Properties

Label 338.4.c.o.315.1
Level $338$
Weight $4$
Character 338.315
Analytic conductor $19.943$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(191,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 108 x^{10} - 63 x^{9} + 7831 x^{8} - 3348 x^{7} + 317885 x^{6} + 1680 x^{5} + \cdots + 1759886401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.1
Root \(2.92486 + 5.06601i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.4.c.o.191.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-5.00428 - 8.66767i) q^{3} +(-2.00000 + 3.46410i) q^{4} -13.8136 q^{5} +(-10.0086 + 17.3353i) q^{6} +(0.131143 - 0.227146i) q^{7} +8.00000 q^{8} +(-36.5857 + 63.3682i) q^{9} +(13.8136 + 23.9258i) q^{10} +(-20.0079 - 34.6548i) q^{11} +40.0343 q^{12} -0.524571 q^{14} +(69.1270 + 119.731i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-39.8680 + 69.0534i) q^{17} +146.343 q^{18} +(11.2932 - 19.5604i) q^{19} +(27.6271 - 47.8516i) q^{20} -2.62510 q^{21} +(-40.0159 + 69.3096i) q^{22} +(32.7646 + 56.7499i) q^{23} +(-40.0343 - 69.3414i) q^{24} +65.8147 q^{25} +462.109 q^{27} +(0.524571 + 0.908583i) q^{28} +(-20.0684 - 34.7595i) q^{29} +(138.254 - 239.463i) q^{30} -113.748 q^{31} +(-16.0000 + 27.7128i) q^{32} +(-200.251 + 346.845i) q^{33} +159.472 q^{34} +(-1.81155 + 3.13770i) q^{35} +(-146.343 - 253.473i) q^{36} +(-60.5399 - 104.858i) q^{37} -45.1727 q^{38} -110.509 q^{40} +(-198.092 - 343.106i) q^{41} +(2.62510 + 4.54681i) q^{42} +(137.950 - 238.936i) q^{43} +160.064 q^{44} +(505.379 - 875.342i) q^{45} +(65.5291 - 113.500i) q^{46} -440.483 q^{47} +(-80.0685 + 138.683i) q^{48} +(171.466 + 296.987i) q^{49} +(-65.8147 - 113.994i) q^{50} +798.043 q^{51} -615.108 q^{53} +(-462.109 - 800.396i) q^{54} +(276.381 + 478.706i) q^{55} +(1.04914 - 1.81717i) q^{56} -226.057 q^{57} +(-40.1368 + 69.5190i) q^{58} +(115.454 - 199.972i) q^{59} -553.016 q^{60} +(54.7618 - 94.8501i) q^{61} +(113.748 + 197.017i) q^{62} +(9.59589 + 16.6206i) q^{63} +64.0000 q^{64} +801.003 q^{66} +(110.566 + 191.506i) q^{67} +(-159.472 - 276.214i) q^{68} +(327.926 - 567.985i) q^{69} +7.24620 q^{70} +(161.102 - 279.036i) q^{71} +(-292.685 + 506.946i) q^{72} -323.664 q^{73} +(-121.080 + 209.716i) q^{74} +(-329.355 - 570.460i) q^{75} +(45.1727 + 78.2415i) q^{76} -10.4956 q^{77} +743.263 q^{79} +(110.509 + 191.406i) q^{80} +(-1324.71 - 2294.46i) q^{81} +(-396.184 + 686.211i) q^{82} +539.296 q^{83} +(5.25020 - 9.09361i) q^{84} +(550.720 - 953.875i) q^{85} -551.800 q^{86} +(-200.856 + 347.893i) q^{87} +(-160.064 - 277.238i) q^{88} +(632.070 + 1094.78i) q^{89} -2021.51 q^{90} -262.116 q^{92} +(569.225 + 985.927i) q^{93} +(440.483 + 762.939i) q^{94} +(-155.999 + 270.199i) q^{95} +320.274 q^{96} +(-163.040 + 282.394i) q^{97} +(342.931 - 593.974i) q^{98} +2928.02 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} - 9 q^{3} - 24 q^{4} + 36 q^{5} - 18 q^{6} - 25 q^{7} + 96 q^{8} - 113 q^{9} - 36 q^{10} - 37 q^{11} + 72 q^{12} + 100 q^{14} - 118 q^{15} - 96 q^{16} - 99 q^{17} + 452 q^{18} + 81 q^{19}+ \cdots - 2688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) −5.00428 8.66767i −0.963074 1.66809i −0.714702 0.699429i \(-0.753438\pi\)
−0.248373 0.968665i \(-0.579896\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −13.8136 −1.23552 −0.617762 0.786365i \(-0.711960\pi\)
−0.617762 + 0.786365i \(0.711960\pi\)
\(6\) −10.0086 + 17.3353i −0.680996 + 1.17952i
\(7\) 0.131143 0.227146i 0.00708104 0.0122647i −0.862463 0.506120i \(-0.831079\pi\)
0.869544 + 0.493855i \(0.164413\pi\)
\(8\) 8.00000 0.353553
\(9\) −36.5857 + 63.3682i −1.35502 + 2.34697i
\(10\) 13.8136 + 23.9258i 0.436823 + 0.756600i
\(11\) −20.0079 34.6548i −0.548420 0.949892i −0.998383 0.0568445i \(-0.981896\pi\)
0.449963 0.893047i \(-0.351437\pi\)
\(12\) 40.0343 0.963074
\(13\) 0 0
\(14\) −0.524571 −0.0100141
\(15\) 69.1270 + 119.731i 1.18990 + 2.06097i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −39.8680 + 69.0534i −0.568789 + 0.985172i 0.427897 + 0.903828i \(0.359255\pi\)
−0.996686 + 0.0813443i \(0.974079\pi\)
\(18\) 146.343 1.91629
\(19\) 11.2932 19.5604i 0.136360 0.236182i −0.789756 0.613421i \(-0.789793\pi\)
0.926116 + 0.377239i \(0.123126\pi\)
\(20\) 27.6271 47.8516i 0.308881 0.534997i
\(21\) −2.62510 −0.0272783
\(22\) −40.0159 + 69.3096i −0.387792 + 0.671675i
\(23\) 32.7646 + 56.7499i 0.297038 + 0.514485i 0.975457 0.220190i \(-0.0706678\pi\)
−0.678419 + 0.734675i \(0.737334\pi\)
\(24\) −40.0343 69.3414i −0.340498 0.589760i
\(25\) 65.8147 0.526518
\(26\) 0 0
\(27\) 462.109 3.29381
\(28\) 0.524571 + 0.908583i 0.00354052 + 0.00613236i
\(29\) −20.0684 34.7595i −0.128504 0.222575i 0.794593 0.607142i \(-0.207684\pi\)
−0.923097 + 0.384567i \(0.874351\pi\)
\(30\) 138.254 239.463i 0.841387 1.45732i
\(31\) −113.748 −0.659022 −0.329511 0.944152i \(-0.606884\pi\)
−0.329511 + 0.944152i \(0.606884\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) −200.251 + 346.845i −1.05634 + 1.82963i
\(34\) 159.472 0.804389
\(35\) −1.81155 + 3.13770i −0.00874879 + 0.0151534i
\(36\) −146.343 253.473i −0.677512 1.17349i
\(37\) −60.5399 104.858i −0.268992 0.465908i 0.699610 0.714525i \(-0.253357\pi\)
−0.968602 + 0.248617i \(0.920024\pi\)
\(38\) −45.1727 −0.192842
\(39\) 0 0
\(40\) −110.509 −0.436823
\(41\) −198.092 343.106i −0.754556 1.30693i −0.945595 0.325347i \(-0.894519\pi\)
0.191039 0.981583i \(-0.438814\pi\)
\(42\) 2.62510 + 4.54681i 0.00964433 + 0.0167045i
\(43\) 137.950 238.936i 0.489237 0.847383i −0.510687 0.859767i \(-0.670609\pi\)
0.999923 + 0.0123841i \(0.00394208\pi\)
\(44\) 160.064 0.548420
\(45\) 505.379 875.342i 1.67416 2.89974i
\(46\) 65.5291 113.500i 0.210038 0.363796i
\(47\) −440.483 −1.36704 −0.683522 0.729930i \(-0.739553\pi\)
−0.683522 + 0.729930i \(0.739553\pi\)
\(48\) −80.0685 + 138.683i −0.240769 + 0.417023i
\(49\) 171.466 + 296.987i 0.499900 + 0.865852i
\(50\) −65.8147 113.994i −0.186152 0.322425i
\(51\) 798.043 2.19115
\(52\) 0 0
\(53\) −615.108 −1.59418 −0.797091 0.603860i \(-0.793629\pi\)
−0.797091 + 0.603860i \(0.793629\pi\)
\(54\) −462.109 800.396i −1.16454 2.01704i
\(55\) 276.381 + 478.706i 0.677586 + 1.17361i
\(56\) 1.04914 1.81717i 0.00250353 0.00433623i
\(57\) −226.057 −0.525298
\(58\) −40.1368 + 69.5190i −0.0908659 + 0.157384i
\(59\) 115.454 199.972i 0.254760 0.441257i −0.710070 0.704131i \(-0.751337\pi\)
0.964830 + 0.262874i \(0.0846702\pi\)
\(60\) −553.016 −1.18990
\(61\) 54.7618 94.8501i 0.114943 0.199087i −0.802814 0.596230i \(-0.796665\pi\)
0.917757 + 0.397142i \(0.129998\pi\)
\(62\) 113.748 + 197.017i 0.232999 + 0.403567i
\(63\) 9.59589 + 16.6206i 0.0191900 + 0.0332380i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 801.003 1.49389
\(67\) 110.566 + 191.506i 0.201609 + 0.349197i 0.949047 0.315135i \(-0.102050\pi\)
−0.747438 + 0.664331i \(0.768716\pi\)
\(68\) −159.472 276.214i −0.284395 0.492586i
\(69\) 327.926 567.985i 0.572140 0.990976i
\(70\) 7.24620 0.0123727
\(71\) 161.102 279.036i 0.269285 0.466416i −0.699392 0.714738i \(-0.746546\pi\)
0.968677 + 0.248322i \(0.0798792\pi\)
\(72\) −292.685 + 506.946i −0.479074 + 0.829780i
\(73\) −323.664 −0.518932 −0.259466 0.965752i \(-0.583547\pi\)
−0.259466 + 0.965752i \(0.583547\pi\)
\(74\) −121.080 + 209.716i −0.190206 + 0.329446i
\(75\) −329.355 570.460i −0.507076 0.878281i
\(76\) 45.1727 + 78.2415i 0.0681799 + 0.118091i
\(77\) −10.4956 −0.0155335
\(78\) 0 0
\(79\) 743.263 1.05853 0.529263 0.848458i \(-0.322468\pi\)
0.529263 + 0.848458i \(0.322468\pi\)
\(80\) 110.509 + 191.406i 0.154440 + 0.267499i
\(81\) −1324.71 2294.46i −1.81716 3.14741i
\(82\) −396.184 + 686.211i −0.533552 + 0.924139i
\(83\) 539.296 0.713198 0.356599 0.934258i \(-0.383936\pi\)
0.356599 + 0.934258i \(0.383936\pi\)
\(84\) 5.25020 9.09361i 0.00681957 0.0118118i
\(85\) 550.720 953.875i 0.702752 1.21720i
\(86\) −551.800 −0.691885
\(87\) −200.856 + 347.893i −0.247517 + 0.428713i
\(88\) −160.064 277.238i −0.193896 0.335837i
\(89\) 632.070 + 1094.78i 0.752801 + 1.30389i 0.946460 + 0.322821i \(0.104631\pi\)
−0.193659 + 0.981069i \(0.562035\pi\)
\(90\) −2021.51 −2.36763
\(91\) 0 0
\(92\) −262.116 −0.297038
\(93\) 569.225 + 985.927i 0.634687 + 1.09931i
\(94\) 440.483 + 762.939i 0.483323 + 0.837140i
\(95\) −155.999 + 270.199i −0.168476 + 0.291808i
\(96\) 320.274 0.340498
\(97\) −163.040 + 282.394i −0.170662 + 0.295596i −0.938652 0.344867i \(-0.887924\pi\)
0.767989 + 0.640463i \(0.221257\pi\)
\(98\) 342.931 593.974i 0.353482 0.612250i
\(99\) 2928.02 2.97249
\(100\) −131.629 + 227.989i −0.131629 + 0.227989i
\(101\) 717.578 + 1242.88i 0.706948 + 1.22447i 0.965984 + 0.258602i \(0.0832618\pi\)
−0.259036 + 0.965868i \(0.583405\pi\)
\(102\) −798.043 1382.25i −0.774687 1.34180i
\(103\) 1853.77 1.77337 0.886684 0.462375i \(-0.153003\pi\)
0.886684 + 0.462375i \(0.153003\pi\)
\(104\) 0 0
\(105\) 36.2620 0.0337029
\(106\) 615.108 + 1065.40i 0.563628 + 0.976233i
\(107\) 76.9627 + 133.303i 0.0695352 + 0.120438i 0.898697 0.438571i \(-0.144515\pi\)
−0.829162 + 0.559009i \(0.811182\pi\)
\(108\) −924.217 + 1600.79i −0.823452 + 1.42626i
\(109\) 1788.06 1.57124 0.785621 0.618708i \(-0.212343\pi\)
0.785621 + 0.618708i \(0.212343\pi\)
\(110\) 552.762 957.413i 0.479126 0.829870i
\(111\) −605.917 + 1049.48i −0.518118 + 0.897407i
\(112\) −4.19657 −0.00354052
\(113\) 464.890 805.214i 0.387020 0.670338i −0.605028 0.796205i \(-0.706838\pi\)
0.992047 + 0.125867i \(0.0401712\pi\)
\(114\) 226.057 + 391.542i 0.185721 + 0.321678i
\(115\) −452.595 783.918i −0.366998 0.635659i
\(116\) 160.547 0.128504
\(117\) 0 0
\(118\) −461.816 −0.360285
\(119\) 10.4568 + 18.1117i 0.00805524 + 0.0139521i
\(120\) 553.016 + 957.852i 0.420693 + 0.728662i
\(121\) −135.136 + 234.062i −0.101530 + 0.175855i
\(122\) −219.047 −0.162554
\(123\) −1982.62 + 3433.99i −1.45339 + 2.51734i
\(124\) 227.495 394.033i 0.164755 0.285365i
\(125\) 817.560 0.584998
\(126\) 19.1918 33.2411i 0.0135694 0.0235028i
\(127\) 392.742 + 680.249i 0.274411 + 0.475294i 0.969986 0.243159i \(-0.0781838\pi\)
−0.695575 + 0.718453i \(0.744850\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) −2761.36 −1.88469
\(130\) 0 0
\(131\) −2851.17 −1.90159 −0.950793 0.309826i \(-0.899729\pi\)
−0.950793 + 0.309826i \(0.899729\pi\)
\(132\) −801.003 1387.38i −0.528170 0.914817i
\(133\) −2.96204 5.13040i −0.00193114 0.00334483i
\(134\) 221.132 383.012i 0.142559 0.246919i
\(135\) −6383.37 −4.06958
\(136\) −318.944 + 552.428i −0.201097 + 0.348311i
\(137\) 201.039 348.210i 0.125372 0.217150i −0.796506 0.604630i \(-0.793321\pi\)
0.921878 + 0.387480i \(0.126654\pi\)
\(138\) −1311.70 −0.809128
\(139\) −430.111 + 744.975i −0.262457 + 0.454590i −0.966894 0.255177i \(-0.917866\pi\)
0.704437 + 0.709767i \(0.251200\pi\)
\(140\) −7.24620 12.5508i −0.00437440 0.00757668i
\(141\) 2204.30 + 3817.96i 1.31657 + 2.28036i
\(142\) −644.407 −0.380827
\(143\) 0 0
\(144\) 1170.74 0.677512
\(145\) 277.216 + 480.153i 0.158769 + 0.274997i
\(146\) 323.664 + 560.603i 0.183470 + 0.317780i
\(147\) 1716.12 2972.41i 0.962881 1.66776i
\(148\) 484.319 0.268992
\(149\) 715.006 1238.43i 0.393125 0.680912i −0.599735 0.800199i \(-0.704727\pi\)
0.992860 + 0.119287i \(0.0380608\pi\)
\(150\) −658.711 + 1140.92i −0.358557 + 0.621039i
\(151\) −941.478 −0.507393 −0.253697 0.967284i \(-0.581646\pi\)
−0.253697 + 0.967284i \(0.581646\pi\)
\(152\) 90.3455 156.483i 0.0482104 0.0835029i
\(153\) −2917.20 5052.73i −1.54145 2.66986i
\(154\) 10.4956 + 18.1789i 0.00549194 + 0.00951232i
\(155\) 1571.26 0.814237
\(156\) 0 0
\(157\) −182.395 −0.0927179 −0.0463590 0.998925i \(-0.514762\pi\)
−0.0463590 + 0.998925i \(0.514762\pi\)
\(158\) −743.263 1287.37i −0.374246 0.648213i
\(159\) 3078.17 + 5331.55i 1.53532 + 2.65924i
\(160\) 221.017 382.813i 0.109206 0.189150i
\(161\) 17.1873 0.00841336
\(162\) −2649.42 + 4588.93i −1.28493 + 2.22556i
\(163\) −443.611 + 768.356i −0.213167 + 0.369217i −0.952704 0.303900i \(-0.901711\pi\)
0.739537 + 0.673116i \(0.235045\pi\)
\(164\) 1584.74 0.754556
\(165\) 2766.18 4791.16i 1.30513 2.26055i
\(166\) −539.296 934.088i −0.252154 0.436743i
\(167\) −1449.33 2510.32i −0.671574 1.16320i −0.977458 0.211131i \(-0.932285\pi\)
0.305884 0.952069i \(-0.401048\pi\)
\(168\) −21.0008 −0.00964433
\(169\) 0 0
\(170\) −2202.88 −0.993842
\(171\) 826.337 + 1431.26i 0.369542 + 0.640065i
\(172\) 551.800 + 955.746i 0.244618 + 0.423691i
\(173\) −1378.49 + 2387.62i −0.605808 + 1.04929i 0.386115 + 0.922451i \(0.373817\pi\)
−0.991923 + 0.126840i \(0.959517\pi\)
\(174\) 803.423 0.350042
\(175\) 8.63112 14.9495i 0.00372829 0.00645760i
\(176\) −320.127 + 554.477i −0.137105 + 0.237473i
\(177\) −2311.06 −0.981411
\(178\) 1264.14 2189.56i 0.532311 0.921990i
\(179\) 1053.34 + 1824.44i 0.439834 + 0.761815i 0.997676 0.0681321i \(-0.0217039\pi\)
−0.557842 + 0.829947i \(0.688371\pi\)
\(180\) 2021.51 + 3501.37i 0.837082 + 1.44987i
\(181\) 778.123 0.319544 0.159772 0.987154i \(-0.448924\pi\)
0.159772 + 0.987154i \(0.448924\pi\)
\(182\) 0 0
\(183\) −1096.17 −0.442795
\(184\) 262.116 + 453.999i 0.105019 + 0.181898i
\(185\) 836.272 + 1448.47i 0.332346 + 0.575640i
\(186\) 1138.45 1971.85i 0.448792 0.777330i
\(187\) 3190.71 1.24774
\(188\) 880.967 1525.88i 0.341761 0.591948i
\(189\) 60.6022 104.966i 0.0233236 0.0403977i
\(190\) 623.997 0.238260
\(191\) 895.531 1551.11i 0.339259 0.587613i −0.645035 0.764153i \(-0.723157\pi\)
0.984293 + 0.176540i \(0.0564905\pi\)
\(192\) −320.274 554.731i −0.120384 0.208512i
\(193\) −938.493 1625.52i −0.350022 0.606255i 0.636231 0.771498i \(-0.280492\pi\)
−0.986253 + 0.165243i \(0.947159\pi\)
\(194\) 652.161 0.241353
\(195\) 0 0
\(196\) −1371.72 −0.499900
\(197\) −792.022 1371.82i −0.286443 0.496133i 0.686515 0.727115i \(-0.259139\pi\)
−0.972958 + 0.230982i \(0.925806\pi\)
\(198\) −2928.02 5071.47i −1.05093 1.82027i
\(199\) −2484.09 + 4302.57i −0.884887 + 1.53267i −0.0390430 + 0.999238i \(0.512431\pi\)
−0.845844 + 0.533431i \(0.820902\pi\)
\(200\) 526.518 0.186152
\(201\) 1106.61 1916.70i 0.388329 0.672605i
\(202\) 1435.16 2485.76i 0.499888 0.865831i
\(203\) −10.5273 −0.00363976
\(204\) −1596.09 + 2764.50i −0.547786 + 0.948794i
\(205\) 2736.36 + 4739.51i 0.932272 + 1.61474i
\(206\) −1853.77 3210.82i −0.626980 1.08596i
\(207\) −4794.85 −1.60998
\(208\) 0 0
\(209\) −903.814 −0.299130
\(210\) −36.2620 62.8076i −0.0119158 0.0206388i
\(211\) −1831.34 3171.97i −0.597509 1.03492i −0.993188 0.116527i \(-0.962824\pi\)
0.395678 0.918389i \(-0.370509\pi\)
\(212\) 1230.22 2130.80i 0.398545 0.690301i
\(213\) −3224.79 −1.03737
\(214\) 153.925 266.607i 0.0491688 0.0851628i
\(215\) −1905.58 + 3300.57i −0.604463 + 1.04696i
\(216\) 3696.87 1.16454
\(217\) −14.9172 + 25.8373i −0.00466656 + 0.00808272i
\(218\) −1788.06 3097.02i −0.555518 0.962186i
\(219\) 1619.71 + 2805.41i 0.499770 + 0.865627i
\(220\) −2211.05 −0.677586
\(221\) 0 0
\(222\) 2423.67 0.732730
\(223\) 2247.62 + 3892.99i 0.674940 + 1.16903i 0.976486 + 0.215579i \(0.0691640\pi\)
−0.301546 + 0.953452i \(0.597503\pi\)
\(224\) 4.19657 + 7.26867i 0.00125176 + 0.00216812i
\(225\) −2407.88 + 4170.56i −0.713445 + 1.23572i
\(226\) −1859.56 −0.547328
\(227\) −1800.81 + 3119.09i −0.526536 + 0.911987i 0.472986 + 0.881070i \(0.343176\pi\)
−0.999522 + 0.0309171i \(0.990157\pi\)
\(228\) 452.114 783.085i 0.131325 0.227461i
\(229\) 5162.11 1.48962 0.744808 0.667279i \(-0.232541\pi\)
0.744808 + 0.667279i \(0.232541\pi\)
\(230\) −905.191 + 1567.84i −0.259507 + 0.449479i
\(231\) 52.5229 + 90.9723i 0.0149600 + 0.0259114i
\(232\) −160.547 278.076i −0.0454329 0.0786922i
\(233\) −2022.92 −0.568781 −0.284390 0.958709i \(-0.591791\pi\)
−0.284390 + 0.958709i \(0.591791\pi\)
\(234\) 0 0
\(235\) 6084.65 1.68902
\(236\) 461.816 + 799.889i 0.127380 + 0.220629i
\(237\) −3719.50 6442.36i −1.01944 1.76572i
\(238\) 20.9136 36.2234i 0.00569592 0.00986561i
\(239\) 1423.12 0.385163 0.192581 0.981281i \(-0.438314\pi\)
0.192581 + 0.981281i \(0.438314\pi\)
\(240\) 1106.03 1915.70i 0.297475 0.515242i
\(241\) 1777.17 3078.15i 0.475011 0.822743i −0.524580 0.851361i \(-0.675778\pi\)
0.999590 + 0.0286187i \(0.00911086\pi\)
\(242\) 540.544 0.143585
\(243\) −7019.96 + 12158.9i −1.85321 + 3.20986i
\(244\) 219.047 + 379.401i 0.0574715 + 0.0995436i
\(245\) −2368.55 4102.45i −0.617638 1.06978i
\(246\) 7930.47 2.05540
\(247\) 0 0
\(248\) −909.981 −0.232999
\(249\) −2698.79 4674.44i −0.686863 1.18968i
\(250\) −817.560 1416.06i −0.206828 0.358237i
\(251\) 576.202 998.011i 0.144899 0.250972i −0.784437 0.620209i \(-0.787048\pi\)
0.929335 + 0.369237i \(0.120381\pi\)
\(252\) −76.7671 −0.0191900
\(253\) 1311.10 2270.90i 0.325804 0.564309i
\(254\) 785.484 1360.50i 0.194038 0.336083i
\(255\) −11023.8 −2.70721
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 924.506 + 1601.29i 0.224393 + 0.388661i 0.956137 0.292919i \(-0.0946266\pi\)
−0.731744 + 0.681580i \(0.761293\pi\)
\(258\) 2761.36 + 4782.82i 0.666337 + 1.15413i
\(259\) −31.7575 −0.00761897
\(260\) 0 0
\(261\) 2936.86 0.696503
\(262\) 2851.17 + 4938.37i 0.672312 + 1.16448i
\(263\) 1675.44 + 2901.95i 0.392822 + 0.680387i 0.992820 0.119614i \(-0.0381657\pi\)
−0.599999 + 0.800001i \(0.704832\pi\)
\(264\) −1602.01 + 2774.76i −0.373472 + 0.646873i
\(265\) 8496.84 1.96965
\(266\) −5.92408 + 10.2608i −0.00136552 + 0.00236515i
\(267\) 6326.12 10957.2i 1.45001 2.51149i
\(268\) −884.529 −0.201609
\(269\) 417.064 722.375i 0.0945309 0.163732i −0.814882 0.579627i \(-0.803198\pi\)
0.909413 + 0.415895i \(0.136532\pi\)
\(270\) 6383.37 + 11056.3i 1.43881 + 2.49210i
\(271\) 4030.53 + 6981.09i 0.903459 + 1.56484i 0.822973 + 0.568081i \(0.192314\pi\)
0.0804861 + 0.996756i \(0.474353\pi\)
\(272\) 1275.78 0.284395
\(273\) 0 0
\(274\) −804.157 −0.177303
\(275\) −1316.82 2280.80i −0.288753 0.500135i
\(276\) 1311.70 + 2271.94i 0.286070 + 0.495488i
\(277\) 2354.77 4078.58i 0.510774 0.884687i −0.489148 0.872201i \(-0.662692\pi\)
0.999922 0.0124859i \(-0.00397448\pi\)
\(278\) 1720.45 0.371171
\(279\) 4161.53 7207.99i 0.892991 1.54671i
\(280\) −14.4924 + 25.1016i −0.00309317 + 0.00535752i
\(281\) 2110.40 0.448028 0.224014 0.974586i \(-0.428084\pi\)
0.224014 + 0.974586i \(0.428084\pi\)
\(282\) 4408.60 7635.93i 0.930952 1.61246i
\(283\) −546.796 947.078i −0.114854 0.198933i 0.802867 0.596158i \(-0.203307\pi\)
−0.917721 + 0.397225i \(0.869973\pi\)
\(284\) 644.407 + 1116.15i 0.134643 + 0.233208i
\(285\) 3122.66 0.649018
\(286\) 0 0
\(287\) −103.913 −0.0213722
\(288\) −1170.74 2027.78i −0.239537 0.414890i
\(289\) −722.419 1251.27i −0.147042 0.254685i
\(290\) 554.433 960.305i 0.112267 0.194452i
\(291\) 3263.60 0.657441
\(292\) 647.328 1121.21i 0.129733 0.224704i
\(293\) −4802.59 + 8318.33i −0.957578 + 1.65857i −0.229223 + 0.973374i \(0.573619\pi\)
−0.728355 + 0.685200i \(0.759715\pi\)
\(294\) −6864.50 −1.36172
\(295\) −1594.83 + 2762.33i −0.314762 + 0.545184i
\(296\) −484.319 838.865i −0.0951030 0.164723i
\(297\) −9245.85 16014.3i −1.80639 3.12876i
\(298\) −2860.02 −0.555962
\(299\) 0 0
\(300\) 2634.84 0.507076
\(301\) −36.1823 62.6695i −0.00692861 0.0120007i
\(302\) 941.478 + 1630.69i 0.179391 + 0.310714i
\(303\) 7181.93 12439.5i 1.36169 2.35851i
\(304\) −361.382 −0.0681799
\(305\) −756.455 + 1310.22i −0.142015 + 0.245977i
\(306\) −5834.39 + 10105.5i −1.08997 + 1.88788i
\(307\) −4387.82 −0.815721 −0.407860 0.913044i \(-0.633725\pi\)
−0.407860 + 0.913044i \(0.633725\pi\)
\(308\) 20.9912 36.3578i 0.00388339 0.00672622i
\(309\) −9276.77 16067.8i −1.70789 2.95815i
\(310\) −1571.26 2721.50i −0.287876 0.498616i
\(311\) 2875.57 0.524304 0.262152 0.965027i \(-0.415568\pi\)
0.262152 + 0.965027i \(0.415568\pi\)
\(312\) 0 0
\(313\) 5715.61 1.03216 0.516078 0.856541i \(-0.327391\pi\)
0.516078 + 0.856541i \(0.327391\pi\)
\(314\) 182.395 + 315.918i 0.0327807 + 0.0567779i
\(315\) −132.553 229.589i −0.0237097 0.0410663i
\(316\) −1486.53 + 2574.74i −0.264632 + 0.458356i
\(317\) −7381.87 −1.30791 −0.653954 0.756534i \(-0.726891\pi\)
−0.653954 + 0.756534i \(0.726891\pi\)
\(318\) 6156.35 10663.1i 1.08563 1.88037i
\(319\) −803.055 + 1390.93i −0.140948 + 0.244129i
\(320\) −884.069 −0.154440
\(321\) 770.286 1334.17i 0.133935 0.231982i
\(322\) −17.1873 29.7693i −0.00297457 0.00515211i
\(323\) 900.474 + 1559.67i 0.155120 + 0.268676i
\(324\) 10597.7 1.81716
\(325\) 0 0
\(326\) 1774.44 0.301464
\(327\) −8947.97 15498.3i −1.51322 2.62098i
\(328\) −1584.74 2744.85i −0.266776 0.462069i
\(329\) −57.7662 + 100.054i −0.00968010 + 0.0167664i
\(330\) −11064.7 −1.84573
\(331\) −3027.29 + 5243.43i −0.502704 + 0.870709i 0.497291 + 0.867584i \(0.334328\pi\)
−0.999995 + 0.00312540i \(0.999005\pi\)
\(332\) −1078.59 + 1868.18i −0.178299 + 0.308824i
\(333\) 8859.57 1.45796
\(334\) −2898.67 + 5020.64i −0.474874 + 0.822507i
\(335\) −1527.31 2645.38i −0.249092 0.431441i
\(336\) 21.0008 + 36.3745i 0.00340978 + 0.00590592i
\(337\) −3686.95 −0.595967 −0.297984 0.954571i \(-0.596314\pi\)
−0.297984 + 0.954571i \(0.596314\pi\)
\(338\) 0 0
\(339\) −9305.77 −1.49091
\(340\) 2202.88 + 3815.50i 0.351376 + 0.608601i
\(341\) 2275.86 + 3941.90i 0.361421 + 0.626000i
\(342\) 1652.67 2862.52i 0.261305 0.452594i
\(343\) 179.910 0.0283213
\(344\) 1103.60 1911.49i 0.172971 0.299595i
\(345\) −4529.83 + 7845.90i −0.706892 + 1.22437i
\(346\) 5513.97 0.856742
\(347\) 3267.55 5659.56i 0.505508 0.875566i −0.494472 0.869194i \(-0.664638\pi\)
0.999980 0.00637190i \(-0.00202825\pi\)
\(348\) −803.423 1391.57i −0.123759 0.214356i
\(349\) 1486.70 + 2575.04i 0.228027 + 0.394954i 0.957223 0.289351i \(-0.0934393\pi\)
−0.729197 + 0.684304i \(0.760106\pi\)
\(350\) −34.5245 −0.00527260
\(351\) 0 0
\(352\) 1280.51 0.193896
\(353\) −5546.12 9606.15i −0.836232 1.44840i −0.893023 0.450011i \(-0.851420\pi\)
0.0567910 0.998386i \(-0.481913\pi\)
\(354\) 2311.06 + 4002.87i 0.346981 + 0.600989i
\(355\) −2225.39 + 3854.49i −0.332708 + 0.576268i
\(356\) −5056.56 −0.752801
\(357\) 104.658 181.272i 0.0155156 0.0268738i
\(358\) 2106.68 3648.88i 0.311010 0.538684i
\(359\) −5263.11 −0.773751 −0.386875 0.922132i \(-0.626446\pi\)
−0.386875 + 0.922132i \(0.626446\pi\)
\(360\) 4043.03 7002.73i 0.591907 1.02521i
\(361\) 3174.43 + 5498.27i 0.462812 + 0.801614i
\(362\) −778.123 1347.75i −0.112976 0.195680i
\(363\) 2705.03 0.391122
\(364\) 0 0
\(365\) 4470.96 0.641152
\(366\) 1096.17 + 1898.63i 0.156552 + 0.271155i
\(367\) −4334.56 7507.68i −0.616518 1.06784i −0.990116 0.140250i \(-0.955209\pi\)
0.373598 0.927591i \(-0.378124\pi\)
\(368\) 524.233 907.998i 0.0742596 0.128621i
\(369\) 28989.3 4.08977
\(370\) 1672.54 2896.93i 0.235004 0.407039i
\(371\) −80.6670 + 139.719i −0.0112885 + 0.0195522i
\(372\) −4553.80 −0.634687
\(373\) −3929.86 + 6806.72i −0.545524 + 0.944876i 0.453049 + 0.891486i \(0.350336\pi\)
−0.998574 + 0.0533906i \(0.982997\pi\)
\(374\) −3190.71 5526.47i −0.441144 0.764083i
\(375\) −4091.30 7086.34i −0.563397 0.975832i
\(376\) −3523.87 −0.483323
\(377\) 0 0
\(378\) −242.409 −0.0329846
\(379\) 1540.26 + 2667.80i 0.208754 + 0.361572i 0.951322 0.308198i \(-0.0997259\pi\)
−0.742568 + 0.669770i \(0.766393\pi\)
\(380\) −623.997 1080.79i −0.0842378 0.145904i
\(381\) 3930.78 6808.31i 0.528556 0.915487i
\(382\) −3582.13 −0.479784
\(383\) 715.562 1239.39i 0.0954661 0.165352i −0.814337 0.580392i \(-0.802899\pi\)
0.909803 + 0.415040i \(0.136233\pi\)
\(384\) −640.548 + 1109.46i −0.0851246 + 0.147440i
\(385\) 144.982 0.0191921
\(386\) −1876.99 + 3251.03i −0.247503 + 0.428687i
\(387\) 10094.0 + 17483.3i 1.32586 + 2.29645i
\(388\) −652.161 1129.58i −0.0853311 0.147798i
\(389\) 11639.0 1.51701 0.758507 0.651665i \(-0.225929\pi\)
0.758507 + 0.651665i \(0.225929\pi\)
\(390\) 0 0
\(391\) −5225.03 −0.675809
\(392\) 1371.72 + 2375.90i 0.176741 + 0.306125i
\(393\) 14268.1 + 24713.0i 1.83137 + 3.17202i
\(394\) −1584.04 + 2743.64i −0.202546 + 0.350819i
\(395\) −10267.1 −1.30783
\(396\) −5856.03 + 10142.9i −0.743123 + 1.28713i
\(397\) −593.609 + 1028.16i −0.0750438 + 0.129980i −0.901105 0.433600i \(-0.857243\pi\)
0.826062 + 0.563580i \(0.190576\pi\)
\(398\) 9936.36 1.25142
\(399\) −29.6457 + 51.3479i −0.00371966 + 0.00644264i
\(400\) −526.518 911.956i −0.0658147 0.113994i
\(401\) 1674.14 + 2899.69i 0.208485 + 0.361106i 0.951237 0.308460i \(-0.0998135\pi\)
−0.742753 + 0.669566i \(0.766480\pi\)
\(402\) −4426.43 −0.549180
\(403\) 0 0
\(404\) −5740.63 −0.706948
\(405\) 18299.0 + 31694.7i 2.24514 + 3.88870i
\(406\) 10.5273 + 18.2338i 0.00128685 + 0.00222889i
\(407\) −2422.56 + 4195.99i −0.295041 + 0.511026i
\(408\) 6384.35 0.774687
\(409\) −8069.81 + 13977.3i −0.975615 + 1.68981i −0.297723 + 0.954652i \(0.596227\pi\)
−0.677892 + 0.735162i \(0.737106\pi\)
\(410\) 5472.72 9479.03i 0.659216 1.14179i
\(411\) −4024.23 −0.482970
\(412\) −3707.53 + 6421.63i −0.443342 + 0.767891i
\(413\) −30.2819 52.4498i −0.00360793 0.00624912i
\(414\) 4794.85 + 8304.93i 0.569213 + 0.985905i
\(415\) −7449.60 −0.881173
\(416\) 0 0
\(417\) 8609.60 1.01106
\(418\) 903.814 + 1565.45i 0.105758 + 0.183179i
\(419\) −3173.29 5496.30i −0.369989 0.640840i 0.619574 0.784938i \(-0.287305\pi\)
−0.989563 + 0.144098i \(0.953972\pi\)
\(420\) −72.5240 + 125.615i −0.00842574 + 0.0145938i
\(421\) −5135.18 −0.594473 −0.297236 0.954804i \(-0.596065\pi\)
−0.297236 + 0.954804i \(0.596065\pi\)
\(422\) −3662.67 + 6343.94i −0.422503 + 0.731796i
\(423\) 16115.4 27912.6i 1.85238 3.20841i
\(424\) −4920.87 −0.563628
\(425\) −2623.90 + 4544.73i −0.299478 + 0.518711i
\(426\) 3224.79 + 5585.51i 0.366765 + 0.635255i
\(427\) −14.3632 24.8778i −0.00162783 0.00281949i
\(428\) −615.701 −0.0695352
\(429\) 0 0
\(430\) 7622.33 0.854840
\(431\) −3522.27 6100.75i −0.393647 0.681816i 0.599281 0.800539i \(-0.295453\pi\)
−0.992927 + 0.118723i \(0.962120\pi\)
\(432\) −3696.87 6403.17i −0.411726 0.713131i
\(433\) −5086.91 + 8810.79i −0.564576 + 0.977874i 0.432513 + 0.901628i \(0.357627\pi\)
−0.997089 + 0.0762465i \(0.975706\pi\)
\(434\) 59.6687 0.00659951
\(435\) 2774.54 4805.64i 0.305813 0.529684i
\(436\) −3576.13 + 6194.03i −0.392811 + 0.680368i
\(437\) 1480.06 0.162016
\(438\) 3239.41 5610.83i 0.353391 0.612091i
\(439\) −3192.79 5530.08i −0.347116 0.601222i 0.638620 0.769522i \(-0.279505\pi\)
−0.985736 + 0.168300i \(0.946172\pi\)
\(440\) 2211.05 + 3829.65i 0.239563 + 0.414935i
\(441\) −25092.7 −2.70951
\(442\) 0 0
\(443\) 2362.81 0.253410 0.126705 0.991940i \(-0.459560\pi\)
0.126705 + 0.991940i \(0.459560\pi\)
\(444\) −2423.67 4197.92i −0.259059 0.448704i
\(445\) −8731.15 15122.8i −0.930104 1.61099i
\(446\) 4495.24 7785.98i 0.477255 0.826630i
\(447\) −14312.4 −1.51443
\(448\) 8.39313 14.5373i 0.000885130 0.00153309i
\(449\) −4074.10 + 7056.55i −0.428216 + 0.741691i −0.996715 0.0809928i \(-0.974191\pi\)
0.568499 + 0.822684i \(0.307524\pi\)
\(450\) 9631.50 1.00896
\(451\) −7926.84 + 13729.7i −0.827628 + 1.43349i
\(452\) 1859.56 + 3220.86i 0.193510 + 0.335169i
\(453\) 4711.42 + 8160.42i 0.488657 + 0.846379i
\(454\) 7203.22 0.744634
\(455\) 0 0
\(456\) −1808.46 −0.185721
\(457\) 7017.20 + 12154.1i 0.718273 + 1.24408i 0.961684 + 0.274162i \(0.0884003\pi\)
−0.243411 + 0.969923i \(0.578266\pi\)
\(458\) −5162.11 8941.04i −0.526658 0.912199i
\(459\) −18423.4 + 31910.2i −1.87348 + 3.24497i
\(460\) 3620.76 0.366998
\(461\) 3845.85 6661.21i 0.388545 0.672979i −0.603709 0.797204i \(-0.706311\pi\)
0.992254 + 0.124225i \(0.0396446\pi\)
\(462\) 105.046 181.945i 0.0105783 0.0183221i
\(463\) 15555.9 1.56144 0.780719 0.624883i \(-0.214853\pi\)
0.780719 + 0.624883i \(0.214853\pi\)
\(464\) −321.094 + 556.152i −0.0321259 + 0.0556438i
\(465\) −7863.03 13619.2i −0.784171 1.35822i
\(466\) 2022.92 + 3503.80i 0.201094 + 0.348306i
\(467\) −11941.8 −1.18330 −0.591648 0.806197i \(-0.701522\pi\)
−0.591648 + 0.806197i \(0.701522\pi\)
\(468\) 0 0
\(469\) 57.9997 0.00571040
\(470\) −6084.65 10538.9i −0.597157 1.03431i
\(471\) 912.757 + 1580.94i 0.0892943 + 0.154662i
\(472\) 923.633 1599.78i 0.0900713 0.156008i
\(473\) −11040.4 −1.07323
\(474\) −7438.99 + 12884.7i −0.720853 + 1.24855i
\(475\) 743.258 1287.36i 0.0717958 0.124354i
\(476\) −83.6544 −0.00805524
\(477\) 22504.1 38978.3i 2.16016 3.74150i
\(478\) −1423.12 2464.91i −0.136176 0.235863i
\(479\) 7428.22 + 12866.1i 0.708568 + 1.22728i 0.965388 + 0.260817i \(0.0839918\pi\)
−0.256820 + 0.966459i \(0.582675\pi\)
\(480\) −4424.13 −0.420693
\(481\) 0 0
\(482\) −7108.68 −0.671767
\(483\) −86.0102 148.974i −0.00810269 0.0140343i
\(484\) −540.544 936.250i −0.0507648 0.0879273i
\(485\) 2252.17 3900.87i 0.210857 0.365215i
\(486\) 28079.9 2.62084
\(487\) −7031.81 + 12179.5i −0.654295 + 1.13327i 0.327775 + 0.944756i \(0.393701\pi\)
−0.982070 + 0.188516i \(0.939632\pi\)
\(488\) 438.094 758.801i 0.0406385 0.0703879i
\(489\) 8879.81 0.821184
\(490\) −4737.10 + 8204.91i −0.436736 + 0.756449i
\(491\) 4109.04 + 7117.06i 0.377675 + 0.654151i 0.990723 0.135893i \(-0.0433905\pi\)
−0.613049 + 0.790045i \(0.710057\pi\)
\(492\) −7930.47 13736.0i −0.726694 1.25867i
\(493\) 3200.35 0.292366
\(494\) 0 0
\(495\) −40446.4 −3.67258
\(496\) 909.981 + 1576.13i 0.0823777 + 0.142682i
\(497\) −42.2546 73.1872i −0.00381364 0.00660542i
\(498\) −5397.58 + 9348.88i −0.485685 + 0.841231i
\(499\) −6081.91 −0.545619 −0.272809 0.962068i \(-0.587953\pi\)
−0.272809 + 0.962068i \(0.587953\pi\)
\(500\) −1635.12 + 2832.11i −0.146250 + 0.253312i
\(501\) −14505.8 + 25124.7i −1.29355 + 2.24050i
\(502\) −2304.81 −0.204917
\(503\) 1613.35 2794.41i 0.143013 0.247707i −0.785617 0.618714i \(-0.787654\pi\)
0.928630 + 0.371007i \(0.120987\pi\)
\(504\) 76.7671 + 132.965i 0.00678468 + 0.0117514i
\(505\) −9912.32 17168.6i −0.873450 1.51286i
\(506\) −5244.41 −0.460756
\(507\) 0 0
\(508\) −3141.93 −0.274411
\(509\) −314.535 544.791i −0.0273901 0.0474410i 0.852005 0.523533i \(-0.175386\pi\)
−0.879396 + 0.476092i \(0.842053\pi\)
\(510\) 11023.8 + 19093.8i 0.957144 + 1.65782i
\(511\) −42.4462 + 73.5190i −0.00367458 + 0.00636455i
\(512\) 512.000 0.0441942
\(513\) 5218.68 9039.02i 0.449143 0.777938i
\(514\) 1849.01 3202.58i 0.158670 0.274825i
\(515\) −25607.1 −2.19104
\(516\) 5522.73 9565.64i 0.471171 0.816093i
\(517\) 8813.17 + 15264.9i 0.749715 + 1.29854i
\(518\) 31.7575 + 55.0055i 0.00269371 + 0.00466565i
\(519\) 27593.4 2.33375
\(520\) 0 0
\(521\) −785.154 −0.0660235 −0.0330117 0.999455i \(-0.510510\pi\)
−0.0330117 + 0.999455i \(0.510510\pi\)
\(522\) −2936.86 5086.80i −0.246251 0.426519i
\(523\) 495.190 + 857.693i 0.0414018 + 0.0717100i 0.885984 0.463716i \(-0.153484\pi\)
−0.844582 + 0.535426i \(0.820151\pi\)
\(524\) 5702.34 9876.74i 0.475397 0.823411i
\(525\) −172.770 −0.0143625
\(526\) 3350.88 5803.90i 0.277767 0.481106i
\(527\) 4534.89 7854.67i 0.374845 0.649250i
\(528\) 6408.03 0.528170
\(529\) 3936.47 6818.16i 0.323536 0.560382i
\(530\) −8496.84 14717.0i −0.696376 1.20616i
\(531\) 8447.93 + 14632.2i 0.690412 + 1.19583i
\(532\) 23.6963 0.00193114
\(533\) 0 0
\(534\) −25304.5 −2.05062
\(535\) −1063.13 1841.39i −0.0859123 0.148804i
\(536\) 884.529 + 1532.05i 0.0712795 + 0.123460i
\(537\) 10542.4 18260.0i 0.847186 1.46737i
\(538\) −1668.25 −0.133687
\(539\) 6861.35 11884.2i 0.548310 0.949701i
\(540\) 12766.7 22112.6i 1.01739 1.76218i
\(541\) 2509.00 0.199390 0.0996952 0.995018i \(-0.468213\pi\)
0.0996952 + 0.995018i \(0.468213\pi\)
\(542\) 8061.06 13962.2i 0.638842 1.10651i
\(543\) −3893.94 6744.51i −0.307744 0.533029i
\(544\) −1275.78 2209.71i −0.100549 0.174155i
\(545\) −24699.5 −1.94131
\(546\) 0 0
\(547\) 24461.5 1.91206 0.956032 0.293264i \(-0.0947415\pi\)
0.956032 + 0.293264i \(0.0947415\pi\)
\(548\) 804.157 + 1392.84i 0.0626859 + 0.108575i
\(549\) 4006.99 + 6940.31i 0.311501 + 0.539536i
\(550\) −2633.64 + 4561.59i −0.204179 + 0.353649i
\(551\) −906.545 −0.0700909
\(552\) 2623.41 4543.88i 0.202282 0.350363i
\(553\) 97.4735 168.829i 0.00749547 0.0129825i
\(554\) −9419.08 −0.722344
\(555\) 8369.88 14497.1i 0.640147 1.10877i
\(556\) −1720.45 2979.90i −0.131229 0.227295i
\(557\) 6114.38 + 10590.4i 0.465125 + 0.805620i 0.999207 0.0398124i \(-0.0126760\pi\)
−0.534082 + 0.845433i \(0.679343\pi\)
\(558\) −16646.1 −1.26288
\(559\) 0 0
\(560\) 57.9696 0.00437440
\(561\) −15967.2 27656.0i −1.20167 2.08135i
\(562\) −2110.40 3655.32i −0.158402 0.274360i
\(563\) 966.101 1673.34i 0.0723203 0.125262i −0.827598 0.561322i \(-0.810293\pi\)
0.899918 + 0.436060i \(0.143626\pi\)
\(564\) −17634.4 −1.31657
\(565\) −6421.80 + 11122.9i −0.478172 + 0.828218i
\(566\) −1093.59 + 1894.16i −0.0812139 + 0.140667i
\(567\) −694.904 −0.0514695
\(568\) 1288.81 2232.29i 0.0952067 0.164903i
\(569\) −9871.56 17098.1i −0.727307 1.25973i −0.958017 0.286710i \(-0.907438\pi\)
0.230711 0.973022i \(-0.425895\pi\)
\(570\) −3122.66 5408.60i −0.229463 0.397441i
\(571\) 1327.51 0.0972933 0.0486466 0.998816i \(-0.484509\pi\)
0.0486466 + 0.998816i \(0.484509\pi\)
\(572\) 0 0
\(573\) −17926.0 −1.30692
\(574\) 103.913 + 179.983i 0.00755620 + 0.0130877i
\(575\) 2156.39 + 3734.98i 0.156396 + 0.270886i
\(576\) −2341.48 + 4055.57i −0.169378 + 0.293371i
\(577\) −15077.5 −1.08784 −0.543921 0.839137i \(-0.683061\pi\)
−0.543921 + 0.839137i \(0.683061\pi\)
\(578\) −1444.84 + 2502.53i −0.103975 + 0.180089i
\(579\) −9392.96 + 16269.1i −0.674194 + 1.16774i
\(580\) −2217.73 −0.158769
\(581\) 70.7247 122.499i 0.00505018 0.00874717i
\(582\) −3263.60 5652.72i −0.232441 0.402599i
\(583\) 12307.1 + 21316.4i 0.874281 + 1.51430i
\(584\) −2589.31 −0.183470
\(585\) 0 0
\(586\) 19210.4 1.35422
\(587\) 3578.28 + 6197.76i 0.251604 + 0.435790i 0.963967 0.266020i \(-0.0857087\pi\)
−0.712364 + 0.701810i \(0.752375\pi\)
\(588\) 6864.50 + 11889.7i 0.481441 + 0.833880i
\(589\) −1284.57 + 2224.95i −0.0898640 + 0.155649i
\(590\) 6379.33 0.445141
\(591\) −7927.00 + 13730.0i −0.551731 + 0.955627i
\(592\) −968.638 + 1677.73i −0.0672480 + 0.116477i
\(593\) −14729.2 −1.01999 −0.509997 0.860176i \(-0.670354\pi\)
−0.509997 + 0.860176i \(0.670354\pi\)
\(594\) −18491.7 + 32028.5i −1.27731 + 2.21237i
\(595\) −144.446 250.187i −0.00995244 0.0172381i
\(596\) 2860.02 + 4953.71i 0.196562 + 0.340456i
\(597\) 49724.3 3.40885
\(598\) 0 0
\(599\) 28634.9 1.95324 0.976621 0.214970i \(-0.0689653\pi\)
0.976621 + 0.214970i \(0.0689653\pi\)
\(600\) −2634.84 4563.68i −0.179278 0.310519i
\(601\) −2757.80 4776.64i −0.187176 0.324199i 0.757131 0.653263i \(-0.226600\pi\)
−0.944308 + 0.329064i \(0.893267\pi\)
\(602\) −72.3646 + 125.339i −0.00489927 + 0.00848578i
\(603\) −16180.5 −1.09274
\(604\) 1882.96 3261.37i 0.126848 0.219708i
\(605\) 1866.71 3233.24i 0.125442 0.217272i
\(606\) −28727.7 −1.92572
\(607\) −6449.07 + 11170.1i −0.431235 + 0.746921i −0.996980 0.0776591i \(-0.975255\pi\)
0.565745 + 0.824580i \(0.308589\pi\)
\(608\) 361.382 + 625.932i 0.0241052 + 0.0417515i
\(609\) 52.6816 + 91.2472i 0.00350536 + 0.00607146i
\(610\) 3025.82 0.200839
\(611\) 0 0
\(612\) 23337.6 1.54145
\(613\) 8040.16 + 13926.0i 0.529754 + 0.917560i 0.999398 + 0.0347045i \(0.0110490\pi\)
−0.469644 + 0.882856i \(0.655618\pi\)
\(614\) 4387.82 + 7599.93i 0.288401 + 0.499525i
\(615\) 27387.0 47435.7i 1.79569 3.11023i
\(616\) −83.9647 −0.00549194
\(617\) −461.623 + 799.555i −0.0301203 + 0.0521700i −0.880693 0.473688i \(-0.842922\pi\)
0.850572 + 0.525858i \(0.176256\pi\)
\(618\) −18553.5 + 32135.7i −1.20766 + 2.09172i
\(619\) 25650.3 1.66555 0.832773 0.553615i \(-0.186752\pi\)
0.832773 + 0.553615i \(0.186752\pi\)
\(620\) −3142.52 + 5443.01i −0.203559 + 0.352575i
\(621\) 15140.8 + 26224.6i 0.978388 + 1.69462i
\(622\) −2875.57 4980.63i −0.185370 0.321069i
\(623\) 331.566 0.0213225
\(624\) 0 0
\(625\) −19520.3 −1.24930
\(626\) −5715.61 9899.72i −0.364923 0.632064i
\(627\) 4522.94 + 7833.96i 0.288084 + 0.498976i
\(628\) 364.790 631.835i 0.0231795 0.0401480i
\(629\) 9654.42 0.611999
\(630\) −265.107 + 459.179i −0.0167653 + 0.0290383i
\(631\) 10873.9 18834.2i 0.686029 1.18824i −0.287083 0.957906i \(-0.592685\pi\)
0.973112 0.230332i \(-0.0739812\pi\)
\(632\) 5946.10 0.374246
\(633\) −18329.0 + 31746.8i −1.15089 + 1.99340i
\(634\) 7381.87 + 12785.8i 0.462416 + 0.800927i
\(635\) −5425.17 9396.66i −0.339041 0.587237i
\(636\) −24625.4 −1.53532
\(637\) 0 0
\(638\) 3212.22 0.199331
\(639\) 11788.0 + 20417.5i 0.729776 + 1.26401i
\(640\) 884.069 + 1531.25i 0.0546029 + 0.0945751i
\(641\) −11113.9 + 19249.8i −0.684822 + 1.18615i 0.288671 + 0.957428i \(0.406787\pi\)
−0.973493 + 0.228718i \(0.926547\pi\)
\(642\) −3081.14 −0.189413
\(643\) −1424.23 + 2466.83i −0.0873498 + 0.151294i −0.906390 0.422442i \(-0.861173\pi\)
0.819040 + 0.573736i \(0.194506\pi\)
\(644\) −34.3747 + 59.5387i −0.00210334 + 0.00364309i
\(645\) 38144.3 2.32857
\(646\) 1800.95 3119.33i 0.109686 0.189982i
\(647\) −2074.43 3593.02i −0.126050 0.218325i 0.796093 0.605174i \(-0.206897\pi\)
−0.922143 + 0.386850i \(0.873563\pi\)
\(648\) −10597.7 18355.7i −0.642463 1.11278i
\(649\) −9240.00 −0.558862
\(650\) 0 0
\(651\) 298.599 0.0179770
\(652\) −1774.44 3073.42i −0.106584 0.184608i
\(653\) −6208.89 10754.1i −0.372087 0.644473i 0.617800 0.786335i \(-0.288024\pi\)
−0.989886 + 0.141863i \(0.954691\pi\)
\(654\) −17895.9 + 30996.7i −1.07001 + 1.85331i
\(655\) 39384.8 2.34945
\(656\) −3169.47 + 5489.69i −0.188639 + 0.326732i
\(657\) 11841.5 20510.0i 0.703165 1.21792i
\(658\) 231.065 0.0136897
\(659\) 7951.44 13772.3i 0.470022 0.814101i −0.529391 0.848378i \(-0.677579\pi\)
0.999412 + 0.0342768i \(0.0109128\pi\)
\(660\) 11064.7 + 19164.6i 0.652566 + 1.13028i
\(661\) −13162.3 22797.8i −0.774514 1.34150i −0.935067 0.354471i \(-0.884661\pi\)
0.160553 0.987027i \(-0.448672\pi\)
\(662\) 12109.2 0.710931
\(663\) 0 0
\(664\) 4314.37 0.252154
\(665\) 40.9163 + 70.8692i 0.00238597 + 0.00413261i
\(666\) −8859.57 15345.2i −0.515467 0.892816i
\(667\) 1315.06 2277.76i 0.0763411 0.132227i
\(668\) 11594.7 0.671574
\(669\) 22495.4 38963.2i 1.30004 2.25173i
\(670\) −3054.62 + 5290.76i −0.176135 + 0.305075i
\(671\) −4382.68 −0.252148
\(672\) 42.0016 72.7489i 0.00241108 0.00417612i
\(673\) −5793.31 10034.3i −0.331821 0.574732i 0.651048 0.759037i \(-0.274330\pi\)
−0.982869 + 0.184305i \(0.940996\pi\)
\(674\) 3686.95 + 6385.99i 0.210706 + 0.364954i
\(675\) 30413.6 1.73425
\(676\) 0 0
\(677\) −7512.76 −0.426498 −0.213249 0.976998i \(-0.568405\pi\)
−0.213249 + 0.976998i \(0.568405\pi\)
\(678\) 9305.77 + 16118.1i 0.527118 + 0.912995i
\(679\) 42.7631 + 74.0678i 0.00241693 + 0.00418625i
\(680\) 4405.76 7631.00i 0.248460 0.430346i
\(681\) 36047.0 2.02837
\(682\) 4551.71 7883.80i 0.255563 0.442649i
\(683\) −2177.41 + 3771.38i −0.121986 + 0.211285i −0.920551 0.390623i \(-0.872260\pi\)
0.798565 + 0.601909i \(0.205593\pi\)
\(684\) −6610.70 −0.369542
\(685\) −2777.07 + 4810.03i −0.154900 + 0.268294i
\(686\) −179.910 311.613i −0.0100131 0.0173432i
\(687\) −25832.7 44743.5i −1.43461 2.48482i
\(688\) −4414.40 −0.244618
\(689\) 0 0
\(690\) 18119.3 0.999697
\(691\) 10267.4 + 17783.7i 0.565255 + 0.979051i 0.997026 + 0.0770672i \(0.0245556\pi\)
−0.431771 + 0.901983i \(0.642111\pi\)
\(692\) −5513.97 9550.47i −0.302904 0.524645i
\(693\) 383.988 665.087i 0.0210483 0.0364568i
\(694\) −13070.2 −0.714896
\(695\) 5941.38 10290.8i 0.324272 0.561656i
\(696\) −1606.85 + 2783.14i −0.0875106 + 0.151573i
\(697\) 31590.2 1.71673
\(698\) 2973.40 5150.09i 0.161239 0.279275i
\(699\) 10123.3 + 17534.0i 0.547778 + 0.948779i
\(700\) 34.5245 + 59.7982i 0.00186415 + 0.00322880i
\(701\) 19666.5 1.05962 0.529810 0.848117i \(-0.322263\pi\)
0.529810 + 0.848117i \(0.322263\pi\)
\(702\) 0 0
\(703\) −2734.75 −0.146719
\(704\) −1280.51 2217.91i −0.0685525 0.118736i
\(705\) −30449.3 52739.7i −1.62665 2.81744i
\(706\) −11092.2 + 19212.3i −0.591305 + 1.02417i
\(707\) 376.421 0.0200237
\(708\) 4622.12 8005.74i 0.245353 0.424964i
\(709\) 3716.84 6437.75i 0.196881 0.341008i −0.750634 0.660718i \(-0.770252\pi\)
0.947516 + 0.319709i \(0.103585\pi\)
\(710\) 8901.56 0.470521
\(711\) −27192.8 + 47099.3i −1.43433 + 2.48433i
\(712\) 5056.56 + 8758.22i 0.266155 + 0.460995i
\(713\) −3726.89 6455.16i −0.195755 0.339057i
\(714\) −418.630 −0.0219424
\(715\) 0 0
\(716\) −8426.72 −0.439834
\(717\) −7121.68 12335.1i −0.370940 0.642487i
\(718\) 5263.11 + 9115.98i 0.273562 + 0.473823i
\(719\) 12422.6 21516.6i 0.644348 1.11604i −0.340104 0.940388i \(-0.610462\pi\)
0.984452 0.175655i \(-0.0562043\pi\)
\(720\) −16172.1 −0.837082
\(721\) 243.108 421.075i 0.0125573 0.0217499i
\(722\) 6348.86 10996.5i 0.327258 0.566827i
\(723\) −35573.8 −1.82988
\(724\) −1556.25 + 2695.50i −0.0798859 + 0.138366i
\(725\) −1320.80 2287.69i −0.0676595 0.117190i
\(726\) −2705.03 4685.26i −0.138283 0.239513i
\(727\) 8215.91 0.419135 0.209568 0.977794i \(-0.432794\pi\)
0.209568 + 0.977794i \(0.432794\pi\)
\(728\) 0 0
\(729\) 68985.2 3.50481
\(730\) −4470.96 7743.92i −0.226682 0.392624i
\(731\) 10999.6 + 19051.8i 0.556545 + 0.963964i
\(732\) 2192.35 3797.25i 0.110699 0.191736i
\(733\) −5235.91 −0.263838 −0.131919 0.991261i \(-0.542114\pi\)
−0.131919 + 0.991261i \(0.542114\pi\)
\(734\) −8669.12 + 15015.4i −0.435944 + 0.755077i
\(735\) −23705.8 + 41059.7i −1.18966 + 2.06056i
\(736\) −2096.93 −0.105019
\(737\) 4424.40 7663.29i 0.221133 0.383013i
\(738\) −28989.3 50211.0i −1.44595 2.50446i
\(739\) 5792.55 + 10033.0i 0.288339 + 0.499418i 0.973413 0.229055i \(-0.0735637\pi\)
−0.685074 + 0.728473i \(0.740230\pi\)
\(740\) −6690.18 −0.332346
\(741\) 0 0
\(742\) 322.668 0.0159643
\(743\) 13500.0 + 23382.7i 0.666578 + 1.15455i 0.978855 + 0.204556i \(0.0655751\pi\)
−0.312277 + 0.949991i \(0.601092\pi\)
\(744\) 4553.80 + 7887.42i 0.224396 + 0.388665i
\(745\) −9876.79 + 17107.1i −0.485715 + 0.841282i
\(746\) 15719.5 0.771488
\(747\) −19730.5 + 34174.2i −0.966401 + 1.67385i
\(748\) −6381.42 + 11052.9i −0.311936 + 0.540288i
\(749\) 40.3724 0.00196953
\(750\) −8182.60 + 14172.7i −0.398382 + 0.690017i
\(751\) −3986.25 6904.39i −0.193689 0.335479i 0.752781 0.658271i \(-0.228712\pi\)
−0.946470 + 0.322792i \(0.895379\pi\)
\(752\) 3523.87 + 6103.52i 0.170881 + 0.295974i
\(753\) −11533.9 −0.558192
\(754\) 0 0
\(755\) 13005.2 0.626896
\(756\) 242.409 + 419.864i 0.0116618 + 0.0201988i
\(757\) −10310.5 17858.3i −0.495034 0.857424i 0.504949 0.863149i \(-0.331511\pi\)
−0.999984 + 0.00572455i \(0.998178\pi\)
\(758\) 3080.51 5335.61i 0.147611 0.255670i
\(759\) −26244.5 −1.25509
\(760\) −1247.99 + 2161.59i −0.0595651 + 0.103170i
\(761\) −12550.2 + 21737.6i −0.597826 + 1.03546i 0.395316 + 0.918545i \(0.370635\pi\)
−0.993141 + 0.116919i \(0.962698\pi\)
\(762\) −15723.1 −0.747492
\(763\) 234.492 406.151i 0.0111260 0.0192709i
\(764\) 3582.13 + 6204.42i 0.169629 + 0.293806i
\(765\) 40296.9 + 69796.3i 1.90449 + 3.29868i
\(766\) −2862.25 −0.135009
\(767\) 0 0
\(768\) 2562.19 0.120384
\(769\) −17181.7 29759.5i −0.805705 1.39552i −0.915814 0.401602i \(-0.868453\pi\)
0.110109 0.993920i \(-0.464880\pi\)
\(770\) −144.982 251.115i −0.00678542 0.0117527i
\(771\) 9252.97 16026.6i 0.432215 0.748618i
\(772\) 7507.94 0.350022
\(773\) 13633.4 23613.7i 0.634357 1.09874i −0.352294 0.935889i \(-0.614598\pi\)
0.986651 0.162849i \(-0.0520683\pi\)
\(774\) 20188.0 34966.6i 0.937521 1.62383i
\(775\) −7486.27 −0.346987
\(776\) −1304.32 + 2259.15i −0.0603382 + 0.104509i
\(777\) 158.923 + 275.263i 0.00733763 + 0.0127092i
\(778\) −11639.0 20159.3i −0.536346 0.928978i
\(779\) −8948.37 −0.411564
\(780\) 0 0
\(781\) −12893.3 −0.590726
\(782\) 5225.03 + 9050.02i 0.238934 + 0.413847i
\(783\) −9273.78 16062.7i −0.423267 0.733120i
\(784\) 2743.45 4751.79i 0.124975 0.216463i
\(785\) 2519.53 0.114555
\(786\) 28536.1 49426.0i 1.29497 2.24296i
\(787\) −7310.34 + 12661.9i −0.331112 + 0.573504i −0.982730 0.185044i \(-0.940757\pi\)
0.651618 + 0.758547i \(0.274091\pi\)
\(788\) 6336.17 0.286443
\(789\) 16768.7 29044.3i 0.756633 1.31053i
\(790\) 10267.1 + 17783.2i 0.462389 + 0.800882i
\(791\) −121.934 211.196i −0.00548100 0.00949338i
\(792\) 23424.1 1.05093
\(793\) 0 0
\(794\) 2374.44 0.106128
\(795\) −42520.6 73647.8i −1.89692 3.28556i
\(796\) −9936.36 17210.3i −0.442443 0.766334i
\(797\) −4136.59 + 7164.79i −0.183846 + 0.318431i −0.943187 0.332262i \(-0.892188\pi\)
0.759341 + 0.650693i \(0.225522\pi\)
\(798\) 118.583 0.00526039
\(799\) 17561.2 30416.9i 0.777560 1.34677i
\(800\) −1053.04 + 1823.91i −0.0465380 + 0.0806063i
\(801\) −92498.9 −4.08026
\(802\) 3348.27 5799.38i 0.147421 0.255341i
\(803\) 6475.85 + 11216.5i 0.284593 + 0.492929i
\(804\) 4426.43 + 7666.80i 0.194164 + 0.336303i
\(805\) −237.418 −0.0103949
\(806\) 0 0
\(807\) −8348.41 −0.364161
\(808\) 5740.63 + 9943.06i 0.249944 + 0.432915i
\(809\) 22673.1 + 39271.0i 0.985346 + 1.70667i 0.640389 + 0.768051i \(0.278773\pi\)
0.344957 + 0.938618i \(0.387893\pi\)
\(810\) 36597.9 63389.4i 1.58756 2.74973i
\(811\) 20946.4 0.906940 0.453470 0.891272i \(-0.350186\pi\)
0.453470 + 0.891272i \(0.350186\pi\)
\(812\) 21.0546 36.4676i 0.000909940 0.00157606i
\(813\) 40339.8 69870.6i 1.74020 3.01411i
\(814\) 9690.23 0.417251
\(815\) 6127.85 10613.7i 0.263373 0.456176i
\(816\) −6384.35 11058.0i −0.273893 0.474397i
\(817\) −3115.79 5396.71i −0.133424 0.231098i
\(818\) 32279.2 1.37973
\(819\) 0 0
\(820\) −21890.9 −0.932272
\(821\) 10766.6 + 18648.3i 0.457683 + 0.792731i 0.998838 0.0481924i \(-0.0153461\pi\)
−0.541155 + 0.840923i \(0.682013\pi\)
\(822\) 4024.23 + 6970.17i 0.170756 + 0.295757i
\(823\) −10996.9 + 19047.3i −0.465771 + 0.806739i −0.999236 0.0390833i \(-0.987556\pi\)
0.533465 + 0.845822i \(0.320890\pi\)
\(824\) 14830.1 0.626980
\(825\) −13179.5 + 22827.5i −0.556181 + 0.963334i
\(826\) −60.5638 + 104.900i −0.00255119 + 0.00441880i
\(827\) 7954.97 0.334488 0.167244 0.985916i \(-0.446513\pi\)
0.167244 + 0.985916i \(0.446513\pi\)
\(828\) 9589.70 16609.9i 0.402494 0.697140i
\(829\) −2288.22 3963.32i −0.0958665 0.166046i 0.814103 0.580720i \(-0.197229\pi\)
−0.909970 + 0.414674i \(0.863896\pi\)
\(830\) 7449.60 + 12903.1i 0.311542 + 0.539606i
\(831\) −47135.7 −1.96765
\(832\) 0 0
\(833\) −27344.0 −1.13735
\(834\) −8609.60 14912.3i −0.357465 0.619148i
\(835\) 20020.5 + 34676.5i 0.829745 + 1.43716i
\(836\) 1807.63 3130.90i 0.0747824 0.129527i
\(837\) −52563.8 −2.17069
\(838\) −6346.58 + 10992.6i −0.261622 + 0.453142i
\(839\) −4067.18 + 7044.57i −0.167360 + 0.289876i −0.937491 0.348010i \(-0.886857\pi\)
0.770131 + 0.637886i \(0.220191\pi\)
\(840\) 290.096 0.0119158
\(841\) 11389.0 19726.4i 0.466974 0.808822i
\(842\) 5135.18 + 8894.38i 0.210178 + 0.364039i
\(843\) −10561.0 18292.3i −0.431485 0.747353i
\(844\) 14650.7 0.597509
\(845\) 0 0
\(846\) −64461.5 −2.61966
\(847\) 35.4442 + 61.3912i 0.00143787 + 0.00249047i
\(848\) 4920.87 + 8523.19i 0.199273 + 0.345150i
\(849\) −5472.64 + 9478.89i −0.221226 + 0.383174i
\(850\) 10495.6 0.423525
\(851\) 3967.12 6871.26i 0.159802 0.276785i
\(852\) 6449.59 11171.0i 0.259342 0.449193i
\(853\) −44562.9 −1.78875 −0.894375 0.447317i \(-0.852380\pi\)
−0.894375 + 0.447317i \(0.852380\pi\)
\(854\) −28.7264 + 49.7556i −0.00115105 + 0.00199368i
\(855\) −11414.7 19770.8i −0.456577 0.790815i
\(856\) 615.701 + 1066.43i 0.0245844 + 0.0425814i
\(857\) 18917.8 0.754048 0.377024 0.926204i \(-0.376947\pi\)
0.377024 + 0.926204i \(0.376947\pi\)
\(858\) 0 0
\(859\) −27153.9 −1.07855 −0.539277 0.842128i \(-0.681303\pi\)
−0.539277 + 0.842128i \(0.681303\pi\)
\(860\) −7622.33 13202.3i −0.302232 0.523481i
\(861\) 520.012 + 900.687i 0.0205830 + 0.0356508i
\(862\) −7044.54 + 12201.5i −0.278350 + 0.482117i
\(863\) −33687.7 −1.32879 −0.664393 0.747384i \(-0.731310\pi\)
−0.664393 + 0.747384i \(0.731310\pi\)
\(864\) −7393.74 + 12806.3i −0.291134 + 0.504260i
\(865\) 19041.9 32981.5i 0.748490 1.29642i
\(866\) 20347.6 0.798431
\(867\) −7230.38 + 12523.4i −0.283225 + 0.490561i
\(868\) −59.6687 103.349i −0.00233328 0.00404136i
\(869\) −14871.2 25757.6i −0.580518 1.00549i
\(870\) −11098.1 −0.432486
\(871\) 0 0
\(872\) 14304.5 0.555518
\(873\) −11929.9 20663.1i −0.462503 0.801078i
\(874\) −1480.06 2563.55i −0.0572814 0.0992143i
\(875\) 107.217 185.705i 0.00414240 0.00717484i
\(876\) −12957.7 −0.499770
\(877\) 21238.0 36785.2i 0.817737 1.41636i −0.0896088 0.995977i \(-0.528562\pi\)
0.907346 0.420385i \(-0.138105\pi\)
\(878\) −6385.59 + 11060.2i −0.245448 + 0.425128i
\(879\) 96134.1 3.68888
\(880\) 4422.10 7659.30i 0.169397 0.293403i
\(881\) 9903.32 + 17153.1i 0.378719 + 0.655961i 0.990876 0.134776i \(-0.0430314\pi\)
−0.612157 + 0.790736i \(0.709698\pi\)
\(882\) 25092.7 + 43461.9i 0.957955 + 1.65923i
\(883\) 29417.9 1.12117 0.560584 0.828098i \(-0.310577\pi\)
0.560584 + 0.828098i \(0.310577\pi\)
\(884\) 0 0
\(885\) 31924.0 1.21256
\(886\) −2362.81 4092.51i −0.0895939 0.155181i
\(887\) 16143.1 + 27960.7i 0.611084 + 1.05843i 0.991058 + 0.133432i \(0.0425998\pi\)
−0.379974 + 0.924997i \(0.624067\pi\)
\(888\) −4847.34 + 8395.84i −0.183182 + 0.317281i
\(889\) 206.021 0.00777246
\(890\) −17462.3 + 30245.6i −0.657683 + 1.13914i
\(891\) −53009.4 + 91815.0i −1.99313 + 3.45221i
\(892\) −17980.9 −0.674940
\(893\) −4974.46 + 8616.02i −0.186410 + 0.322871i
\(894\) 14312.4 + 24789.7i 0.535433 + 0.927397i
\(895\) −14550.4 25202.0i −0.543425 0.941240i
\(896\) −33.5725 −0.00125176
\(897\) 0 0
\(898\) 16296.4 0.605588
\(899\) 2282.73 + 3953.81i 0.0846868 + 0.146682i
\(900\) −9631.50 16682.3i −0.356722 0.617861i
\(901\) 24523.2 42475.3i 0.906753 1.57054i
\(902\) 31707.3 1.17044
\(903\) −362.133 + 627.232i −0.0133455 + 0.0231151i
\(904\) 3719.12 6441.71i 0.136832 0.237000i
\(905\) −10748.7 −0.394804
\(906\) 9422.84 16320.8i 0.345533 0.598481i
\(907\) −12873.2 22297.1i −0.471278 0.816277i 0.528182 0.849131i \(-0.322874\pi\)
−0.999460 + 0.0328538i \(0.989540\pi\)
\(908\) −7203.22 12476.3i −0.263268 0.455994i
\(909\) −105012. −3.83173
\(910\) 0 0
\(911\) 7802.68 0.283770 0.141885 0.989883i \(-0.454684\pi\)
0.141885 + 0.989883i \(0.454684\pi\)
\(912\) 1808.46 + 3132.34i 0.0656623 + 0.113730i
\(913\) −10790.2 18689.2i −0.391132 0.677461i
\(914\) 14034.4 24308.3i 0.507896 0.879701i
\(915\) 15142.1 0.547083
\(916\) −10324.2 + 17882.1i −0.372404 + 0.645022i
\(917\) −373.910 + 647.631i −0.0134652 + 0.0233224i
\(918\) 73693.4 2.64951
\(919\) 206.449 357.580i 0.00741037 0.0128351i −0.862296 0.506404i \(-0.830975\pi\)
0.869707 + 0.493569i \(0.164308\pi\)
\(920\) −3620.76 6271.35i −0.129753 0.224739i
\(921\) 21957.9 + 38032.2i 0.785600 + 1.36070i
\(922\) −15383.4 −0.549485
\(923\) 0 0
\(924\) −420.183 −0.0149600
\(925\) −3984.42 6901.21i −0.141629 0.245309i
\(926\) −15555.9 26943.7i −0.552051 0.956181i
\(927\) −67821.3 + 117470.i −2.40296 + 4.16205i
\(928\) 1284.38 0.0454329
\(929\) −2628.93 + 4553.44i −0.0928443 + 0.160811i −0.908707 0.417435i \(-0.862929\pi\)
0.815863 + 0.578246i \(0.196263\pi\)
\(930\) −15726.1 + 27238.3i −0.554492 + 0.960409i
\(931\) 7745.57 0.272665
\(932\) 4045.84 7007.60i 0.142195 0.246289i
\(933\) −14390.2 24924.5i −0.504944 0.874589i
\(934\) 11941.8 + 20683.7i 0.418358 + 0.724618i
\(935\) −44075.1 −1.54161
\(936\) 0 0
\(937\) −21763.7 −0.758793 −0.379396 0.925234i \(-0.623868\pi\)
−0.379396 + 0.925234i \(0.623868\pi\)
\(938\) −57.9997 100.458i −0.00201893 0.00349689i
\(939\) −28602.5 49541.0i −0.994044 1.72173i
\(940\) −12169.3 + 21077.8i −0.422254 + 0.731365i
\(941\) −4630.07 −0.160400 −0.0801998 0.996779i \(-0.525556\pi\)
−0.0801998 + 0.996779i \(0.525556\pi\)
\(942\) 1825.51 3161.88i 0.0631406 0.109363i
\(943\) 12980.8 22483.4i 0.448264 0.776416i
\(944\) −3694.53 −0.127380
\(945\) −837.133 + 1449.96i −0.0288169 + 0.0499123i
\(946\) 11040.4 + 19122.5i 0.379444 + 0.657216i
\(947\) 3815.83 + 6609.21i 0.130937 + 0.226790i 0.924038 0.382300i \(-0.124868\pi\)
−0.793101 + 0.609090i \(0.791535\pi\)
\(948\) 29756.0 1.01944
\(949\) 0 0
\(950\) −2973.03 −0.101535
\(951\) 36940.9 + 63983.6i 1.25961 + 2.18171i
\(952\) 83.6544 + 144.894i 0.00284796 + 0.00493281i
\(953\) −13227.6 + 22910.9i −0.449617 + 0.778760i −0.998361 0.0572307i \(-0.981773\pi\)
0.548744 + 0.835991i \(0.315106\pi\)
\(954\) −90016.6 −3.05492
\(955\) −12370.5 + 21426.3i −0.419162 + 0.726010i
\(956\) −2846.24 + 4929.83i −0.0962906 + 0.166780i
\(957\) 16074.9 0.542974
\(958\) 14856.4 25732.1i 0.501033 0.867815i
\(959\) −52.7297 91.3305i −0.00177553 0.00307530i
\(960\) 4424.13 + 7662.81i 0.148738 + 0.257621i
\(961\) −16852.5 −0.565690
\(962\) 0 0
\(963\) −11262.9 −0.376887
\(964\) 7108.68 + 12312.6i 0.237505 + 0.411371i
\(965\) 12963.9 + 22454.2i 0.432460 + 0.749043i
\(966\) −172.020 + 297.948i −0.00572947 + 0.00992373i
\(967\) 18687.5 0.621457 0.310728 0.950499i \(-0.399427\pi\)
0.310728 + 0.950499i \(0.399427\pi\)
\(968\) −1081.09 + 1872.50i −0.0358962 + 0.0621740i
\(969\) 9012.45 15610.0i 0.298784 0.517509i
\(970\) −9008.67 −0.298197
\(971\) 3140.93 5440.26i 0.103808 0.179800i −0.809443 0.587199i \(-0.800231\pi\)
0.913250 + 0.407398i \(0.133564\pi\)
\(972\) −28079.9 48635.7i −0.926607 1.60493i
\(973\) 112.812 + 195.396i 0.00371694 + 0.00643794i
\(974\) 28127.2 0.925313
\(975\) 0 0
\(976\) −1752.38 −0.0574715
\(977\) 21133.0 + 36603.4i 0.692021 + 1.19861i 0.971175 + 0.238368i \(0.0766126\pi\)
−0.279154 + 0.960246i \(0.590054\pi\)
\(978\) −8879.81 15380.3i −0.290332 0.502870i
\(979\) 25292.9 43808.5i 0.825703 1.43016i
\(980\) 18948.4 0.617638
\(981\) −65417.5 + 113306.i −2.12907 + 3.68766i
\(982\) 8218.07 14234.1i 0.267056 0.462555i
\(983\) −41111.7 −1.33394 −0.666968 0.745086i \(-0.732408\pi\)
−0.666968 + 0.745086i \(0.732408\pi\)
\(984\) −15860.9 + 27472.0i −0.513850 + 0.890014i
\(985\) 10940.6 + 18949.8i 0.353907 + 0.612984i
\(986\) −3200.35 5543.17i −0.103367 0.179037i
\(987\) 1156.31 0.0372906
\(988\) 0 0
\(989\) 18079.5 0.581288
\(990\) 40446.4 + 70055.1i 1.29845 + 2.24899i
\(991\) 20023.5 + 34681.7i 0.641845 + 1.11171i 0.985021 + 0.172436i \(0.0551639\pi\)
−0.343176 + 0.939271i \(0.611503\pi\)
\(992\) 1819.96 3152.27i 0.0582499 0.100892i
\(993\) 60597.7 1.93657
\(994\) −84.5093 + 146.374i −0.00269665 + 0.00467074i
\(995\) 34314.1 59433.8i 1.09330 1.89365i
\(996\) 21590.3 0.686863
\(997\) −11984.4 + 20757.6i −0.380692 + 0.659377i −0.991161 0.132663i \(-0.957647\pi\)
0.610470 + 0.792040i \(0.290981\pi\)
\(998\) 6081.91 + 10534.2i 0.192905 + 0.334122i
\(999\) −27976.0 48455.9i −0.886008 1.53461i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.o.315.1 12
13.2 odd 12 338.4.b.h.337.6 12
13.3 even 3 338.4.a.o.1.6 yes 6
13.4 even 6 338.4.c.p.191.1 12
13.5 odd 4 338.4.e.i.23.1 24
13.6 odd 12 338.4.e.i.147.10 24
13.7 odd 12 338.4.e.i.147.1 24
13.8 odd 4 338.4.e.i.23.10 24
13.9 even 3 inner 338.4.c.o.191.1 12
13.10 even 6 338.4.a.n.1.6 6
13.11 odd 12 338.4.b.h.337.12 12
13.12 even 2 338.4.c.p.315.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.6 6 13.10 even 6
338.4.a.o.1.6 yes 6 13.3 even 3
338.4.b.h.337.6 12 13.2 odd 12
338.4.b.h.337.12 12 13.11 odd 12
338.4.c.o.191.1 12 13.9 even 3 inner
338.4.c.o.315.1 12 1.1 even 1 trivial
338.4.c.p.191.1 12 13.4 even 6
338.4.c.p.315.1 12 13.12 even 2
338.4.e.i.23.1 24 13.5 odd 4
338.4.e.i.23.10 24 13.8 odd 4
338.4.e.i.147.1 24 13.7 odd 12
338.4.e.i.147.10 24 13.6 odd 12