.878568i \(0.341500\pi\)
−0.999671 + 0.0256544i \(0.991833\pi\)
\(6\) 0 0
\(7\) 21.4366 127.857i 0.165352 0.986235i
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 8.71205 + 15.0897i 0.0217089 + 0.0376010i 0.876676 0.481082i \(-0.159756\pi\)
−0.854967 + 0.518683i \(0.826423\pi\)
\(12\) 0 0
\(13\) 889.933 1.46049 0.730246 0.683185i \(-0.239406\pi\)
0.730246 + 0.683185i \(0.239406\pi\)
\(14\) 0 0
\(15\) −525.305 −0.602815
\(16\) 0 0
\(17\) −513.318 889.092i −0.430788 0.746147i 0.566153 0.824300i \(-0.308431\pi\)
−0.996941 + 0.0781529i \(0.975098\pi\)
\(18\) 0 0
\(19\) −869.702 + 1506.37i −0.552696 + 0.957297i 0.445383 + 0.895340i \(0.353068\pi\)
−0.998079 + 0.0619572i \(0.980266\pi\)
\(20\) 0 0
\(21\) 1093.01 408.276i 0.540850 0.202025i
\(22\) 0 0
\(23\) 1968.11 3408.87i 0.775764 1.34366i −0.158599 0.987343i \(-0.550698\pi\)
0.934364 0.356320i \(-0.115969\pi\)
\(24\) 0 0
\(25\) −140.869 243.993i −0.0450782 0.0780777i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 5633.53 1.24390 0.621950 0.783057i \(-0.286341\pi\)
0.621950 + 0.783057i \(0.286341\pi\)
\(30\) 0 0
\(31\) −1548.27 2681.68i −0.289362 0.501190i 0.684296 0.729205i \(-0.260110\pi\)
−0.973658 + 0.228015i \(0.926776\pi\)
\(32\) 0 0
\(33\) −78.4084 + 135.807i −0.0125337 + 0.0217089i
\(34\) 0 0
\(35\) 5837.27 + 4814.91i 0.805452 + 0.664382i
\(36\) 0 0
\(37\) −2513.43 + 4353.39i −0.301830 + 0.522785i −0.976551 0.215288i \(-0.930931\pi\)
0.674720 + 0.738073i \(0.264264\pi\)
\(38\) 0 0
\(39\) 4004.70 + 6936.34i 0.421608 + 0.730246i
\(40\) 0 0
\(41\) 18367.0 1.70639 0.853195 0.521592i \(-0.174662\pi\)
0.853195 + 0.521592i \(0.174662\pi\)
\(42\) 0 0
\(43\) 1630.91 0.134511 0.0672557 0.997736i \(-0.478576\pi\)
0.0672557 + 0.997736i \(0.478576\pi\)
\(44\) 0 0
\(45\) −2363.87 4094.35i −0.174018 0.301407i
\(46\) 0 0
\(47\) −4802.62 + 8318.38i −0.317127 + 0.549280i −0.979887 0.199551i \(-0.936051\pi\)
0.662760 + 0.748832i \(0.269385\pi\)
\(48\) 0 0
\(49\) −15887.9 5481.65i −0.945317 0.326153i
\(50\) 0 0
\(51\) 4619.86 8001.83i 0.248716 0.430788i
\(52\) 0 0
\(53\) 11628.3 + 20140.7i 0.568624 + 0.984886i 0.996702 + 0.0811440i \(0.0258574\pi\)
−0.428078 + 0.903742i \(0.640809\pi\)
\(54\) 0 0
\(55\) −1017.00 −0.0453328
\(56\) 0 0
\(57\) −15654.6 −0.638198
\(58\) 0 0
\(59\) −1801.62 3120.50i −0.0673803 0.116706i 0.830367 0.557217i \(-0.188131\pi\)
−0.897747 + 0.440511i \(0.854797\pi\)
\(60\) 0 0
\(61\) −11438.3 + 19811.7i −0.393584 + 0.681707i −0.992919 0.118791i \(-0.962098\pi\)
0.599336 + 0.800498i \(0.295431\pi\)
\(62\) 0 0
\(63\) 8100.75 + 6681.95i 0.257143 + 0.212106i
\(64\) 0 0
\(65\) −25971.5 + 44983.9i −0.762454 + 1.32061i
\(66\) 0 0
\(67\) 23506.4 + 40714.2i 0.639733 + 1.10805i 0.985491 + 0.169726i \(0.0542884\pi\)
−0.345758 + 0.938324i \(0.612378\pi\)
\(68\) 0 0
\(69\) 35426.0 0.895776
\(70\) 0 0
\(71\) 1599.63 0.0376595 0.0188298 0.999823i \(-0.494006\pi\)
0.0188298 + 0.999823i \(0.494006\pi\)
\(72\) 0 0
\(73\) −2965.67 5136.70i −0.0651353 0.112818i 0.831619 0.555347i \(-0.187415\pi\)
−0.896754 + 0.442529i \(0.854081\pi\)
\(74\) 0 0
\(75\) 1267.82 2195.93i 0.0260259 0.0450782i
\(76\) 0 0
\(77\) 2116.09 790.427i 0.0406730 0.0151927i
\(78\) 0 0
\(79\) −44234.4 + 76616.3i −0.797431 + 1.38119i 0.123854 + 0.992300i \(0.460475\pi\)
−0.921284 + 0.388890i \(0.872859\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 95823.9 1.52679 0.763394 0.645933i \(-0.223531\pi\)
0.763394 + 0.645933i \(0.223531\pi\)
\(84\) 0 0
\(85\) 59921.9 0.899577
\(86\) 0 0
\(87\) 25350.9 + 43909.0i 0.359083 + 0.621950i
\(88\) 0 0
\(89\) 23253.9 40277.0i 0.311187 0.538992i −0.667433 0.744670i \(-0.732607\pi\)
0.978620 + 0.205679i \(0.0659401\pi\)
\(90\) 0 0
\(91\) 19077.1 113784.i 0.241496 1.44039i
\(92\) 0 0
\(93\) 13934.4 24135.1i 0.167063 0.289362i
\(94\) 0 0
\(95\) −50762.1 87922.5i −0.577073 0.999519i
\(96\) 0 0
\(97\) −75981.8 −0.819937 −0.409968 0.912100i \(-0.634460\pi\)
−0.409968 + 0.912100i \(0.634460\pi\)
\(98\) 0 0
\(99\) −1411.35 −0.0144726
\(100\) 0 0
\(101\) 23078.7 + 39973.5i 0.225117 + 0.389914i 0.956355 0.292209i \(-0.0943903\pi\)
−0.731238 + 0.682123i \(0.761057\pi\)
\(102\) 0 0
\(103\) −40986.8 + 70991.2i −0.380672 + 0.659343i −0.991158 0.132683i \(-0.957641\pi\)
0.610487 + 0.792027i \(0.290974\pi\)
\(104\) 0 0
\(105\) −11260.8 + 67164.1i −0.0996769 + 0.594517i
\(106\) 0 0
\(107\) −1426.84 + 2471.35i −0.0120480 + 0.0208677i −0.871987 0.489530i \(-0.837168\pi\)
0.859939 + 0.510398i \(0.170502\pi\)
\(108\) 0 0
\(109\) 83139.2 + 144001.i 0.670254 + 1.16091i 0.977832 + 0.209391i \(0.0671483\pi\)
−0.307578 + 0.951523i \(0.599518\pi\)
\(110\) 0 0
\(111\) −45241.7 −0.348523
\(112\) 0 0
\(113\) 260304. 1.91772 0.958858 0.283886i \(-0.0916237\pi\)
0.958858 + 0.283886i \(0.0916237\pi\)
\(114\) 0 0
\(115\) 114873. + 198966.i 0.809980 + 1.40293i
\(116\) 0 0
\(117\) −36042.3 + 62427.1i −0.243415 + 0.421608i
\(118\) 0 0
\(119\) −124681. + 46572.3i −0.807108 + 0.301481i
\(120\) 0 0
\(121\) 80373.7 139211.i 0.499057 0.864393i
\(122\) 0 0
\(123\) 82651.5 + 143157.i 0.492592 + 0.853195i
\(124\) 0 0
\(125\) −165953. −0.949973
\(126\) 0 0
\(127\) 233743. 1.28596 0.642982 0.765882i \(-0.277697\pi\)
0.642982 + 0.765882i \(0.277697\pi\)
\(128\) 0 0
\(129\) 7339.10 + 12711.7i 0.0388301 + 0.0672557i
\(130\) 0 0
\(131\) −78644.9 + 136217.i −0.400398 + 0.693510i −0.993774 0.111415i \(-0.964462\pi\)
0.593376 + 0.804926i \(0.297795\pi\)
\(132\) 0 0
\(133\) 173957. + 143489.i 0.852730 + 0.703379i
\(134\) 0 0
\(135\) 21274.9 36849.2i 0.100469 0.174018i
\(136\) 0 0
\(137\) 85773.8 + 148564.i 0.390439 + 0.676260i 0.992507 0.122185i \(-0.0389900\pi\)
−0.602069 + 0.798444i \(0.705657\pi\)
\(138\) 0 0
\(139\) −210625. −0.924642 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(140\) 0 0
\(141\) −86447.1 −0.366187
\(142\) 0 0
\(143\) 7753.14 + 13428.8i 0.0317057 + 0.0549159i
\(144\) 0 0
\(145\) −164407. + 284761.i −0.649381 + 1.12476i
\(146\) 0 0
\(147\) −28770.6 148502.i −0.109813 0.566811i
\(148\) 0 0
\(149\) −119706. + 207338.i −0.441725 + 0.765090i −0.997818 0.0660304i \(-0.978967\pi\)
0.556093 + 0.831120i \(0.312300\pi\)
\(150\) 0 0
\(151\) 108520. + 187962.i 0.387317 + 0.670852i 0.992088 0.125547i \(-0.0400686\pi\)
−0.604771 + 0.796400i \(0.706735\pi\)
\(152\) 0 0
\(153\) 83157.5 0.287192
\(154\) 0 0
\(155\) 180736. 0.604249
\(156\) 0 0
\(157\) −83452.2 144543.i −0.270202 0.468004i 0.698711 0.715404i \(-0.253757\pi\)
−0.968913 + 0.247400i \(0.920424\pi\)
\(158\) 0 0
\(159\) −104654. + 181267.i −0.328295 + 0.568624i
\(160\) 0 0
\(161\) −393659. 324712.i −1.19689 0.987264i
\(162\) 0 0
\(163\) 253086. 438358.i 0.746104 1.29229i −0.203574 0.979060i \(-0.565256\pi\)
0.949677 0.313230i \(-0.101411\pi\)
\(164\) 0 0
\(165\) −4576.49 7926.71i −0.0130865 0.0226664i
\(166\) 0 0
\(167\) 565560. 1.56923 0.784616 0.619982i \(-0.212860\pi\)
0.784616 + 0.619982i \(0.212860\pi\)
\(168\) 0 0
\(169\) 420688. 1.13304
\(170\) 0 0
\(171\) −70445.8 122016.i −0.184232 0.319099i
\(172\) 0 0
\(173\) 329718. 571088.i 0.837581 1.45073i −0.0543304 0.998523i \(-0.517302\pi\)
0.891911 0.452210i \(-0.149364\pi\)
\(174\) 0 0
\(175\) −34216.0 + 12780.8i −0.0844567 + 0.0315473i
\(176\) 0 0
\(177\) 16214.6 28084.5i 0.0389020 0.0673803i
\(178\) 0 0
\(179\) 82645.0 + 143145.i 0.192790 + 0.333922i 0.946174 0.323659i \(-0.104913\pi\)
−0.753384 + 0.657581i \(0.771580\pi\)
\(180\) 0 0
\(181\) 148492. 0.336904 0.168452 0.985710i \(-0.446123\pi\)
0.168452 + 0.985710i \(0.446123\pi\)
\(182\) 0 0
\(183\) −205889. −0.454471
\(184\) 0 0
\(185\) −146702. 254095.i −0.315142 0.545843i
\(186\) 0 0
\(187\) 8944.10 15491.6i 0.0187039 0.0323961i
\(188\) 0 0
\(189\) −15627.3 + 93207.9i −0.0318221 + 0.189801i
\(190\) 0 0
\(191\) 192955. 334208.i 0.382713 0.662879i −0.608736 0.793373i \(-0.708323\pi\)
0.991449 + 0.130494i \(0.0416564\pi\)
\(192\) 0 0
\(193\) −248148. 429805.i −0.479531 0.830573i 0.520193 0.854049i \(-0.325860\pi\)
−0.999724 + 0.0234760i \(0.992527\pi\)
\(194\) 0 0
\(195\) −467487. −0.880406
\(196\) 0 0
\(197\) 441439. 0.810411 0.405206 0.914226i \(-0.367200\pi\)
0.405206 + 0.914226i \(0.367200\pi\)
\(198\) 0 0
\(199\) −37919.4 65678.3i −0.0678779 0.117568i 0.830089 0.557631i \(-0.188290\pi\)
−0.897967 + 0.440063i \(0.854956\pi\)
\(200\) 0 0
\(201\) −211557. + 366428.i −0.369350 + 0.639733i
\(202\) 0 0
\(203\) 120764. 720287.i 0.205682 1.22678i
\(204\) 0 0
\(205\) −536016. + 928406.i −0.890826 + 1.54296i
\(206\) 0 0
\(207\) 159417. + 276118.i 0.258588 + 0.447888i
\(208\) 0 0
\(209\) −30307.5 −0.0479938
\(210\) 0 0
\(211\) −778704. −1.20411 −0.602055 0.798454i \(-0.705651\pi\)
−0.602055 + 0.798454i \(0.705651\pi\)
\(212\) 0 0
\(213\) 7198.35 + 12467.9i 0.0108714 + 0.0188298i
\(214\) 0 0
\(215\) −47595.9 + 82438.6i −0.0702221 + 0.121628i
\(216\) 0 0
\(217\) −376061. + 140471.i −0.542137 + 0.202506i
\(218\) 0 0
\(219\) 26691.1 46230.3i 0.0376059 0.0651353i
\(220\) 0 0
\(221\) −456818. 791233.i −0.629163 1.08974i
\(222\) 0 0
\(223\) −738085. −0.993903 −0.496951 0.867778i \(-0.665547\pi\)
−0.496951 + 0.867778i \(0.665547\pi\)
\(224\) 0 0
\(225\) 22820.8 0.0300521
\(226\) 0 0
\(227\) −272058. 471218.i −0.350426 0.606956i 0.635898 0.771773i \(-0.280630\pi\)
−0.986324 + 0.164817i \(0.947297\pi\)
\(228\) 0 0
\(229\) 116781. 202271.i 0.147158 0.254885i −0.783018 0.621999i \(-0.786321\pi\)
0.930176 + 0.367114i \(0.119654\pi\)
\(230\) 0 0
\(231\) 15683.2 + 12936.3i 0.0193376 + 0.0159508i
\(232\) 0 0
\(233\) 309050. 535290.i 0.372940 0.645951i −0.617077 0.786903i \(-0.711683\pi\)
0.990016 + 0.140952i \(0.0450164\pi\)
\(234\) 0 0
\(235\) −280316. 485521.i −0.331114 0.573506i
\(236\) 0 0
\(237\) −796220. −0.920794
\(238\) 0 0
\(239\) −937500. −1.06164 −0.530819 0.847485i \(-0.678116\pi\)
−0.530819 + 0.847485i \(0.678116\pi\)
\(240\) 0 0
\(241\) −466018. 807167.i −0.516845 0.895202i −0.999809 0.0195613i \(-0.993773\pi\)
0.482964 0.875640i \(-0.339560\pi\)
\(242\) 0 0
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 740752. 643122.i 0.788420 0.684508i
\(246\) 0 0
\(247\) −773976. + 1.34057e6i −0.807208 + 1.39812i
\(248\) 0 0
\(249\) 431208. + 746874.i 0.440746 + 0.763394i
\(250\) 0 0
\(251\) −214975. −0.215379 −0.107690 0.994185i \(-0.534345\pi\)
−0.107690 + 0.994185i \(0.534345\pi\)
\(252\) 0 0
\(253\) 68585.1 0.0673641
\(254\) 0 0
\(255\) 269649. + 467045.i 0.259685 + 0.449788i
\(256\) 0 0
\(257\) −39593.5 + 68578.0i −0.0373931 + 0.0647667i −0.884116 0.467267i \(-0.845239\pi\)
0.846723 + 0.532034i \(0.178572\pi\)
\(258\) 0 0
\(259\) 502733. + 414682.i 0.465680 + 0.384119i
\(260\) 0 0
\(261\) −228158. + 395181.i −0.207317 + 0.359083i
\(262\) 0 0
\(263\) −216414. 374840.i −0.192928 0.334162i 0.753291 0.657687i \(-0.228465\pi\)
−0.946219 + 0.323526i \(0.895132\pi\)
\(264\) 0 0
\(265\) −1.35742e6 −1.18741
\(266\) 0 0
\(267\) 418571. 0.359328
\(268\) 0 0
\(269\) 2345.93 + 4063.27i 0.00197667 + 0.00342369i 0.867012 0.498287i \(-0.166037\pi\)
−0.865035 + 0.501711i \(0.832704\pi\)
\(270\) 0 0
\(271\) 52632.1 91161.5i 0.0435339 0.0754029i −0.843437 0.537227i \(-0.819472\pi\)
0.886971 + 0.461825i \(0.152805\pi\)
\(272\) 0 0
\(273\) 972709. 363338.i 0.789907 0.295056i
\(274\) 0 0
\(275\) 2454.52 4251.35i 0.00195720 0.00338997i
\(276\) 0 0
\(277\) 381558. + 660879.i 0.298787 + 0.517514i 0.975859 0.218403i \(-0.0700847\pi\)
−0.677072 + 0.735917i \(0.736751\pi\)
\(278\) 0 0
\(279\) 250819. 0.192908
\(280\) 0 0
\(281\) −729540. −0.551167 −0.275584 0.961277i \(-0.588871\pi\)
−0.275584 + 0.961277i \(0.588871\pi\)
\(282\) 0 0
\(283\) −595214. 1.03094e6i −0.441781 0.765188i 0.556040 0.831155i \(-0.312320\pi\)
−0.997822 + 0.0659675i \(0.978987\pi\)
\(284\) 0 0
\(285\) 456859. 791303.i 0.333173 0.577073i
\(286\) 0 0
\(287\) 393726. 2.34835e6i 0.282156 1.68290i
\(288\) 0 0
\(289\) 182938. 316859.i 0.128843 0.223162i
\(290\) 0 0
\(291\) −341918. 592220.i −0.236695 0.409968i
\(292\) 0 0
\(293\) −1.02503e6 −0.697537 −0.348769 0.937209i \(-0.613400\pi\)
−0.348769 + 0.937209i \(0.613400\pi\)
\(294\) 0 0
\(295\) 210311. 0.140704
\(296\) 0 0
\(297\) −6351.08 11000.4i −0.00417789 0.00723631i
\(298\) 0 0
\(299\) 1.75149e6 3.03366e6i 1.13300 1.96241i
\(300\) 0 0
\(301\) 34961.2 208524.i 0.0222418 0.132660i
\(302\) 0 0
\(303\) −207708. + 359762.i −0.129971 + 0.225117i
\(304\) 0 0
\(305\) −667623. 1.15636e6i −0.410943 0.711774i
\(306\) 0 0
\(307\) 709845. 0.429850 0.214925 0.976631i \(-0.431049\pi\)
0.214925 + 0.976631i \(0.431049\pi\)
\(308\) 0 0
\(309\) −737762. −0.439562
\(310\) 0 0
\(311\) 783816. + 1.35761e6i 0.459529 + 0.795928i 0.998936 0.0461175i \(-0.0146849\pi\)
−0.539407 + 0.842045i \(0.681352\pi\)
\(312\) 0 0
\(313\) −186476. + 322986.i −0.107588 + 0.186347i −0.914792 0.403924i \(-0.867646\pi\)
0.807205 + 0.590271i \(0.200979\pi\)
\(314\) 0 0
\(315\) −574166. + 214470.i −0.326033 + 0.121784i
\(316\) 0 0
\(317\) 1.51408e6 2.62246e6i 0.846253 1.46575i −0.0382747 0.999267i \(-0.512186\pi\)
0.884528 0.466487i \(-0.154480\pi\)
\(318\) 0 0
\(319\) 49079.6 + 85008.3i 0.0270037 + 0.0467719i
\(320\) 0 0
\(321\) −25683.1 −0.0139118
\(322\) 0 0
\(323\) 1.78573e6 0.952380
\(324\) 0 0
\(325\) −125364. 217137.i −0.0658363 0.114032i
\(326\) 0 0
\(327\) −748253. + 1.29601e6i −0.386971 + 0.670254i
\(328\) 0 0
\(329\) 960613. + 792367.i 0.489281 + 0.403586i
\(330\) 0 0
\(331\) 533448. 923959.i 0.267622 0.463535i −0.700625 0.713529i \(-0.747095\pi\)
0.968247 + 0.249995i \(0.0804288\pi\)
\(332\) 0 0
\(333\) −203588. 352624.i −0.100610 0.174262i
\(334\) 0 0
\(335\) −2.74401e6 −1.33590
\(336\) 0 0
\(337\) 1.55734e6 0.746981 0.373490 0.927634i \(-0.378161\pi\)
0.373490 + 0.927634i \(0.378161\pi\)
\(338\) 0 0
\(339\) 1.17137e6 + 2.02887e6i 0.553597 + 0.958858i
\(340\) 0 0
\(341\) 26977.1 46725.8i 0.0125635 0.0217606i
\(342\) 0 0
\(343\) −1.04145e6 + 1.91388e6i −0.477973 + 0.878374i
\(344\) 0 0
\(345\) −1.03386e6 + 1.79070e6i −0.467642 + 0.809980i
\(346\) 0 0
\(347\) −1.11748e6 1.93553e6i −0.498214 0.862932i 0.501784 0.864993i \(-0.332677\pi\)
−0.999998 + 0.00206105i \(0.999344\pi\)
\(348\) 0 0
\(349\) −1.72982e6 −0.760218 −0.380109 0.924942i \(-0.624114\pi\)
−0.380109 + 0.924942i \(0.624114\pi\)
\(350\) 0 0
\(351\) −648761. −0.281072
\(352\) 0 0
\(353\) 1.18287e6 + 2.04879e6i 0.505242 + 0.875105i 0.999982 + 0.00606386i \(0.00193020\pi\)
−0.494739 + 0.869041i \(0.664736\pi\)
\(354\) 0 0
\(355\) −46683.1 + 80857.6i −0.0196603 + 0.0340526i
\(356\) 0 0
\(357\) −924058. 762214.i −0.383733 0.316524i
\(358\) 0 0
\(359\) 25514.3 44192.1i 0.0104484 0.0180971i −0.860754 0.509021i \(-0.830007\pi\)
0.871202 + 0.490924i \(0.163341\pi\)
\(360\) 0 0
\(361\) −274712. 475815.i −0.110945 0.192163i
\(362\) 0 0
\(363\) 1.44673e6 0.576262
\(364\) 0 0
\(365\) 346197. 0.136016
\(366\) 0 0
\(367\) 1.88411e6 + 3.26338e6i 0.730200 + 1.26474i 0.956797 + 0.290755i \(0.0939065\pi\)
−0.226597 + 0.973989i \(0.572760\pi\)
\(368\) 0 0
\(369\) −743863. + 1.28841e6i −0.284398 + 0.492592i
\(370\) 0 0
\(371\) 2.82441e6 1.05501e6i 1.06535 0.397943i
\(372\) 0 0
\(373\) −2.31720e6 + 4.01351e6i −0.862366 + 1.49366i 0.00727258 + 0.999974i \(0.497685\pi\)
−0.869639 + 0.493689i \(0.835648\pi\)
\(374\) 0 0
\(375\) −746790. 1.29348e6i −0.274234 0.474986i
\(376\) 0 0
\(377\) 5.01346e6 1.81670
\(378\) 0 0
\(379\) 4.17169e6 1.49181 0.745905 0.666052i \(-0.232017\pi\)
0.745905 + 0.666052i \(0.232017\pi\)
\(380\) 0 0
\(381\) 1.05184e6 + 1.82184e6i 0.371226 + 0.642982i
\(382\) 0 0
\(383\) −2.08586e6 + 3.61281e6i −0.726588 + 1.25849i 0.231730 + 0.972780i \(0.425562\pi\)
−0.958317 + 0.285706i \(0.907772\pi\)
\(384\) 0 0
\(385\) −21800.9 + 130030.i −0.00749590 + 0.0447088i
\(386\) 0 0
\(387\) −66051.9 + 114405.i −0.0224186 + 0.0388301i
\(388\) 0 0
\(389\) −1.37697e6 2.38498e6i −0.461371 0.799119i 0.537658 0.843163i \(-0.319309\pi\)
−0.999030 + 0.0440442i \(0.985976\pi\)
\(390\) 0 0
\(391\) −4.04106e6 −1.33676
\(392\) 0 0
\(393\) −1.41561e6 −0.462340
\(394\) 0 0
\(395\) −2.58184e6 4.47189e6i −0.832602 1.44211i
\(396\) 0 0
\(397\) 1.26602e6 2.19281e6i 0.403148 0.698274i −0.590956 0.806704i \(-0.701249\pi\)
0.994104 + 0.108430i \(0.0345825\pi\)
\(398\) 0 0
\(399\) −335582. + 2.00156e6i −0.105528 + 0.629413i
\(400\) 0 0
\(401\) 1.07873e6 1.86842e6i 0.335007 0.580249i −0.648479 0.761232i \(-0.724595\pi\)
0.983486 + 0.180983i \(0.0579280\pi\)
\(402\) 0 0
\(403\) −1.37785e6 2.38651e6i −0.422611 0.731983i
\(404\) 0 0
\(405\) 382948. 0.116012
\(406\) 0 0
\(407\) −87588.5 −0.0262096
\(408\) 0 0
\(409\) 2.16402e6 + 3.74819e6i 0.639665 + 1.10793i 0.985506 + 0.169640i \(0.0542604\pi\)
−0.345841 + 0.938293i \(0.612406\pi\)
\(410\) 0 0
\(411\) −771964. + 1.33708e6i −0.225420 + 0.390439i
\(412\) 0 0
\(413\) −437599. + 163457.i −0.126241 + 0.0471552i
\(414\) 0 0
\(415\) −2.79649e6 + 4.84366e6i −0.797064 + 1.38056i
\(416\) 0 0
\(417\) −947814. 1.64166e6i −0.266921 0.462321i
\(418\) 0 0
\(419\) 1.51129e6 0.420544 0.210272 0.977643i \(-0.432565\pi\)
0.210272 + 0.977643i \(0.432565\pi\)
\(420\) 0 0
\(421\) 1.11586e6 0.306835 0.153418 0.988161i \(-0.450972\pi\)
0.153418 + 0.988161i \(0.450972\pi\)
\(422\) 0 0
\(423\) −389012. 673788.i −0.105709 0.183093i
\(424\) 0 0
\(425\) −144621. + 250492.i −0.0388383 + 0.0672699i
\(426\) 0 0
\(427\) 2.28787e6 + 1.88717e6i 0.607243 + 0.500888i
\(428\) 0 0
\(429\) −69778.3 + 120860.i −0.0183053 + 0.0317057i
\(430\) 0 0
\(431\) 3.10672e6 + 5.38100e6i 0.805581 + 1.39531i 0.915898 + 0.401411i \(0.131480\pi\)
−0.110317 + 0.993896i \(0.535187\pi\)
\(432\) 0 0
\(433\) 3.24118e6 0.830775 0.415388 0.909644i \(-0.363646\pi\)
0.415388 + 0.909644i \(0.363646\pi\)
\(434\) 0 0
\(435\) −2.95932e6 −0.749841
\(436\) 0 0
\(437\) 3.42334e6 + 5.92939e6i 0.857524 + 1.48527i
\(438\) 0 0
\(439\) 1.15248e6 1.99616e6i 0.285413 0.494349i −0.687297 0.726377i \(-0.741203\pi\)
0.972709 + 0.232028i \(0.0745360\pi\)
\(440\) 0 0
\(441\) 1.02799e6 892502.i 0.251705 0.218531i
\(442\) 0 0
\(443\) 766328. 1.32732e6i 0.185526 0.321341i −0.758228 0.651990i \(-0.773934\pi\)
0.943754 + 0.330649i \(0.107268\pi\)
\(444\) 0 0
\(445\) 1.35727e6 + 2.35086e6i 0.324912 + 0.562764i
\(446\) 0 0
\(447\) −2.15472e6 −0.510060
\(448\) 0 0
\(449\) −3.55718e6 −0.832702 −0.416351 0.909204i \(-0.636691\pi\)
−0.416351 + 0.909204i \(0.636691\pi\)
\(450\) 0 0
\(451\) 160014. + 277153.i 0.0370439 + 0.0641620i
\(452\) 0 0
\(453\) −976678. + 1.69166e6i −0.223617 + 0.387317i
\(454\) 0 0
\(455\) 5.19478e6 + 4.28494e6i 1.17636 + 0.970324i
\(456\) 0 0
\(457\) −1.25941e6 + 2.18137e6i −0.282083 + 0.488583i −0.971898 0.235403i \(-0.924359\pi\)
0.689814 + 0.723986i \(0.257692\pi\)
\(458\) 0 0
\(459\) 374209. + 648148.i 0.0829053 + 0.143596i
\(460\) 0 0
\(461\) −6.63271e6 −1.45358 −0.726789 0.686861i \(-0.758988\pi\)
−0.726789 + 0.686861i \(0.758988\pi\)
\(462\) 0 0
\(463\) 4.40432e6 0.954830 0.477415 0.878678i \(-0.341574\pi\)
0.477415 + 0.878678i \(0.341574\pi\)
\(464\) 0 0
\(465\) 813313. + 1.40870e6i 0.174432 + 0.302124i
\(466\) 0 0
\(467\) 122922. 212908.i 0.0260819 0.0451751i −0.852690 0.522417i \(-0.825030\pi\)
0.878772 + 0.477242i \(0.158364\pi\)
\(468\) 0 0
\(469\) 5.70951e6 2.13269e6i 1.19858 0.447708i
\(470\) 0 0
\(471\) 751070. 1.30089e6i 0.156001 0.270202i
\(472\) 0 0
\(473\) 14208.6 + 24610.0i 0.00292010 + 0.00505776i
\(474\) 0 0
\(475\) 490057. 0.0996581
\(476\) 0 0
\(477\) −1.88378e6 −0.379083
\(478\) 0 0
\(479\) −20175.6 34945.1i −0.00401779 0.00695901i 0.864010 0.503475i \(-0.167946\pi\)
−0.868027 + 0.496516i \(0.834612\pi\)
\(480\) 0 0
\(481\) −2.23678e6 + 3.87422e6i −0.440820 + 0.763523i
\(482\) 0 0
\(483\) 759412. 4.52947e6i 0.148119 0.883445i
\(484\) 0 0
\(485\) 2.21743e6 3.84069e6i 0.428050 0.741405i
\(486\) 0 0
\(487\) −1.65484e6 2.86627e6i −0.316180 0.547639i 0.663508 0.748169i \(-0.269067\pi\)
−0.979688 + 0.200530i \(0.935734\pi\)
\(488\) 0 0
\(489\) 4.55555e6 0.861526
\(490\) 0 0
\(491\) 1.97959e6 0.370570 0.185285 0.982685i \(-0.440679\pi\)
0.185285 + 0.982685i \(0.440679\pi\)
\(492\) 0 0
\(493\) −2.89179e6 5.00872e6i −0.535857 0.928132i
\(494\) 0 0
\(495\) 41188.4 71340.4i 0.00755547 0.0130865i
\(496\) 0 0
\(497\) 34290.7 204525.i 0.00622709 0.0371411i
\(498\) 0 0
\(499\) −1.58498e6 + 2.74526e6i −0.284952 + 0.493551i −0.972597 0.232495i \(-0.925311\pi\)
0.687646 + 0.726046i \(0.258644\pi\)
\(500\) 0 0
\(501\) 2.54502e6 + 4.40810e6i 0.452998 + 0.784616i
\(502\) 0 0
\(503\) 4.01273e6 0.707164 0.353582 0.935403i \(-0.384963\pi\)
0.353582 + 0.935403i \(0.384963\pi\)
\(504\) 0 0
\(505\) −2.69408e6 −0.470092
\(506\) 0 0
\(507\) 1.89310e6 + 3.27894e6i 0.327079 + 0.566518i
\(508\) 0 0
\(509\) −2.05629e6 + 3.56159e6i −0.351795 + 0.609326i −0.986564 0.163375i \(-0.947762\pi\)
0.634769 + 0.772702i \(0.281095\pi\)
\(510\) 0 0
\(511\) −720338. + 269070.i −0.122035 + 0.0455840i
\(512\) 0 0
\(513\) 634012. 1.09814e6i 0.106366 0.184232i
\(514\) 0 0
\(515\) −2.39229e6 4.14356e6i −0.397462 0.688424i
\(516\) 0 0
\(517\) −167363. −0.0275380
\(518\) 0 0
\(519\) 5.93492e6 0.967155
\(520\) 0 0
\(521\) −4.27758e6 7.40898e6i −0.690404 1.19582i −0.971705 0.236196i \(-0.924099\pi\)
0.281301 0.959620i \(-0.409234\pi\)
\(522\) 0 0
\(523\) −896820. + 1.55334e6i −0.143368 + 0.248320i −0.928763 0.370675i \(-0.879126\pi\)
0.785395 + 0.618995i \(0.212460\pi\)
\(524\) 0 0
\(525\) −253588. 209174.i −0.0401542 0.0331214i
\(526\) 0 0
\(527\) −1.58950e6 + 2.75310e6i −0.249307 + 0.431813i
\(528\) 0 0
\(529\) −4.52875e6 7.84402e6i −0.703621 1.21871i
\(530\) 0 0
\(531\) 291862. 0.0449202
\(532\) 0 0
\(533\) 1.63454e7 2.49217
\(534\) 0 0
\(535\) −83280.6 144246.i −0.0125794 0.0217881i
\(536\) 0 0
\(537\) −743805. + 1.28831e6i −0.111307 + 0.192790i
\(538\) 0 0
\(539\) −55700.1 287501.i −0.00825818 0.0426253i
\(540\) 0 0
\(541\) 178780. 309657.i 0.0262619 0.0454870i −0.852596 0.522571i \(-0.824973\pi\)
0.878858 + 0.477084i \(0.158306\pi\)
\(542\) 0 0
\(543\) 668213. + 1.15738e6i 0.0972558 + 0.168452i
\(544\) 0 0
\(545\) −9.70522e6 −1.39963
\(546\) 0 0
\(547\) 3.79404e6 0.542167 0.271084 0.962556i \(-0.412618\pi\)
0.271084 + 0.962556i \(0.412618\pi\)
\(548\) 0 0
\(549\) −926502. 1.60475e6i −0.131195 0.227236i
\(550\) 0 0
\(551\) −4.89949e6 + 8.48616e6i −0.687498 + 1.19078i
\(552\) 0 0
\(553\) 8.84771e6 + 7.29809e6i 1.23032 + 1.01484i
\(554\) 0 0
\(555\) 1.32032e6 2.28686e6i 0.181948 0.315142i
\(556\) 0 0
\(557\) 2.44799e6 + 4.24005e6i 0.334328 + 0.579072i 0.983355 0.181692i \(-0.0581575\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(558\) 0 0
\(559\) 1.45140e6 0.196453
\(560\) 0 0
\(561\) 160994. 0.0215974
\(562\) 0 0
\(563\) −2.16583e6 3.75133e6i −0.287974 0.498786i 0.685352 0.728212i \(-0.259648\pi\)
−0.973326 + 0.229426i \(0.926315\pi\)
\(564\) 0 0
\(565\) −7.59661e6 + 1.31577e7i −1.00115 + 1.73404i
\(566\) 0 0
\(567\) −796807. + 297633.i −0.104087 + 0.0388798i
\(568\) 0 0
\(569\) 1.09848e6 1.90262e6i 0.142236 0.246361i −0.786102 0.618097i \(-0.787904\pi\)
0.928338 + 0.371736i \(0.121237\pi\)
\(570\) 0 0
\(571\) −3.73846e6 6.47520e6i −0.479846 0.831118i 0.519886 0.854235i \(-0.325974\pi\)
−0.999733 + 0.0231172i \(0.992641\pi\)
\(572\) 0 0
\(573\) 3.47320e6 0.441919
\(574\) 0 0
\(575\) −1.10899e6 −0.139880
\(576\) 0 0
\(577\) 683110. + 1.18318e6i 0.0854183 + 0.147949i 0.905569 0.424198i \(-0.139444\pi\)
−0.820151 + 0.572147i \(0.806111\pi\)
\(578\) 0 0
\(579\) 2.23333e6 3.86824e6i 0.276858 0.479531i
\(580\) 0 0
\(581\) 2.05414e6 1.22518e7i 0.252458 1.50577i
\(582\) 0 0
\(583\) −202612. + 350934.i −0.0246884 + 0.0427616i
\(584\) 0 0
\(585\) −2.10369e6 3.64370e6i −0.254151 0.440203i
\(586\) 0 0
\(587\) 9.27217e6 1.11067 0.555336 0.831626i \(-0.312590\pi\)
0.555336 + 0.831626i \(0.312590\pi\)
\(588\) 0 0
\(589\) 5.38612e6 0.639717
\(590\) 0 0
\(591\) 1.98648e6 + 3.44068e6i 0.233946 + 0.405206i
\(592\) 0 0
\(593\) −4.60523e6 + 7.97649e6i −0.537792 + 0.931483i 0.461231 + 0.887280i \(0.347408\pi\)
−0.999023 + 0.0442028i \(0.985925\pi\)
\(594\) 0 0
\(595\) 1.28452e6 7.66145e6i 0.148747 0.887194i
\(596\) 0 0
\(597\) 341275. 591105.i 0.0391894 0.0678779i
\(598\) 0 0
\(599\) −6.84581e6 1.18573e7i −0.779575 1.35026i −0.932187 0.361977i \(-0.882102\pi\)
0.152612 0.988286i \(-0.451231\pi\)
\(600\) 0 0
\(601\) 1.61113e6 0.181946 0.0909732 0.995853i \(-0.471002\pi\)
0.0909732 + 0.995853i \(0.471002\pi\)
\(602\) 0 0
\(603\) −3.80803e6 −0.426489
\(604\) 0 0
\(605\) 4.69119e6 + 8.12539e6i 0.521069 + 0.902517i
\(606\) 0 0
\(607\) −7.03281e6 + 1.21812e7i −0.774742 + 1.34189i 0.160198 + 0.987085i \(0.448787\pi\)
−0.934940 + 0.354807i \(0.884547\pi\)
\(608\) 0 0
\(609\) 6.15752e6 2.30003e6i 0.672764 0.251299i
\(610\) 0 0
\(611\) −4.27401e6 + 7.40280e6i −0.463161 + 0.802219i
\(612\) 0 0
\(613\) −6.79842e6 1.17752e7i −0.730729 1.26566i −0.956572 0.291497i \(-0.905847\pi\)
0.225842 0.974164i \(-0.427487\pi\)
\(614\) 0 0
\(615\) −9.64828e6 −1.02864
\(616\) 0 0
\(617\) −5.74287e6 −0.607318 −0.303659 0.952781i \(-0.598208\pi\)
−0.303659 + 0.952781i \(0.598208\pi\)
\(618\) 0 0
\(619\) −3.01299e6 5.21865e6i −0.316061 0.547434i 0.663602 0.748086i \(-0.269027\pi\)
−0.979662 + 0.200653i \(0.935694\pi\)
\(620\) 0 0
\(621\) −1.43475e6 + 2.48506e6i −0.149296 + 0.258588i
\(622\) 0 0
\(623\) −4.65122e6 3.83658e6i −0.480117 0.396027i
\(624\) 0 0
\(625\) 5.28334e6 9.15101e6i 0.541014 0.937064i
\(626\) 0 0
\(627\) −136384. 236224.i −0.0138546 0.0239969i
\(628\) 0 0
\(629\) 5.16075e6 0.520099
\(630\) 0 0
\(631\) 6.90670e6 0.690554 0.345277 0.938501i \(-0.387785\pi\)
0.345277 + 0.938501i \(0.387785\pi\)
\(632\) 0 0
\(633\) −3.50417e6 6.06940e6i −0.347597 0.602055i
\(634\) 0 0
\(635\) −6.82146e6 + 1.18151e7i −0.671341 + 1.16280i
\(636\) 0 0
\(637\) −1.41392e7 4.87830e6i −1.38063 0.476343i
\(638\) 0 0
\(639\) −64785.2 + 112211.i −0.00627659 + 0.0108714i
\(640\) 0 0
\(641\) −8.24828e6 1.42864e7i −0.792900 1.37334i −0.924164 0.381995i \(-0.875237\pi\)
0.131265 0.991347i \(-0.458096\pi\)
\(642\) 0 0
\(643\) −1.70171e7 −1.62315 −0.811576 0.584247i \(-0.801390\pi\)
−0.811576 + 0.584247i \(0.801390\pi\)
\(644\) 0 0
\(645\) −856727. −0.0810855
\(646\) 0 0
\(647\) 1.74287e6 + 3.01873e6i 0.163683 + 0.283507i 0.936187 0.351503i \(-0.114329\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(648\) 0 0
\(649\) 31391.6 54371.8i 0.00292551 0.00506713i
\(650\) 0 0
\(651\) −2.78714e6 2.29899e6i −0.257754 0.212610i
\(652\) 0 0
\(653\) −7.72245e6 + 1.33757e7i −0.708716 + 1.22753i 0.256618 + 0.966513i \(0.417392\pi\)
−0.965334 + 0.261019i \(0.915941\pi\)
\(654\) 0 0
\(655\) −4.59029e6 7.95061e6i −0.418058 0.724098i
\(656\) 0 0
\(657\) 480439. 0.0434235
\(658\) 0 0
\(659\) 3.11193e6 0.279136 0.139568 0.990212i \(-0.455429\pi\)
0.139568 + 0.990212i \(0.455429\pi\)
\(660\) 0 0
\(661\) −4.08610e6 7.07733e6i −0.363752 0.630037i 0.624823 0.780766i \(-0.285171\pi\)
−0.988575 + 0.150729i \(0.951838\pi\)
\(662\) 0 0
\(663\) 4.11137e6 7.12110e6i 0.363247 0.629163i
\(664\) 0 0
\(665\) −1.23297e7 + 4.60554e6i −1.08118 + 0.403856i
\(666\) 0 0
\(667\) 1.10874e7 1.92039e7i 0.964973 1.67138i
\(668\) 0 0
\(669\) −3.32138e6 5.75280e6i −0.286915 0.496951i
\(670\) 0 0
\(671\) −398604. −0.0341771
\(672\) 0 0
\(673\) 1.60182e7 1.36325 0.681627 0.731700i \(-0.261273\pi\)
0.681627 + 0.731700i \(0.261273\pi\)
\(674\) 0 0
\(675\) 102694. + 177871.i 0.00867530 + 0.0150261i
\(676\) 0 0
\(677\) −512185. + 887131.i −0.0429492 + 0.0743902i −0.886701 0.462344i \(-0.847009\pi\)
0.843752 + 0.536734i \(0.180342\pi\)
\(678\) 0 0
\(679\) −1.62879e6 + 9.71483e6i −0.135579 + 0.808650i
\(680\) 0 0
\(681\) 2.44852e6 4.24096e6i 0.202319 0.350426i
\(682\) 0 0
\(683\) −2.69688e6 4.67114e6i −0.221213 0.383152i 0.733964 0.679189i \(-0.237668\pi\)
−0.955177 + 0.296037i \(0.904335\pi\)
\(684\) 0 0
\(685\) −1.00128e7 −0.815319
\(686\) 0 0
\(687\) 2.10206e6 0.169924
\(688\) 0 0
\(689\) 1.03484e7 + 1.79239e7i 0.830470 + 1.43842i
\(690\) 0 0
\(691\) −452826. + 784318.i −0.0360775 + 0.0624881i −0.883500 0.468430i \(-0.844820\pi\)
0.847423 + 0.530919i \(0.178153\pi\)
\(692\) 0 0
\(693\) −30254.6 + 180452.i −0.00239308 + 0.0142734i
\(694\) 0 0
\(695\) 6.14682e6 1.06466e7i 0.482712 0.836082i
\(696\) 0 0
\(697\) −9.42810e6 1.63300e7i −0.735093 1.27322i
\(698\) 0 0
\(699\) 5.56290e6 0.430634
\(700\) 0 0
\(701\) 1.12573e7 0.865246 0.432623 0.901575i \(-0.357588\pi\)
0.432623 + 0.901575i \(0.357588\pi\)
\(702\) 0 0
\(703\) −4.37187e6 7.57230e6i −0.333640 0.577882i
\(704\) 0 0
\(705\) 2.52284e6 4.36969e6i 0.191169 0.331114i
\(706\) 0 0
\(707\) 5.60563e6 2.09388e6i 0.421770 0.157545i
\(708\) 0 0
\(709\) −2.17755e6 + 3.77162e6i −0.162687 + 0.281781i −0.935831 0.352448i \(-0.885349\pi\)
0.773145 + 0.634230i \(0.218683\pi\)
\(710\) 0 0
\(711\) −3.58299e6 6.20592e6i −0.265810 0.460397i
\(712\) 0 0
\(713\) −1.21886e7 −0.897907
\(714\) 0 0
\(715\) −905060. −0.0662082
\(716\) 0 0
\(717\) −4.21875e6 7.30709e6i −0.306469 0.530819i
\(718\) 0 0
\(719\) −7.07221e6 + 1.22494e7i −0.510191 + 0.883676i 0.489739 + 0.871869i \(0.337092\pi\)
−0.999930 + 0.0118076i \(0.996241\pi\)
\(720\) 0 0
\(721\) 8.19812e6 + 6.76227e6i 0.587322 + 0.484456i
\(722\) 0 0
\(723\) 4.19416e6 7.26450e6i 0.298401 0.516845i
\(724\) 0 0
\(725\) −793591. 1.37454e6i −0.0560727 0.0971208i
\(726\) 0 0
\(727\) 6.26406e6 0.439561 0.219781 0.975549i \(-0.429466\pi\)
0.219781 + 0.975549i \(0.429466\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −837176. 1.45003e6i −0.0579460 0.100365i
\(732\) 0 0
\(733\) 1.02089e7 1.76823e7i 0.701806 1.21556i −0.266025 0.963966i \(-0.585710\pi\)
0.967832 0.251598i \(-0.0809562\pi\)
\(734\) 0 0
\(735\) 8.34602e6 + 2.87954e6i 0.569851 + 0.196610i
\(736\) 0 0
\(737\) −409577. + 709409.i −0.0277758 + 0.0481092i
\(738\) 0 0
\(739\) 7.42256e6 + 1.28563e7i 0.499969 + 0.865971i 1.00000 3.61537e-5i \(-1.15081e-5\pi\)
−0.500031 + 0.866007i \(0.666678\pi\)
\(740\) 0 0
\(741\) −1.39316e7 −0.932083
\(742\) 0 0
\(743\) −2.36601e7 −1.57234 −0.786168 0.618013i \(-0.787938\pi\)
−0.786168 + 0.618013i \(0.787938\pi\)
\(744\) 0 0
\(745\) −6.98694e6 1.21017e7i −0.461207 0.798834i
\(746\) 0 0
\(747\) −3.88087e6 + 6.72186e6i −0.254465 + 0.440746i
\(748\) 0 0
\(749\) 285394. + 235409.i 0.0185883 + 0.0153327i
\(750\) 0 0
\(751\) 1.03287e7 1.78898e7i 0.668258 1.15746i −0.310133 0.950693i \(-0.600373\pi\)
0.978391 0.206764i \(-0.0662932\pi\)
\(752\) 0 0
\(753\) −967389. 1.67557e6i −0.0621747 0.107690i
\(754\) 0 0
\(755\) −1.26680e7 −0.808799
\(756\) 0 0
\(757\) −1.26697e7 −0.803573 −0.401787 0.915733i \(-0.631611\pi\)
−0.401787 + 0.915733i \(0.631611\pi\)
\(758\) 0 0
\(759\) 308633. + 534568.i 0.0194463 + 0.0336820i
\(760\) 0 0
\(761\) −8.13761e6 + 1.40948e7i −0.509372 + 0.882259i 0.490569 + 0.871402i \(0.336789\pi\)
−0.999941 + 0.0108563i \(0.996544\pi\)
\(762\) 0 0
\(763\) 2.01938e7 7.54305e6i 1.25576 0.469068i
\(764\) 0 0
\(765\) −2.42684e6 + 4.20341e6i −0.149929 + 0.259685i
\(766\) 0 0
\(767\) −1.60332e6 2.77703e6i −0.0984084 0.170448i
\(768\) 0 0
\(769\) 1.60471e7 0.978547 0.489273 0.872130i \(-0.337262\pi\)
0.489273 + 0.872130i \(0.337262\pi\)
\(770\) 0 0
\(771\) −712683. −0.0431778
\(772\) 0 0
\(773\) −1.07839e6 1.86782e6i −0.0649121 0.112431i 0.831743 0.555161i \(-0.187343\pi\)
−0.896655 + 0.442730i \(0.854010\pi\)
\(774\) 0 0
\(775\) −436206. + 755531.i −0.0260878 + 0.0451854i
\(776\) 0 0
\(777\) −969828. + 5.78448e6i −0.0576292 + 0.343726i
\(778\) 0 0
\(779\) −1.59738e7 + 2.76674e7i −0.943115 + 1.63352i
\(780\) 0 0
\(781\) 13936.1 + 24138.0i 0.000817548 + 0.00141603i
\(782\) 0 0
\(783\) −4.10684e6 −0.239389
\(784\) 0 0
\(785\) 9.74175e6 0.564239
\(786\) 0 0
\(787\) 7.00503e6 + 1.21331e7i 0.403156 + 0.698286i 0.994105 0.108423i \(-0.0345799\pi\)
−0.590949 + 0.806709i \(0.701247\pi\)
\(788\) 0 0
\(789\) 1.94773e6 3.37356e6i 0.111387 0.192928i
\(790\) 0 0
\(791\) 5.58002e6 3.32817e7i 0.317099 1.89132i
\(792\) 0 0
\(793\) −1.01793e7 + 1.76311e7i −0.574825 + 0.995627i
\(794\) 0 0
\(795\) −6.10839e6 1.05800e7i −0.342775 0.593703i
\(796\) 0 0
\(797\) 4.73289e6 0.263925 0.131963 0.991255i \(-0.457872\pi\)
0.131963 + 0.991255i \(0.457872\pi\)
\(798\) 0 0
\(799\) 9.86107e6 0.546459
\(800\) 0 0
\(801\) 1.88357e6 + 3.26244e6i 0.103729 + 0.179664i
\(802\) 0 0
\(803\) 51674.2 89502.3i 0.00282804 0.00489830i
\(804\) 0 0
\(805\) 2.79018e7 1.04222e7i 1.51755 0.566853i
\(806\) 0 0
\(807\) −21113.4 + 36569.4i −0.00114123 + 0.00197667i
\(808\) 0 0
\(809\) −4.05446e6 7.02253e6i −0.217802 0.377244i 0.736334 0.676618i \(-0.236555\pi\)
−0.954136 + 0.299375i \(0.903222\pi\)
\(810\) 0 0
\(811\) 9.13444e6 0.487674 0.243837 0.969816i \(-0.421594\pi\)
0.243837 + 0.969816i \(0.421594\pi\)
\(812\) 0 0
\(813\) 947378. 0.0502686
\(814\) 0 0
\(815\) 1.47719e7 + 2.55858e7i 0.779011 + 1.34929i
\(816\) 0 0
\(817\) −1.41841e6 + 2.45675e6i −0.0743439 + 0.128767i
\(818\) 0 0
\(819\) 7.20913e6 + 5.94649e6i 0.375555 + 0.309778i
\(820\) 0 0
\(821\) −850776. + 1.47359e6i −0.0440511 + 0.0762988i −0.887210 0.461365i \(-0.847360\pi\)
0.843159 + 0.537664i \(0.180693\pi\)
\(822\) 0 0
\(823\) −1.24604e7 2.15820e7i −0.641256 1.11069i −0.985153 0.171680i \(-0.945080\pi\)
0.343897 0.939007i \(-0.388253\pi\)
\(824\) 0 0
\(825\) 44181.4 0.00225998
\(826\) 0 0
\(827\) 1.91232e7 0.972292 0.486146 0.873878i \(-0.338402\pi\)
0.486146 + 0.873878i \(0.338402\pi\)
\(828\) 0 0
\(829\) 1.10134e7 + 1.90757e7i 0.556588 + 0.964038i 0.997778 + 0.0666248i \(0.0212231\pi\)
−0.441190 + 0.897414i \(0.645444\pi\)
\(830\) 0 0
\(831\) −3.43403e6 + 5.94791e6i −0.172505 + 0.298787i
\(832\) 0 0
\(833\) 3.28187e6 + 1.69397e7i 0.163874 + 0.845849i
\(834\) 0 0
\(835\) −1.65051e7 + 2.85877e7i −0.819222 + 1.41893i
\(836\) 0 0
\(837\) 1.12869e6 + 1.95494e6i 0.0556877 + 0.0964540i
\(838\) 0 0
\(839\) −4.28039e6 −0.209932 −0.104966 0.994476i \(-0.533473\pi\)
−0.104966 + 0.994476i \(0.533473\pi\)
\(840\) 0 0
\(841\) 1.12255e7 0.547286
\(842\) 0 0
\(843\) −3.28293e6 5.68620e6i −0.159108 0.275584i
\(844\) 0 0
\(845\) −1.22772e7 + 2.12648e7i −0.591504 + 1.02452i
\(846\) 0 0
\(847\) −1.60762e7 1.32606e7i −0.769974 0.635117i
\(848\) 0 0
\(849\) 5.35693e6 9.27848e6i 0.255063 0.441781i
\(850\) 0 0
\(851\) 9.89342e6 + 1.71359e7i 0.468298 + 0.811116i
\(852\) 0 0
\(853\) −1.72415e7 −0.811341 −0.405670 0.914019i \(-0.632962\pi\)
−0.405670 + 0.914019i \(0.632962\pi\)
\(854\) 0 0
\(855\) 8.22346e6 0.384715
\(856\) 0 0
\(857\) −1.04170e7 1.80427e7i −0.484495 0.839171i 0.515346 0.856982i \(-0.327663\pi\)
−0.999841 + 0.0178115i \(0.994330\pi\)
\(858\) 0 0
\(859\) −7.91782e6 + 1.37141e7i −0.366119 + 0.634137i −0.988955 0.148215i \(-0.952647\pi\)
0.622836 + 0.782353i \(0.285980\pi\)
\(860\) 0 0
\(861\) 2.00754e7 7.49880e6i 0.922902 0.344734i
\(862\) 0 0
\(863\) −7.96408e6 + 1.37942e7i −0.364006 + 0.630477i −0.988616 0.150460i \(-0.951925\pi\)
0.624610 + 0.780937i \(0.285258\pi\)
\(864\) 0 0
\(865\) 1.92447e7 + 3.33328e7i 0.874523 + 1.51472i
\(866\) 0 0
\(867\) 3.29289e6 0.148775
\(868\) 0 0
\(869\) −1.54149e6 −0.0692455
\(870\) 0 0
\(871\) 2.09191e7 + 3.62330e7i 0.934325 + 1.61830i
\(872\) 0 0
\(873\) 3.07726e6 5.32998e6i 0.136656 0.236695i
\(874\) 0 0
\(875\) −3.55747e6 + 2.12183e7i −0.157080 + 0.936896i
\(876\) 0 0
\(877\) −2.60367e6 + 4.50969e6i −0.114311 + 0.197992i −0.917504 0.397727i \(-0.869799\pi\)
0.803193 + 0.595718i \(0.203133\pi\)
\(878\) 0 0
\(879\) −4.61263e6 7.98931e6i −0.201362 0.348769i
\(880\) 0 0
\(881\) −932829. −0.0404913 −0.0202457 0.999795i \(-0.506445\pi\)
−0.0202457 + 0.999795i \(0.506445\pi\)
\(882\) 0 0
\(883\) −1.33789e7 −0.577457 −0.288728 0.957411i \(-0.593232\pi\)
−0.288728 + 0.957411i \(0.593232\pi\)
\(884\) 0 0
\(885\) 946401. + 1.63921e6i 0.0406178 + 0.0703522i
\(886\) 0 0
\(887\) −3.48450e6 + 6.03533e6i −0.148707 + 0.257568i −0.930750 0.365657i \(-0.880844\pi\)
0.782043 + 0.623225i \(0.214178\pi\)
\(888\) 0 0
\(889\) 5.01064e6 2.98857e7i 0.212637 1.26826i
\(890\) 0 0
\(891\) 57159.8 99003.6i 0.00241210 0.00417789i
\(892\) 0 0
\(893\) −8.35369e6 1.44690e7i −0.350550 0.607170i
\(894\) 0 0
\(895\) −9.64753e6 −0.402586
\(896\) 0 0
\(897\) 3.15268e7 1.30827
\(898\) 0 0
\(899\) −8.72220e6 1.51073e7i −0.359937 0.623429i
\(900\) 0 0
\(901\) 1.19380e7 2.06772e7i 0.489913 0.848554i
\(902\) 0 0
\(903\) 1.78261e6 665862.i 0.0727506 0.0271747i
\(904\) 0 0
\(905\) −4.33353e6 + 7.50590e6i −0.175882 + 0.304636i
\(906\) 0 0
\(907\) −1.88282e7 3.26113e7i −0.759959 1.31629i −0.942871 0.333158i \(-0.891886\pi\)
0.182913 0.983129i \(-0.441447\pi\)
\(908\) 0 0
\(909\) −3.73875e6 −0.150078
\(910\) 0 0
\(911\) 3.09942e7 1.23733 0.618663 0.785657i \(-0.287675\pi\)
0.618663 + 0.785657i \(0.287675\pi\)
\(912\) 0 0
\(913\) 834823. + 1.44596e6i 0.0331450 + 0.0574087i
\(914\) 0 0
\(915\) 6.00860e6 1.04072e7i 0.237258 0.410943i
\(916\) 0 0
\(917\) 1.57304e7 + 1.29753e7i 0.617757 + 0.509560i
\(918\) 0 0
\(919\) 358007. 620086.i 0.0139831 0.0242194i −0.858949 0.512061i \(-0.828882\pi\)
0.872932 + 0.487841i \(0.162216\pi\)
\(920\) 0 0
\(921\) 3.19430e6 + 5.53269e6i 0.124087 + 0.214925i
\(922\) 0 0
\(923\) 1.42357e6 0.0550014
\(924\) 0 0
\(925\) 1.41626e6 0.0544238
\(926\) 0 0
\(927\) −3.31993e6 5.75029e6i −0.126891 0.219781i
\(928\) 0 0
\(929\) −2.08815e7 + 3.61678e7i −0.793820 + 1.37494i 0.129766 + 0.991545i \(0.458577\pi\)
−0.923586 + 0.383392i \(0.874756\pi\)
\(930\) 0 0
\(931\) 2.20751e7 1.91657e7i 0.834698 0.724686i
\(932\) 0 0
\(933\) −7.05434e6 + 1.22185e7i −0.265309 + 0.459529i
\(934\) 0 0
\(935\) 522043. + 904204.i 0.0195289 + 0.0338250i
\(936\) 0 0
\(937\) −2.17917e7 −0.810854 −0.405427 0.914127i \(-0.632877\pi\)
−0.405427 + 0.914127i \(0.632877\pi\)
\(938\) 0 0
\(939\) −3.35657e6 −0.124232
\(940\) 0 0
\(941\) 1.07609e6 + 1.86385e6i 0.0396164 + 0.0686177i 0.885154 0.465299i \(-0.154053\pi\)
−0.845537 + 0.533916i \(0.820720\pi\)
\(942\) 0 0
\(943\) 3.61483e7 6.26106e7i 1.32376 2.29281i
\(944\) 0 0
\(945\) −4.25537e6 3.51007e6i −0.155009 0.127860i
\(946\) 0 0
\(947\) −1.32125e7 + 2.28847e7i −0.478750 + 0.829220i −0.999703 0.0243656i \(-0.992243\pi\)
0.520953 + 0.853585i \(0.325577\pi\)
\(948\) 0 0
\(949\) −2.63925e6 4.57132e6i −0.0951295 0.164769i
\(950\) 0 0
\(951\) 2.72534e7 0.977169
\(952\) 0 0
\(953\) 9.07051e6 0.323519 0.161759 0.986830i \(-0.448283\pi\)
0.161759 + 0.986830i \(0.448283\pi\)
\(954\) 0 0
\(955\) 1.12623e7 + 1.95068e7i 0.399593 + 0.692115i
\(956\) 0 0
\(957\) −441716. + 765075.i −0.0155906 + 0.0270037i
\(958\) 0 0
\(959\) 2.08337e7 7.78208e6i 0.731511 0.273243i
\(960\) 0 0
\(961\) 9.52032e6 1.64897e7i 0.332539 0.575975i
\(962\) 0 0
\(963\) −115574. 200180.i −0.00401600 0.00695592i
\(964\) 0 0
\(965\) 2.89674e7 1.00136
\(966\) 0 0
\(967\) −1.80108e7 −0.619395 −0.309698 0.950835i \(-0.600228\pi\)
−0.309698 + 0.950835i \(0.600228\pi\)
\(968\) 0 0
\(969\) 8.03580e6 + 1.39184e7i 0.274928 + 0.476190i
\(970\) 0 0
\(971\) −2.33815e7 + 4.04980e7i −0.795838 + 1.37843i 0.126467 + 0.991971i \(0.459636\pi\)
−0.922305 + 0.386462i \(0.873697\pi\)
\(972\) 0 0
\(973\) −4.51509e6 + 2.69300e7i −0.152892 + 0.911914i
\(974\) 0 0
\(975\) 1.12828e6 1.95424e6i 0.0380106 0.0658363i
\(976\) 0 0
\(977\) −2.16217e6 3.74498e6i −0.0724690 0.125520i 0.827514 0.561445i \(-0.189755\pi\)
−0.899983 + 0.435925i \(0.856421\pi\)
\(978\) 0 0
\(979\) 810357. 0.0270221
\(980\) 0 0
\(981\) −1.34685e7 −0.446836
\(982\) 0 0
\(983\) 1.04367e7 + 1.80768e7i 0.344491 + 0.596676i 0.985261 0.171057i \(-0.0547181\pi\)
−0.640770 + 0.767733i \(0.721385\pi\)
\(984\) 0 0
\(985\) −1.28828e7 + 2.23137e7i −0.423077 + 0.732792i
\(986\) 0 0
\(987\) −1.85313e6 + 1.10529e7i −0.0605499 + 0.361146i
\(988\) 0 0
\(989\) 3.20981e6 5.55956e6i 0.104349 0.180738i
\(990\) 0 0
\(991\) 2.06104e7 + 3.56983e7i 0.666658 + 1.15469i 0.978833 + 0.204661i \(0.0656090\pi\)
−0.312175 + 0.950025i \(0.601058\pi\)
\(992\) 0 0
\(993\) 9.60206e6 0.309023
\(994\) 0 0
\(995\) 4.42650e6 0.141743
\(996\) 0 0
\(997\) 2.67307e7 + 4.62990e7i 0.851674 + 1.47514i 0.879697 + 0.475535i \(0.157745\pi\)
−0.0280235 + 0.999607i \(0.508921\pi\)
\(998\) 0 0
\(999\) 1.83229e6 3.17362e6i 0.0580872 0.100610i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.6.q.j.289.1 8
4.3 odd 2 21.6.e.c.16.2 yes 8
7.4 even 3 inner 336.6.q.j.193.1 8
12.11 even 2 63.6.e.e.37.3 8
28.3 even 6 147.6.e.o.67.2 8
28.11 odd 6 21.6.e.c.4.2 8
28.19 even 6 147.6.a.l.1.3 4
28.23 odd 6 147.6.a.m.1.3 4
28.27 even 2 147.6.e.o.79.2 8
84.11 even 6 63.6.e.e.46.3 8
84.23 even 6 441.6.a.w.1.2 4
84.47 odd 6 441.6.a.v.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.e.c.4.2 8 28.11 odd 6
21.6.e.c.16.2 yes 8 4.3 odd 2
63.6.e.e.37.3 8 12.11 even 2
63.6.e.e.46.3 8 84.11 even 6
147.6.a.l.1.3 4 28.19 even 6
147.6.a.m.1.3 4 28.23 odd 6
147.6.e.o.67.2 8 28.3 even 6
147.6.e.o.79.2 8 28.27 even 2
336.6.q.j.193.1 8 7.4 even 3 inner
336.6.q.j.289.1 8 1.1 even 1 trivial
441.6.a.v.1.2 4 84.47 odd 6
441.6.a.w.1.2 4 84.23 even 6