Properties

Label 3375.1.d.a.3374.3
Level 33753375
Weight 11
Character 3375.3374
Self dual yes
Analytic conductor 1.6841.684
Analytic rank 00
Dimension 44
Projective image D15D_{15}
CM discriminant -15
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3375,1,Mod(3374,3375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3375, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3375.3374");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3375=3353 3375 = 3^{3} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3375.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.684344417641.68434441764
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ15)+\Q(\zeta_{15})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x34x2+4x+1 x^{4} - x^{3} - 4x^{2} + 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D15D_{15}
Projective field: Galois closure of 15.1.2463153133392333984375.1

Embedding invariants

Embedding label 3374.3
Root 0.209057-0.209057 of defining polynomial
Character χ\chi == 3375.3374

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.209057q20.956295q40.408977q8+0.870796q161.33826q170.209057q19+1.95630q23+1.33826q31+0.591023q320.279773q340.0437048q38+0.408977q46+1.61803q47+1.00000q491.82709q53+1.82709q61+0.279773q620.747238q64+1.27977q68+0.199920q76+1.82709q791.82709q831.87080q92+0.338261q94+0.209057q98+O(q100)q+0.209057 q^{2} -0.956295 q^{4} -0.408977 q^{8} +0.870796 q^{16} -1.33826 q^{17} -0.209057 q^{19} +1.95630 q^{23} +1.33826 q^{31} +0.591023 q^{32} -0.279773 q^{34} -0.0437048 q^{38} +0.408977 q^{46} +1.61803 q^{47} +1.00000 q^{49} -1.82709 q^{53} +1.82709 q^{61} +0.279773 q^{62} -0.747238 q^{64} +1.27977 q^{68} +0.199920 q^{76} +1.82709 q^{79} -1.82709 q^{83} -1.87080 q^{92} +0.338261 q^{94} +0.209057 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4qq2+5q4+q8+6q16q17+q19q23+q31+5q32q349q38q46+2q47+4q49q53+q61+q62+4q64+5q68+q79+q98+O(q100) 4 q - q^{2} + 5 q^{4} + q^{8} + 6 q^{16} - q^{17} + q^{19} - q^{23} + q^{31} + 5 q^{32} - q^{34} - 9 q^{38} - q^{46} + 2 q^{47} + 4 q^{49} - q^{53} + q^{61} + q^{62} + 4 q^{64} + 5 q^{68} + q^{79}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3375Z)×\left(\mathbb{Z}/3375\mathbb{Z}\right)^\times.

nn 10011001 23772377
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
33 0 0
44 −0.956295 −0.956295
55 0 0
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 −0.408977 −0.408977
99 0 0
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 0 0
1616 0.870796 0.870796
1717 −1.33826 −1.33826 −0.669131 0.743145i 0.733333π-0.733333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
1818 0 0
1919 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
2020 0 0
2121 0 0
2222 0 0
2323 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
3232 0.591023 0.591023
3333 0 0
3434 −0.279773 −0.279773
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 −0.0437048 −0.0437048
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0.408977 0.408977
4747 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4848 0 0
4949 1.00000 1.00000
5050 0 0
5151 0 0
5252 0 0
5353 −1.82709 −1.82709 −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
6262 0.279773 0.279773
6363 0 0
6464 −0.747238 −0.747238
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 1.27977 1.27977
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0.199920 0.199920
7777 0 0
7878 0 0
7979 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
8080 0 0
8181 0 0
8282 0 0
8383 −1.82709 −1.82709 −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 −1.87080 −1.87080
9393 0 0
9494 0.338261 0.338261
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0.209057 0.209057
9999 0 0
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 −0.381966 −0.381966
107107 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
108108 0 0
109109 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.00000 1.00000
122122 0.381966 0.381966
123123 0 0
124124 −1.27977 −1.27977
125125 0 0
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −0.747238 −0.747238
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.547318 0.547318
137137 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
152152 0.0854995 0.0854995
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0.381966 0.381966
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 −0.381966 −0.381966
167167 −1.82709 −1.82709 −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
168168 0 0
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
182182 0 0
183183 0 0
184184 −0.800080 −0.800080
185185 0 0
186186 0 0
187187 0 0
188188 −1.54732 −1.54732
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 −0.956295 −0.956295
197197 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
198198 0 0
199199 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
212212 1.74724 1.74724
213213 0 0
214214 −0.129204 −0.129204
215215 0 0
216216 0 0
217217 0 0
218218 0.279773 0.279773
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 0.338261 0.338261
227227 −1.33826 −1.33826 −0.669131 0.743145i 0.733333π-0.733333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
228228 0 0
229229 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
230230 0 0
231231 0 0
232232 0 0
233233 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
242242 0.209057 0.209057
243243 0 0
244244 −1.74724 −1.74724
245245 0 0
246246 0 0
247247 0 0
248248 −0.547318 −0.547318
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0.591023 0.591023
257257 −1.82709 −1.82709 −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
272272 −1.16535 −1.16535
273273 0 0
274274 0.209057 0.209057
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0.129204 0.129204
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.790943 0.790943
290290 0 0
291291 0 0
292292 0 0
293293 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.338261 −0.338261
303303 0 0
304304 −0.182046 −0.182046
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 −1.74724 −1.74724
317317 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0.279773 0.279773
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
332332 1.74724 1.74724
333333 0 0
334334 −0.381966 −0.381966
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0.209057 0.209057
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0.209057 0.209057
347347 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
348348 0 0
349349 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
350350 0 0
351351 0 0
352352 0 0
353353 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 −0.956295 −0.956295
362362 −0.0437048 −0.0437048
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 1.70353 1.70353
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 −0.661739 −0.661739
377377 0 0
378378 0 0
379379 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
380380 0 0
381381 0 0
382382 0 0
383383 −1.33826 −1.33826 −0.669131 0.743145i 0.733333π-0.733333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 −2.61803 −2.61803
392392 −0.408977 −0.408977
393393 0 0
394394 0.408977 0.408977
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0.129204 0.129204
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
422422 −0.408977 −0.408977
423423 0 0
424424 0.747238 0.747238
425425 0 0
426426 0 0
427427 0 0
428428 0.591023 0.591023
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 −1.27977 −1.27977
437437 −0.408977 −0.408977
438438 0 0
439439 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 −1.54732 −1.54732
453453 0 0
454454 −0.279773 −0.279773
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 −0.408977 −0.408977
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −0.418114 −0.418114
467467 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0.279773 0.279773
483483 0 0
484484 −0.956295 −0.956295
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 −0.747238 −0.747238
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.16535 1.16535
497497 0 0
498498 0 0
499499 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
500500 0 0
501501 0 0
502502 0 0
503503 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0.870796 0.870796
513513 0 0
514514 −0.381966 −0.381966
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 −0.129204 −0.129204
527527 −1.79094 −1.79094
528528 0 0
529529 2.82709 2.82709
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
542542 −0.408977 −0.408977
543543 0 0
544544 −0.790943 −0.790943
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −0.956295 −0.956295
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 −0.591023 −0.591023
557557 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.165352 0.165352
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0.408977 0.408977
587587 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
588588 0 0
589589 −0.279773 −0.279773
590590 0 0
591591 0 0
592592 0 0
593593 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
602602 0 0
603603 0 0
604604 1.54732 1.54732
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 −0.123557 −0.123557
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
618618 0 0
619619 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 −0.747238 −0.747238
633633 0 0
634634 0.209057 0.209057
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0.0584884 0.0584884
647647 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
662662 −0.338261 −0.338261
663663 0 0
664664 0.747238 0.747238
665665 0 0
666666 0 0
667667 0 0
668668 1.74724 1.74724
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 −0.956295 −0.956295
677677 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
692692 −0.956295 −0.956295
693693 0 0
694694 0.338261 0.338261
695695 0 0
696696 0 0
697697 0 0
698698 −0.408977 −0.408977
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −0.129204 −0.129204
707707 0 0
708708 0 0
709709 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
710710 0 0
711711 0 0
712712 0 0
713713 2.61803 2.61803
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 −0.199920 −0.199920
723723 0 0
724724 0.199920 0.199920
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 1.15622 1.15622
737737 0 0
738738 0 0
739739 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
740740 0 0
741741 0 0
742742 0 0
743743 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
752752 1.40898 1.40898
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −0.209057 −0.209057
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −0.279773 −0.279773
767767 0 0
768768 0 0
769769 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −0.547318 −0.547318
783783 0 0
784784 0.870796 0.870796
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 −1.87080 −1.87080
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −0.591023 −0.591023
797797 −1.33826 −1.33826 −0.669131 0.743145i 0.733333π-0.733333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
798798 0 0
799799 −2.16535 −2.16535
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.381966 0.381966
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 −1.82709 −1.82709 −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
828828 0 0
829829 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
830830 0 0
831831 0 0
832832 0 0
833833 −1.33826 −1.33826
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 −0.0437048 −0.0437048
843843 0 0
844844 1.87080 1.87080
845845 0 0
846846 0 0
847847 0 0
848848 −1.59102 −1.59102
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0.252762 0.252762
857857 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
858858 0 0
859859 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.547318 −0.547318
873873 0 0
874874 −0.0854995 −0.0854995
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 −0.209057 −0.209057
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0.0437048 0.0437048
887887 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −0.338261 −0.338261
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 2.44512 2.44512
902902 0 0
903903 0 0
904904 −0.661739 −0.661739
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 1.27977 1.27977
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.87080 1.87080
917917 0 0
918918 0 0
919919 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 −0.209057 −0.209057
932932 1.91259 1.91259
933933 0 0
934934 0.0437048 0.0437048
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 1.95630 1.95630 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.790943 0.790943
962962 0 0
963963 0 0
964964 −1.27977 −1.27977
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −0.408977 −0.408977
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1.59102 1.59102
977977 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0.209057 0.209057 0.104528 0.994522i 0.466667π-0.466667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
992992 0.790943 0.790943
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0.381966 0.381966
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3375.1.d.a.3374.3 4
3.2 odd 2 3375.1.d.b.3374.2 4
5.2 odd 4 3375.1.c.a.1376.5 yes 8
5.3 odd 4 3375.1.c.a.1376.4 8
5.4 even 2 3375.1.d.b.3374.2 4
15.2 even 4 3375.1.c.a.1376.4 8
15.8 even 4 3375.1.c.a.1376.5 yes 8
15.14 odd 2 CM 3375.1.d.a.3374.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3375.1.c.a.1376.4 8 5.3 odd 4
3375.1.c.a.1376.4 8 15.2 even 4
3375.1.c.a.1376.5 yes 8 5.2 odd 4
3375.1.c.a.1376.5 yes 8 15.8 even 4
3375.1.d.a.3374.3 4 1.1 even 1 trivial
3375.1.d.a.3374.3 4 15.14 odd 2 CM
3375.1.d.b.3374.2 4 3.2 odd 2
3375.1.d.b.3374.2 4 5.4 even 2