Properties

Label 338.4.e.i.23.9
Level $338$
Weight $4$
Character 338.23
Analytic conductor $19.943$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(23,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.9
Character \(\chi\) \(=\) 338.23
Dual form 338.4.e.i.147.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(-1.67908 - 2.90825i) q^{3} +(2.00000 - 3.46410i) q^{4} +6.80407i q^{5} +(-5.81649 - 3.35815i) q^{6} +(13.4563 + 7.76902i) q^{7} -8.00000i q^{8} +(7.86140 - 13.6163i) q^{9} +(6.80407 + 11.7850i) q^{10} +(-16.9750 + 9.80052i) q^{11} -13.4326 q^{12} +31.0761 q^{14} +(19.7879 - 11.4246i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(62.9859 - 109.095i) q^{17} -31.4456i q^{18} +(84.1839 + 48.6036i) q^{19} +(23.5700 + 13.6081i) q^{20} -52.1791i q^{21} +(-19.6010 + 33.9500i) q^{22} +(64.9251 + 112.454i) q^{23} +(-23.2660 + 13.4326i) q^{24} +78.7047 q^{25} -143.470 q^{27} +(53.8253 - 31.0761i) q^{28} +(-73.9704 - 128.121i) q^{29} +(22.8491 - 39.5758i) q^{30} -172.602i q^{31} +(-27.7128 - 16.0000i) q^{32} +(57.0047 + 32.9117i) q^{33} -251.944i q^{34} +(-52.8609 + 91.5578i) q^{35} +(-31.4456 - 54.4654i) q^{36} +(191.625 - 110.635i) q^{37} +194.414 q^{38} +54.4325 q^{40} +(-24.3297 + 14.0468i) q^{41} +(-52.1791 - 90.3769i) q^{42} +(180.884 - 313.301i) q^{43} +78.4042i q^{44} +(92.6465 + 53.4895i) q^{45} +(224.907 + 129.850i) q^{46} -456.486i q^{47} +(-26.8652 + 46.5319i) q^{48} +(-50.7848 - 87.9618i) q^{49} +(136.321 - 78.7047i) q^{50} -423.033 q^{51} -643.067 q^{53} +(-248.497 + 143.470i) q^{54} +(-66.6834 - 115.499i) q^{55} +(62.1521 - 107.651i) q^{56} -326.437i q^{57} +(-256.241 - 147.941i) q^{58} +(269.267 + 155.461i) q^{59} -91.3964i q^{60} +(-405.728 + 702.742i) q^{61} +(-172.602 - 298.956i) q^{62} +(211.571 - 122.151i) q^{63} -64.0000 q^{64} +131.647 q^{66} +(6.06611 - 3.50227i) q^{67} +(-251.944 - 436.379i) q^{68} +(218.028 - 377.636i) q^{69} +211.444i q^{70} +(736.799 + 425.391i) q^{71} +(-108.931 - 62.8912i) q^{72} +1127.56i q^{73} +(221.269 - 383.249i) q^{74} +(-132.151 - 228.893i) q^{75} +(336.735 - 194.414i) q^{76} -304.562 q^{77} +278.080 q^{79} +(94.2799 - 54.4325i) q^{80} +(28.6389 + 49.6041i) q^{81} +(-28.0935 + 48.6594i) q^{82} -417.276i q^{83} +(-180.754 - 104.358i) q^{84} +(742.288 + 428.560i) q^{85} -723.537i q^{86} +(-248.404 + 430.249i) q^{87} +(78.4042 + 135.800i) q^{88} +(280.827 - 162.136i) q^{89} +213.958 q^{90} +519.401 q^{92} +(-501.970 + 289.812i) q^{93} +(-456.486 - 790.657i) q^{94} +(-330.702 + 572.793i) q^{95} +107.461i q^{96} +(71.0986 + 41.0488i) q^{97} +(-175.924 - 101.570i) q^{98} +308.183i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{3} + 48 q^{4} - 226 q^{9} + 72 q^{10} - 144 q^{12} + 200 q^{14} - 192 q^{16} + 198 q^{17} - 148 q^{22} + 534 q^{23} - 1472 q^{25} + 2676 q^{27} + 238 q^{29} + 472 q^{30} - 1228 q^{35} + 904 q^{36}+ \cdots - 8186 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) −1.67908 2.90825i −0.323139 0.559692i 0.657995 0.753022i \(-0.271405\pi\)
−0.981134 + 0.193330i \(0.938071\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 6.80407i 0.608574i 0.952580 + 0.304287i \(0.0984182\pi\)
−0.952580 + 0.304287i \(0.901582\pi\)
\(6\) −5.81649 3.35815i −0.395762 0.228493i
\(7\) 13.4563 + 7.76902i 0.726574 + 0.419487i 0.817167 0.576400i \(-0.195543\pi\)
−0.0905938 + 0.995888i \(0.528876\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 7.86140 13.6163i 0.291163 0.504309i
\(10\) 6.80407 + 11.7850i 0.215163 + 0.372674i
\(11\) −16.9750 + 9.80052i −0.465287 + 0.268633i −0.714265 0.699876i \(-0.753239\pi\)
0.248978 + 0.968509i \(0.419905\pi\)
\(12\) −13.4326 −0.323139
\(13\) 0 0
\(14\) 31.0761 0.593245
\(15\) 19.7879 11.4246i 0.340614 0.196654i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 62.9859 109.095i 0.898607 1.55643i 0.0693317 0.997594i \(-0.477913\pi\)
0.829276 0.558840i \(-0.188753\pi\)
\(18\) 31.4456i 0.411767i
\(19\) 84.1839 + 48.6036i 1.01648 + 0.586865i 0.913082 0.407776i \(-0.133695\pi\)
0.103397 + 0.994640i \(0.467029\pi\)
\(20\) 23.5700 + 13.6081i 0.263520 + 0.152144i
\(21\) 52.1791i 0.542210i
\(22\) −19.6010 + 33.9500i −0.189953 + 0.329007i
\(23\) 64.9251 + 112.454i 0.588600 + 1.01949i 0.994416 + 0.105531i \(0.0336542\pi\)
−0.405816 + 0.913955i \(0.633012\pi\)
\(24\) −23.2660 + 13.4326i −0.197881 + 0.114247i
\(25\) 78.7047 0.629637
\(26\) 0 0
\(27\) −143.470 −1.02262
\(28\) 53.8253 31.0761i 0.363287 0.209744i
\(29\) −73.9704 128.121i −0.473654 0.820393i 0.525891 0.850552i \(-0.323732\pi\)
−0.999545 + 0.0301591i \(0.990399\pi\)
\(30\) 22.8491 39.5758i 0.139055 0.240851i
\(31\) 172.602i 1.00001i −0.866023 0.500004i \(-0.833332\pi\)
0.866023 0.500004i \(-0.166668\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) 57.0047 + 32.9117i 0.300704 + 0.173612i
\(34\) 251.944i 1.27082i
\(35\) −52.8609 + 91.5578i −0.255289 + 0.442174i
\(36\) −31.4456 54.4654i −0.145581 0.252155i
\(37\) 191.625 110.635i 0.851430 0.491573i −0.00970317 0.999953i \(-0.503089\pi\)
0.861133 + 0.508380i \(0.169755\pi\)
\(38\) 194.414 0.829952
\(39\) 0 0
\(40\) 54.4325 0.215163
\(41\) −24.3297 + 14.0468i −0.0926746 + 0.0535057i −0.545621 0.838032i \(-0.683706\pi\)
0.452946 + 0.891538i \(0.350373\pi\)
\(42\) −52.1791 90.3769i −0.191700 0.332035i
\(43\) 180.884 313.301i 0.641502 1.11111i −0.343596 0.939118i \(-0.611645\pi\)
0.985098 0.171996i \(-0.0550217\pi\)
\(44\) 78.4042i 0.268633i
\(45\) 92.6465 + 53.4895i 0.306910 + 0.177194i
\(46\) 224.907 + 129.850i 0.720885 + 0.416203i
\(47\) 456.486i 1.41671i −0.705857 0.708354i \(-0.749438\pi\)
0.705857 0.708354i \(-0.250562\pi\)
\(48\) −26.8652 + 46.5319i −0.0807846 + 0.139923i
\(49\) −50.7848 87.9618i −0.148061 0.256448i
\(50\) 136.321 78.7047i 0.385573 0.222610i
\(51\) −423.033 −1.16150
\(52\) 0 0
\(53\) −643.067 −1.66664 −0.833321 0.552789i \(-0.813563\pi\)
−0.833321 + 0.552789i \(0.813563\pi\)
\(54\) −248.497 + 143.470i −0.626225 + 0.361551i
\(55\) −66.6834 115.499i −0.163483 0.283162i
\(56\) 62.1521 107.651i 0.148311 0.256883i
\(57\) 326.437i 0.758554i
\(58\) −256.241 147.941i −0.580105 0.334924i
\(59\) 269.267 + 155.461i 0.594163 + 0.343040i 0.766742 0.641956i \(-0.221877\pi\)
−0.172579 + 0.984996i \(0.555210\pi\)
\(60\) 91.3964i 0.196654i
\(61\) −405.728 + 702.742i −0.851610 + 1.47503i 0.0281456 + 0.999604i \(0.491040\pi\)
−0.879755 + 0.475427i \(0.842294\pi\)
\(62\) −172.602 298.956i −0.353556 0.612378i
\(63\) 211.571 122.151i 0.423103 0.244278i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 131.647 0.245524
\(67\) 6.06611 3.50227i 0.0110611 0.00638612i −0.494459 0.869201i \(-0.664634\pi\)
0.505520 + 0.862815i \(0.331301\pi\)
\(68\) −251.944 436.379i −0.449304 0.778217i
\(69\) 218.028 377.636i 0.380399 0.658870i
\(70\) 211.444i 0.361034i
\(71\) 736.799 + 425.391i 1.23158 + 0.711051i 0.967358 0.253412i \(-0.0815528\pi\)
0.264218 + 0.964463i \(0.414886\pi\)
\(72\) −108.931 62.8912i −0.178300 0.102942i
\(73\) 1127.56i 1.80782i 0.427728 + 0.903908i \(0.359314\pi\)
−0.427728 + 0.903908i \(0.640686\pi\)
\(74\) 221.269 383.249i 0.347595 0.602052i
\(75\) −132.151 228.893i −0.203460 0.352403i
\(76\) 336.735 194.414i 0.508240 0.293432i
\(77\) −304.562 −0.450754
\(78\) 0 0
\(79\) 278.080 0.396031 0.198015 0.980199i \(-0.436550\pi\)
0.198015 + 0.980199i \(0.436550\pi\)
\(80\) 94.2799 54.4325i 0.131760 0.0760718i
\(81\) 28.6389 + 49.6041i 0.0392852 + 0.0680440i
\(82\) −28.0935 + 48.6594i −0.0378343 + 0.0655309i
\(83\) 417.276i 0.551832i −0.961182 0.275916i \(-0.911019\pi\)
0.961182 0.275916i \(-0.0889811\pi\)
\(84\) −180.754 104.358i −0.234784 0.135553i
\(85\) 742.288 + 428.560i 0.947205 + 0.546869i
\(86\) 723.537i 0.907221i
\(87\) −248.404 + 430.249i −0.306112 + 0.530201i
\(88\) 78.4042 + 135.800i 0.0949763 + 0.164504i
\(89\) 280.827 162.136i 0.334467 0.193105i −0.323355 0.946278i \(-0.604811\pi\)
0.657823 + 0.753173i \(0.271478\pi\)
\(90\) 213.958 0.250591
\(91\) 0 0
\(92\) 519.401 0.588600
\(93\) −501.970 + 289.812i −0.559697 + 0.323141i
\(94\) −456.486 790.657i −0.500882 0.867553i
\(95\) −330.702 + 572.793i −0.357151 + 0.618603i
\(96\) 107.461i 0.114247i
\(97\) 71.0986 + 41.0488i 0.0744224 + 0.0429678i 0.536749 0.843742i \(-0.319652\pi\)
−0.462327 + 0.886709i \(0.652985\pi\)
\(98\) −175.924 101.570i −0.181336 0.104695i
\(99\) 308.183i 0.312865i
\(100\) 157.409 272.641i 0.157409 0.272641i
\(101\) 358.261 + 620.526i 0.352953 + 0.611333i 0.986765 0.162154i \(-0.0518442\pi\)
−0.633812 + 0.773487i \(0.718511\pi\)
\(102\) −732.714 + 423.033i −0.711270 + 0.410652i
\(103\) 935.493 0.894921 0.447460 0.894304i \(-0.352329\pi\)
0.447460 + 0.894304i \(0.352329\pi\)
\(104\) 0 0
\(105\) 355.030 0.329975
\(106\) −1113.82 + 643.067i −1.02061 + 0.589247i
\(107\) 599.382 + 1038.16i 0.541536 + 0.937969i 0.998816 + 0.0486457i \(0.0154905\pi\)
−0.457280 + 0.889323i \(0.651176\pi\)
\(108\) −286.939 + 496.994i −0.255655 + 0.442808i
\(109\) 119.517i 0.105024i 0.998620 + 0.0525120i \(0.0167228\pi\)
−0.998620 + 0.0525120i \(0.983277\pi\)
\(110\) −230.998 133.367i −0.200225 0.115600i
\(111\) −643.505 371.528i −0.550260 0.317693i
\(112\) 248.609i 0.209744i
\(113\) 303.346 525.410i 0.252534 0.437402i −0.711689 0.702495i \(-0.752069\pi\)
0.964223 + 0.265093i \(0.0854026\pi\)
\(114\) −326.437 565.405i −0.268189 0.464518i
\(115\) −765.141 + 441.754i −0.620433 + 0.358207i
\(116\) −591.764 −0.473654
\(117\) 0 0
\(118\) 621.846 0.485132
\(119\) 1695.12 978.677i 1.30581 0.753909i
\(120\) −91.3964 158.303i −0.0695276 0.120425i
\(121\) −473.400 + 819.952i −0.355672 + 0.616042i
\(122\) 1622.91i 1.20436i
\(123\) 81.7029 + 47.1712i 0.0598935 + 0.0345795i
\(124\) −597.911 345.204i −0.433016 0.250002i
\(125\) 1386.02i 0.991755i
\(126\) 244.301 423.142i 0.172731 0.299179i
\(127\) 928.966 + 1609.02i 0.649074 + 1.12423i 0.983344 + 0.181752i \(0.0581769\pi\)
−0.334270 + 0.942477i \(0.608490\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) −1214.87 −0.829176
\(130\) 0 0
\(131\) −1867.72 −1.24568 −0.622838 0.782351i \(-0.714020\pi\)
−0.622838 + 0.782351i \(0.714020\pi\)
\(132\) 228.019 131.647i 0.150352 0.0868058i
\(133\) 755.204 + 1308.05i 0.492365 + 0.852801i
\(134\) 7.00454 12.1322i 0.00451567 0.00782137i
\(135\) 976.178i 0.622341i
\(136\) −872.758 503.887i −0.550282 0.317706i
\(137\) −456.522 263.573i −0.284695 0.164369i 0.350852 0.936431i \(-0.385892\pi\)
−0.635547 + 0.772062i \(0.719225\pi\)
\(138\) 872.113i 0.537965i
\(139\) 747.477 1294.67i 0.456116 0.790017i −0.542635 0.839969i \(-0.682573\pi\)
0.998752 + 0.0499516i \(0.0159067\pi\)
\(140\) 211.444 + 366.231i 0.127645 + 0.221087i
\(141\) −1327.57 + 766.475i −0.792921 + 0.457793i
\(142\) 1701.56 1.00558
\(143\) 0 0
\(144\) −251.565 −0.145581
\(145\) 871.741 503.300i 0.499270 0.288254i
\(146\) 1127.56 + 1952.99i 0.639159 + 1.10706i
\(147\) −170.543 + 295.389i −0.0956881 + 0.165737i
\(148\) 885.077i 0.491573i
\(149\) −1505.71 869.319i −0.827867 0.477969i 0.0252549 0.999681i \(-0.491960\pi\)
−0.853122 + 0.521712i \(0.825294\pi\)
\(150\) −457.785 264.302i −0.249187 0.143868i
\(151\) 1923.77i 1.03678i 0.855144 + 0.518391i \(0.173469\pi\)
−0.855144 + 0.518391i \(0.826531\pi\)
\(152\) 388.829 673.471i 0.207488 0.359380i
\(153\) −990.315 1715.28i −0.523282 0.906352i
\(154\) −527.516 + 304.562i −0.276029 + 0.159365i
\(155\) 1174.40 0.608579
\(156\) 0 0
\(157\) 275.052 0.139819 0.0699093 0.997553i \(-0.477729\pi\)
0.0699093 + 0.997553i \(0.477729\pi\)
\(158\) 481.649 278.080i 0.242518 0.140018i
\(159\) 1079.76 + 1870.20i 0.538556 + 0.932807i
\(160\) 108.865 188.560i 0.0537909 0.0931685i
\(161\) 2017.62i 0.987642i
\(162\) 99.2082 + 57.2779i 0.0481144 + 0.0277788i
\(163\) −3353.63 1936.22i −1.61151 0.930407i −0.989020 0.147780i \(-0.952787\pi\)
−0.622491 0.782627i \(-0.713879\pi\)
\(164\) 112.374i 0.0535057i
\(165\) −223.933 + 387.864i −0.105656 + 0.183001i
\(166\) −417.276 722.744i −0.195102 0.337926i
\(167\) 616.965 356.205i 0.285881 0.165054i −0.350202 0.936674i \(-0.613887\pi\)
0.636083 + 0.771621i \(0.280554\pi\)
\(168\) −417.433 −0.191700
\(169\) 0 0
\(170\) 1714.24 0.773390
\(171\) 1323.61 764.184i 0.591922 0.341746i
\(172\) −723.537 1253.20i −0.320751 0.555557i
\(173\) −405.847 + 702.947i −0.178358 + 0.308925i −0.941318 0.337520i \(-0.890412\pi\)
0.762960 + 0.646446i \(0.223745\pi\)
\(174\) 993.617i 0.432907i
\(175\) 1059.08 + 611.458i 0.457478 + 0.264125i
\(176\) 271.600 + 156.808i 0.116322 + 0.0671584i
\(177\) 1044.13i 0.443398i
\(178\) 324.271 561.654i 0.136546 0.236504i
\(179\) 431.918 + 748.105i 0.180353 + 0.312380i 0.942001 0.335611i \(-0.108943\pi\)
−0.761648 + 0.647991i \(0.775609\pi\)
\(180\) 370.586 213.958i 0.153455 0.0885971i
\(181\) −1426.89 −0.585965 −0.292982 0.956118i \(-0.594648\pi\)
−0.292982 + 0.956118i \(0.594648\pi\)
\(182\) 0 0
\(183\) 2725.00 1.10075
\(184\) 899.628 519.401i 0.360443 0.208102i
\(185\) 752.765 + 1303.83i 0.299159 + 0.518158i
\(186\) −579.625 + 1003.94i −0.228495 + 0.395766i
\(187\) 2469.18i 0.965584i
\(188\) −1581.31 912.972i −0.613453 0.354177i
\(189\) −1930.58 1114.62i −0.743009 0.428977i
\(190\) 1322.81i 0.505087i
\(191\) 392.215 679.337i 0.148585 0.257357i −0.782120 0.623128i \(-0.785862\pi\)
0.930705 + 0.365772i \(0.119195\pi\)
\(192\) 107.461 + 186.128i 0.0403923 + 0.0699615i
\(193\) −2609.25 + 1506.45i −0.973149 + 0.561848i −0.900195 0.435487i \(-0.856576\pi\)
−0.0729543 + 0.997335i \(0.523243\pi\)
\(194\) 164.195 0.0607656
\(195\) 0 0
\(196\) −406.278 −0.148061
\(197\) −2363.64 + 1364.65i −0.854836 + 0.493540i −0.862280 0.506433i \(-0.830964\pi\)
0.00744371 + 0.999972i \(0.497631\pi\)
\(198\) 308.183 + 533.789i 0.110614 + 0.191590i
\(199\) −480.802 + 832.774i −0.171272 + 0.296652i −0.938865 0.344286i \(-0.888121\pi\)
0.767593 + 0.640938i \(0.221454\pi\)
\(200\) 629.637i 0.222610i
\(201\) −20.3709 11.7612i −0.00714853 0.00412720i
\(202\) 1241.05 + 716.521i 0.432277 + 0.249576i
\(203\) 2298.71i 0.794768i
\(204\) −846.065 + 1465.43i −0.290375 + 0.502944i
\(205\) −95.5751 165.541i −0.0325622 0.0563994i
\(206\) 1620.32 935.493i 0.548025 0.316402i
\(207\) 2041.61 0.685515
\(208\) 0 0
\(209\) −1905.36 −0.630606
\(210\) 614.930 355.030i 0.202068 0.116664i
\(211\) −1888.57 3271.10i −0.616183 1.06726i −0.990176 0.139829i \(-0.955345\pi\)
0.373992 0.927432i \(-0.377989\pi\)
\(212\) −1286.13 + 2227.65i −0.416661 + 0.721677i
\(213\) 2857.06i 0.919072i
\(214\) 2076.32 + 1198.76i 0.663244 + 0.382924i
\(215\) 2131.72 + 1230.75i 0.676195 + 0.390401i
\(216\) 1147.76i 0.361551i
\(217\) 1340.95 2322.59i 0.419491 0.726580i
\(218\) 119.517 + 207.009i 0.0371316 + 0.0643139i
\(219\) 3279.21 1893.25i 1.01182 0.584175i
\(220\) −533.467 −0.163483
\(221\) 0 0
\(222\) −1486.11 −0.449285
\(223\) −3781.34 + 2183.15i −1.13550 + 0.655582i −0.945313 0.326165i \(-0.894243\pi\)
−0.190189 + 0.981747i \(0.560910\pi\)
\(224\) −248.609 430.603i −0.0741556 0.128441i
\(225\) 618.729 1071.67i 0.183327 0.317532i
\(226\) 1213.38i 0.357137i
\(227\) 1582.22 + 913.495i 0.462624 + 0.267096i 0.713147 0.701015i \(-0.247269\pi\)
−0.250523 + 0.968111i \(0.580603\pi\)
\(228\) −1130.81 652.873i −0.328464 0.189639i
\(229\) 4376.52i 1.26292i 0.775409 + 0.631459i \(0.217544\pi\)
−0.775409 + 0.631459i \(0.782456\pi\)
\(230\) −883.509 + 1530.28i −0.253291 + 0.438712i
\(231\) 511.382 + 885.740i 0.145656 + 0.252283i
\(232\) −1024.96 + 591.764i −0.290053 + 0.167462i
\(233\) −4723.89 −1.32821 −0.664104 0.747641i \(-0.731187\pi\)
−0.664104 + 0.747641i \(0.731187\pi\)
\(234\) 0 0
\(235\) 3105.96 0.862172
\(236\) 1077.07 621.846i 0.297081 0.171520i
\(237\) −466.918 808.725i −0.127973 0.221655i
\(238\) 1957.35 3390.24i 0.533094 0.923346i
\(239\) 2312.19i 0.625788i 0.949788 + 0.312894i \(0.101298\pi\)
−0.949788 + 0.312894i \(0.898702\pi\)
\(240\) −316.606 182.793i −0.0851536 0.0491634i
\(241\) 6190.00 + 3573.80i 1.65449 + 0.955223i 0.975191 + 0.221364i \(0.0710510\pi\)
0.679303 + 0.733858i \(0.262282\pi\)
\(242\) 1893.60i 0.502996i
\(243\) −1840.67 + 3188.13i −0.485921 + 0.841640i
\(244\) 1622.91 + 2810.97i 0.425805 + 0.737515i
\(245\) 598.498 345.543i 0.156068 0.0901058i
\(246\) 188.685 0.0489028
\(247\) 0 0
\(248\) −1380.82 −0.353556
\(249\) −1213.54 + 700.639i −0.308856 + 0.178318i
\(250\) 1386.02 + 2400.66i 0.350638 + 0.607324i
\(251\) −1369.27 + 2371.64i −0.344332 + 0.596401i −0.985232 0.171224i \(-0.945228\pi\)
0.640900 + 0.767624i \(0.278561\pi\)
\(252\) 977.206i 0.244278i
\(253\) −2204.21 1272.60i −0.547736 0.316236i
\(254\) 3218.03 + 1857.93i 0.794950 + 0.458965i
\(255\) 2878.34i 0.706858i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −3028.18 5244.96i −0.734991 1.27304i −0.954727 0.297483i \(-0.903853\pi\)
0.219736 0.975559i \(-0.429481\pi\)
\(258\) −2104.22 + 1214.87i −0.507764 + 0.293158i
\(259\) 3438.09 0.824835
\(260\) 0 0
\(261\) −2326.05 −0.551642
\(262\) −3234.99 + 1867.72i −0.762817 + 0.440413i
\(263\) −2667.09 4619.54i −0.625323 1.08309i −0.988478 0.151362i \(-0.951634\pi\)
0.363156 0.931728i \(-0.381699\pi\)
\(264\) 263.293 456.037i 0.0613810 0.106315i
\(265\) 4375.47i 1.01428i
\(266\) 2616.10 + 1510.41i 0.603021 + 0.348154i
\(267\) −943.060 544.476i −0.216159 0.124799i
\(268\) 28.0181i 0.00638612i
\(269\) −309.630 + 536.295i −0.0701803 + 0.121556i −0.898980 0.437989i \(-0.855691\pi\)
0.828800 + 0.559545i \(0.189024\pi\)
\(270\) −976.178 1690.79i −0.220031 0.381104i
\(271\) −1134.37 + 654.928i −0.254273 + 0.146805i −0.621719 0.783240i \(-0.713566\pi\)
0.367446 + 0.930045i \(0.380232\pi\)
\(272\) −2015.55 −0.449304
\(273\) 0 0
\(274\) −1054.29 −0.232453
\(275\) −1336.01 + 771.347i −0.292962 + 0.169142i
\(276\) −872.113 1510.54i −0.190199 0.329435i
\(277\) 3291.31 5700.72i 0.713920 1.23655i −0.249454 0.968387i \(-0.580251\pi\)
0.963375 0.268159i \(-0.0864154\pi\)
\(278\) 2989.91i 0.645046i
\(279\) −2350.21 1356.89i −0.504313 0.291165i
\(280\) 732.462 + 422.887i 0.156332 + 0.0902584i
\(281\) 7406.25i 1.57231i −0.618028 0.786156i \(-0.712068\pi\)
0.618028 0.786156i \(-0.287932\pi\)
\(282\) −1532.95 + 2655.15i −0.323709 + 0.560680i
\(283\) 1109.97 + 1922.53i 0.233149 + 0.403825i 0.958733 0.284308i \(-0.0917638\pi\)
−0.725584 + 0.688133i \(0.758430\pi\)
\(284\) 2947.20 1701.56i 0.615788 0.355526i
\(285\) 2221.10 0.461637
\(286\) 0 0
\(287\) −436.518 −0.0897799
\(288\) −435.723 + 251.565i −0.0891501 + 0.0514708i
\(289\) −5477.95 9488.08i −1.11499 1.93122i
\(290\) 1006.60 1743.48i 0.203826 0.353037i
\(291\) 275.696i 0.0555382i
\(292\) 3905.97 + 2255.11i 0.782807 + 0.451954i
\(293\) 1951.28 + 1126.57i 0.389062 + 0.224625i 0.681754 0.731582i \(-0.261218\pi\)
−0.292691 + 0.956207i \(0.594551\pi\)
\(294\) 682.172i 0.135323i
\(295\) −1057.77 + 1832.11i −0.208765 + 0.361592i
\(296\) −885.077 1533.00i −0.173797 0.301026i
\(297\) 2435.40 1406.08i 0.475812 0.274710i
\(298\) −3477.28 −0.675950
\(299\) 0 0
\(300\) −1057.21 −0.203460
\(301\) 4868.07 2810.58i 0.932197 0.538204i
\(302\) 1923.77 + 3332.06i 0.366558 + 0.634897i
\(303\) 1203.09 2083.82i 0.228105 0.395090i
\(304\) 1555.31i 0.293432i
\(305\) −4781.50 2760.60i −0.897666 0.518268i
\(306\) −3430.55 1980.63i −0.640887 0.370017i
\(307\) 6633.50i 1.23321i −0.787274 0.616603i \(-0.788509\pi\)
0.787274 0.616603i \(-0.211491\pi\)
\(308\) −609.123 + 1055.03i −0.112688 + 0.195182i
\(309\) −1570.76 2720.64i −0.289183 0.500880i
\(310\) 2034.11 1174.40i 0.372677 0.215165i
\(311\) −815.823 −0.148749 −0.0743747 0.997230i \(-0.523696\pi\)
−0.0743747 + 0.997230i \(0.523696\pi\)
\(312\) 0 0
\(313\) 6169.43 1.11411 0.557055 0.830475i \(-0.311931\pi\)
0.557055 + 0.830475i \(0.311931\pi\)
\(314\) 476.403 275.052i 0.0856210 0.0494333i
\(315\) 831.122 + 1439.54i 0.148662 + 0.257489i
\(316\) 556.160 963.297i 0.0990077 0.171486i
\(317\) 8846.56i 1.56742i 0.621126 + 0.783711i \(0.286676\pi\)
−0.621126 + 0.783711i \(0.713324\pi\)
\(318\) 3740.39 + 2159.52i 0.659594 + 0.380817i
\(319\) 2511.30 + 1449.90i 0.440770 + 0.254479i
\(320\) 435.460i 0.0760718i
\(321\) 2012.82 3486.30i 0.349983 0.606188i
\(322\) 2017.62 + 3494.61i 0.349184 + 0.604805i
\(323\) 10604.8 6122.68i 1.82683 1.05472i
\(324\) 229.111 0.0392852
\(325\) 0 0
\(326\) −7744.87 −1.31579
\(327\) 347.584 200.678i 0.0587812 0.0339373i
\(328\) 112.374 + 194.638i 0.0189171 + 0.0327654i
\(329\) 3546.45 6142.63i 0.594292 1.02934i
\(330\) 895.732i 0.149420i
\(331\) 8236.93 + 4755.60i 1.36780 + 0.789701i 0.990647 0.136449i \(-0.0435688\pi\)
0.377156 + 0.926150i \(0.376902\pi\)
\(332\) −1445.49 834.553i −0.238950 0.137958i
\(333\) 3478.97i 0.572512i
\(334\) 712.409 1233.93i 0.116710 0.202148i
\(335\) 23.8297 + 41.2742i 0.00388643 + 0.00673149i
\(336\) −723.015 + 417.433i −0.117392 + 0.0677763i
\(337\) 4745.81 0.767124 0.383562 0.923515i \(-0.374697\pi\)
0.383562 + 0.923515i \(0.374697\pi\)
\(338\) 0 0
\(339\) −2037.36 −0.326414
\(340\) 2969.15 1714.24i 0.473603 0.273435i
\(341\) 1691.59 + 2929.92i 0.268636 + 0.465291i
\(342\) 1528.37 2647.21i 0.241651 0.418552i
\(343\) 6907.74i 1.08741i
\(344\) −2506.40 1447.07i −0.392838 0.226805i
\(345\) 2569.46 + 1483.48i 0.400972 + 0.231501i
\(346\) 1623.39i 0.252237i
\(347\) −4692.18 + 8127.10i −0.725906 + 1.25731i 0.232693 + 0.972550i \(0.425246\pi\)
−0.958600 + 0.284757i \(0.908087\pi\)
\(348\) 993.617 + 1720.99i 0.153056 + 0.265101i
\(349\) −8063.42 + 4655.42i −1.23675 + 0.714036i −0.968428 0.249294i \(-0.919802\pi\)
−0.268319 + 0.963330i \(0.586468\pi\)
\(350\) 2445.83 0.373529
\(351\) 0 0
\(352\) 627.233 0.0949763
\(353\) 1066.95 616.005i 0.160873 0.0928800i −0.417402 0.908722i \(-0.637059\pi\)
0.578275 + 0.815842i \(0.303726\pi\)
\(354\) −1044.13 1808.48i −0.156765 0.271525i
\(355\) −2894.39 + 5013.23i −0.432727 + 0.749506i
\(356\) 1297.08i 0.193105i
\(357\) −5692.47 3286.55i −0.843914 0.487234i
\(358\) 1496.21 + 863.837i 0.220886 + 0.127528i
\(359\) 6179.13i 0.908417i −0.890895 0.454209i \(-0.849922\pi\)
0.890895 0.454209i \(-0.150078\pi\)
\(360\) 427.916 741.172i 0.0626476 0.108509i
\(361\) 1295.12 + 2243.21i 0.188820 + 0.327046i
\(362\) −2471.44 + 1426.89i −0.358829 + 0.207170i
\(363\) 3179.50 0.459725
\(364\) 0 0
\(365\) −7671.97 −1.10019
\(366\) 4719.83 2725.00i 0.674070 0.389174i
\(367\) 235.037 + 407.095i 0.0334300 + 0.0579025i 0.882256 0.470769i \(-0.156024\pi\)
−0.848826 + 0.528672i \(0.822690\pi\)
\(368\) 1038.80 1799.26i 0.147150 0.254871i
\(369\) 441.709i 0.0623156i
\(370\) 2607.65 + 1505.53i 0.366393 + 0.211537i
\(371\) −8653.32 4996.00i −1.21094 0.699135i
\(372\) 2318.50i 0.323141i
\(373\) 2559.15 4432.59i 0.355249 0.615310i −0.631911 0.775041i \(-0.717729\pi\)
0.987161 + 0.159731i \(0.0510626\pi\)
\(374\) 2469.18 + 4276.74i 0.341386 + 0.591297i
\(375\) 4030.89 2327.23i 0.555078 0.320474i
\(376\) −3651.89 −0.500882
\(377\) 0 0
\(378\) −4458.48 −0.606665
\(379\) −428.638 + 247.474i −0.0580940 + 0.0335406i −0.528766 0.848768i \(-0.677345\pi\)
0.470672 + 0.882308i \(0.344012\pi\)
\(380\) 1322.81 + 2291.17i 0.178575 + 0.309302i
\(381\) 3119.61 5403.33i 0.419482 0.726564i
\(382\) 1568.86i 0.210131i
\(383\) 3727.82 + 2152.26i 0.497343 + 0.287141i 0.727616 0.685985i \(-0.240628\pi\)
−0.230272 + 0.973126i \(0.573962\pi\)
\(384\) 372.256 + 214.922i 0.0494703 + 0.0285617i
\(385\) 2072.26i 0.274317i
\(386\) −3012.90 + 5218.50i −0.397286 + 0.688120i
\(387\) −2844.01 4925.96i −0.373563 0.647030i
\(388\) 284.394 164.195i 0.0372112 0.0214839i
\(389\) −5599.48 −0.729832 −0.364916 0.931040i \(-0.618902\pi\)
−0.364916 + 0.931040i \(0.618902\pi\)
\(390\) 0 0
\(391\) 16357.5 2.11568
\(392\) −703.694 + 406.278i −0.0906682 + 0.0523473i
\(393\) 3136.05 + 5431.79i 0.402526 + 0.697195i
\(394\) −2729.30 + 4727.29i −0.348985 + 0.604460i
\(395\) 1892.07i 0.241014i
\(396\) 1067.58 + 616.367i 0.135474 + 0.0782161i
\(397\) 8493.19 + 4903.55i 1.07371 + 0.619904i 0.929192 0.369598i \(-0.120505\pi\)
0.144514 + 0.989503i \(0.453838\pi\)
\(398\) 1923.21i 0.242215i
\(399\) 2536.09 4392.64i 0.318204 0.551145i
\(400\) −629.637 1090.56i −0.0787047 0.136321i
\(401\) −12694.6 + 7329.22i −1.58089 + 0.912728i −0.586161 + 0.810194i \(0.699362\pi\)
−0.994730 + 0.102534i \(0.967305\pi\)
\(402\) −47.0446 −0.00583675
\(403\) 0 0
\(404\) 2866.08 0.352953
\(405\) −337.509 + 194.861i −0.0414098 + 0.0239080i
\(406\) −2298.71 3981.48i −0.280993 0.486694i
\(407\) −2168.55 + 3756.04i −0.264106 + 0.457445i
\(408\) 3384.26i 0.410652i
\(409\) −9253.81 5342.69i −1.11876 0.645914i −0.177673 0.984090i \(-0.556857\pi\)
−0.941083 + 0.338175i \(0.890190\pi\)
\(410\) −331.082 191.150i −0.0398804 0.0230250i
\(411\) 1770.24i 0.212456i
\(412\) 1870.99 3240.64i 0.223730 0.387512i
\(413\) 2415.57 + 4183.88i 0.287802 + 0.498488i
\(414\) 3536.17 2041.61i 0.419790 0.242366i
\(415\) 2839.18 0.335830
\(416\) 0 0
\(417\) −5020.29 −0.589555
\(418\) −3300.18 + 1905.36i −0.386166 + 0.222953i
\(419\) −3205.07 5551.34i −0.373694 0.647257i 0.616437 0.787405i \(-0.288576\pi\)
−0.990131 + 0.140147i \(0.955242\pi\)
\(420\) 710.060 1229.86i 0.0824938 0.142883i
\(421\) 2672.97i 0.309436i −0.987959 0.154718i \(-0.950553\pi\)
0.987959 0.154718i \(-0.0494469\pi\)
\(422\) −6542.21 3777.14i −0.754667 0.435707i
\(423\) −6215.67 3588.62i −0.714459 0.412493i
\(424\) 5144.53i 0.589247i
\(425\) 4957.28 8586.27i 0.565797 0.979989i
\(426\) −2857.06 4948.57i −0.324941 0.562814i
\(427\) −10919.2 + 6304.22i −1.23751 + 0.714479i
\(428\) 4795.05 0.541536
\(429\) 0 0
\(430\) 4922.99 0.552111
\(431\) −4482.32 + 2587.87i −0.500941 + 0.289218i −0.729102 0.684405i \(-0.760062\pi\)
0.228161 + 0.973623i \(0.426729\pi\)
\(432\) 1147.76 + 1987.98i 0.127828 + 0.221404i
\(433\) −2085.98 + 3613.02i −0.231515 + 0.400995i −0.958254 0.285918i \(-0.907701\pi\)
0.726739 + 0.686913i \(0.241035\pi\)
\(434\) 5363.80i 0.593250i
\(435\) −2927.44 1690.16i −0.322667 0.186292i
\(436\) 414.018 + 239.033i 0.0454768 + 0.0262560i
\(437\) 12622.4i 1.38172i
\(438\) 3786.51 6558.43i 0.413074 0.715465i
\(439\) 5332.27 + 9235.77i 0.579717 + 1.00410i 0.995512 + 0.0946401i \(0.0301700\pi\)
−0.415795 + 0.909458i \(0.636497\pi\)
\(440\) −923.992 + 533.467i −0.100113 + 0.0578001i
\(441\) −1596.96 −0.172439
\(442\) 0 0
\(443\) 2122.16 0.227600 0.113800 0.993504i \(-0.463698\pi\)
0.113800 + 0.993504i \(0.463698\pi\)
\(444\) −2574.02 + 1486.11i −0.275130 + 0.158846i
\(445\) 1103.18 + 1910.77i 0.117519 + 0.203548i
\(446\) −4366.31 + 7562.67i −0.463567 + 0.802921i
\(447\) 5838.62i 0.617801i
\(448\) −861.205 497.217i −0.0908217 0.0524359i
\(449\) −13237.6 7642.71i −1.39136 0.803300i −0.397891 0.917433i \(-0.630258\pi\)
−0.993466 + 0.114132i \(0.963591\pi\)
\(450\) 2474.92i 0.259264i
\(451\) 275.331 476.887i 0.0287469 0.0497910i
\(452\) −1213.38 2101.64i −0.126267 0.218701i
\(453\) 5594.79 3230.16i 0.580279 0.335024i
\(454\) 3653.98 0.377731
\(455\) 0 0
\(456\) −2611.49 −0.268189
\(457\) −7390.60 + 4266.96i −0.756494 + 0.436762i −0.828035 0.560676i \(-0.810541\pi\)
0.0715418 + 0.997438i \(0.477208\pi\)
\(458\) 4376.52 + 7580.35i 0.446509 + 0.773376i
\(459\) −9036.57 + 15651.8i −0.918935 + 1.59164i
\(460\) 3534.04i 0.358207i
\(461\) 5375.22 + 3103.39i 0.543057 + 0.313534i 0.746317 0.665591i \(-0.231820\pi\)
−0.203260 + 0.979125i \(0.565154\pi\)
\(462\) 1771.48 + 1022.76i 0.178391 + 0.102994i
\(463\) 14278.3i 1.43319i 0.697487 + 0.716597i \(0.254302\pi\)
−0.697487 + 0.716597i \(0.745698\pi\)
\(464\) −1183.53 + 2049.93i −0.118414 + 0.205098i
\(465\) −1971.90 3415.43i −0.196655 0.340617i
\(466\) −8182.02 + 4723.89i −0.813357 + 0.469592i
\(467\) 1787.57 0.177129 0.0885643 0.996070i \(-0.471772\pi\)
0.0885643 + 0.996070i \(0.471772\pi\)
\(468\) 0 0
\(469\) 108.837 0.0107156
\(470\) 5379.68 3105.96i 0.527971 0.304824i
\(471\) −461.833 799.918i −0.0451807 0.0782553i
\(472\) 1243.69 2154.14i 0.121283 0.210068i
\(473\) 7091.04i 0.689315i
\(474\) −1617.45 933.835i −0.156734 0.0904905i
\(475\) 6625.66 + 3825.33i 0.640013 + 0.369512i
\(476\) 7829.42i 0.753909i
\(477\) −5055.41 + 8756.22i −0.485264 + 0.840503i
\(478\) 2312.19 + 4004.83i 0.221249 + 0.383215i
\(479\) 11895.4 6867.79i 1.13468 0.655109i 0.189574 0.981866i \(-0.439289\pi\)
0.945108 + 0.326757i \(0.105956\pi\)
\(480\) −731.171 −0.0695276
\(481\) 0 0
\(482\) 14295.2 1.35089
\(483\) 5867.72 3387.73i 0.552776 0.319145i
\(484\) 1893.60 + 3279.81i 0.177836 + 0.308021i
\(485\) −279.299 + 483.760i −0.0261491 + 0.0452915i
\(486\) 7362.67i 0.687197i
\(487\) 14738.9 + 8509.51i 1.37142 + 0.791792i 0.991107 0.133064i \(-0.0424816\pi\)
0.380317 + 0.924856i \(0.375815\pi\)
\(488\) 5621.94 + 3245.83i 0.521502 + 0.301089i
\(489\) 13004.2i 1.20260i
\(490\) 691.086 1197.00i 0.0637144 0.110357i
\(491\) −6821.33 11814.9i −0.626970 1.08594i −0.988156 0.153451i \(-0.950961\pi\)
0.361186 0.932494i \(-0.382372\pi\)
\(492\) 326.811 188.685i 0.0299467 0.0172898i
\(493\) −18636.4 −1.70252
\(494\) 0 0
\(495\) −2096.90 −0.190401
\(496\) −2391.65 + 1380.82i −0.216508 + 0.125001i
\(497\) 6609.74 + 11448.4i 0.596554 + 1.03326i
\(498\) −1401.28 + 2427.08i −0.126090 + 0.218394i
\(499\) 4507.63i 0.404387i 0.979346 + 0.202194i \(0.0648070\pi\)
−0.979346 + 0.202194i \(0.935193\pi\)
\(500\) 4801.31 + 2772.04i 0.429443 + 0.247939i
\(501\) −2071.86 1196.19i −0.184758 0.106670i
\(502\) 5477.07i 0.486959i
\(503\) 4794.70 8304.67i 0.425020 0.736157i −0.571402 0.820670i \(-0.693600\pi\)
0.996422 + 0.0845135i \(0.0269336\pi\)
\(504\) −977.206 1692.57i −0.0863655 0.149589i
\(505\) −4222.10 + 2437.63i −0.372041 + 0.214798i
\(506\) −5090.40 −0.447225
\(507\) 0 0
\(508\) 7431.73 0.649074
\(509\) 8997.81 5194.89i 0.783539 0.452376i −0.0541444 0.998533i \(-0.517243\pi\)
0.837683 + 0.546157i \(0.183910\pi\)
\(510\) −2878.34 4985.44i −0.249912 0.432860i
\(511\) −8760.01 + 15172.8i −0.758356 + 1.31351i
\(512\) 512.000i 0.0441942i
\(513\) −12077.8 6973.14i −1.03947 0.600140i
\(514\) −10489.9 6056.36i −0.900177 0.519717i
\(515\) 6365.15i 0.544626i
\(516\) −2429.75 + 4208.45i −0.207294 + 0.359044i
\(517\) 4473.80 + 7748.85i 0.380575 + 0.659176i
\(518\) 5954.94 3438.09i 0.505106 0.291623i
\(519\) 2725.79 0.230538
\(520\) 0 0
\(521\) −3202.79 −0.269322 −0.134661 0.990892i \(-0.542995\pi\)
−0.134661 + 0.990892i \(0.542995\pi\)
\(522\) −4028.83 + 2326.05i −0.337810 + 0.195035i
\(523\) 3828.77 + 6631.62i 0.320115 + 0.554456i 0.980512 0.196461i \(-0.0629450\pi\)
−0.660396 + 0.750917i \(0.729612\pi\)
\(524\) −3735.44 + 6469.97i −0.311419 + 0.539393i
\(525\) 4106.74i 0.341396i
\(526\) −9239.07 5334.18i −0.765861 0.442170i
\(527\) −18830.0 10871.5i −1.55645 0.898615i
\(528\) 1053.17i 0.0868058i
\(529\) −2347.03 + 4065.17i −0.192901 + 0.334114i
\(530\) −4375.47 7578.54i −0.358600 0.621114i
\(531\) 4233.63 2444.29i 0.345996 0.199761i
\(532\) 6041.63 0.492365
\(533\) 0 0
\(534\) −2177.90 −0.176493
\(535\) −7063.70 + 4078.23i −0.570823 + 0.329565i
\(536\) −28.0181 48.5288i −0.00225783 0.00391068i
\(537\) 1450.45 2512.25i 0.116558 0.201884i
\(538\) 1238.52i 0.0992499i
\(539\) 1724.14 + 995.434i 0.137781 + 0.0795480i
\(540\) −3381.58 1952.36i −0.269481 0.155585i
\(541\) 6536.41i 0.519450i 0.965683 + 0.259725i \(0.0836319\pi\)
−0.965683 + 0.259725i \(0.916368\pi\)
\(542\) −1309.86 + 2268.74i −0.103807 + 0.179798i
\(543\) 2395.85 + 4149.74i 0.189348 + 0.327960i
\(544\) −3491.03 + 2015.55i −0.275141 + 0.158853i
\(545\) −813.200 −0.0639149
\(546\) 0 0
\(547\) −2020.69 −0.157950 −0.0789748 0.996877i \(-0.525165\pi\)
−0.0789748 + 0.996877i \(0.525165\pi\)
\(548\) −1826.09 + 1054.29i −0.142348 + 0.0821845i
\(549\) 6379.19 + 11049.1i 0.495914 + 0.858949i
\(550\) −1542.69 + 2672.02i −0.119601 + 0.207155i
\(551\) 14380.9i 1.11188i
\(552\) −3021.09 1744.23i −0.232946 0.134491i
\(553\) 3741.94 + 2160.41i 0.287746 + 0.166130i
\(554\) 13165.3i 1.00964i
\(555\) 2527.90 4378.45i 0.193339 0.334874i
\(556\) −2989.91 5178.67i −0.228058 0.395008i
\(557\) −8698.31 + 5021.97i −0.661686 + 0.382025i −0.792919 0.609327i \(-0.791440\pi\)
0.131233 + 0.991352i \(0.458106\pi\)
\(558\) −5427.58 −0.411770
\(559\) 0 0
\(560\) 1691.55 0.127645
\(561\) 7180.98 4145.94i 0.540430 0.312017i
\(562\) −7406.25 12828.0i −0.555896 0.962841i
\(563\) 4184.05 7246.99i 0.313209 0.542494i −0.665846 0.746089i \(-0.731929\pi\)
0.979055 + 0.203595i \(0.0652626\pi\)
\(564\) 6131.80i 0.457793i
\(565\) 3574.93 + 2063.98i 0.266192 + 0.153686i
\(566\) 3845.06 + 2219.95i 0.285548 + 0.164861i
\(567\) 889.985i 0.0659186i
\(568\) 3403.13 5894.39i 0.251395 0.435428i
\(569\) −7049.80 12210.6i −0.519408 0.899640i −0.999746 0.0225569i \(-0.992819\pi\)
0.480338 0.877084i \(-0.340514\pi\)
\(570\) 3847.05 2221.10i 0.282693 0.163213i
\(571\) 7703.05 0.564558 0.282279 0.959332i \(-0.408910\pi\)
0.282279 + 0.959332i \(0.408910\pi\)
\(572\) 0 0
\(573\) −2634.24 −0.192054
\(574\) −756.071 + 436.518i −0.0549788 + 0.0317420i
\(575\) 5109.91 + 8850.62i 0.370605 + 0.641907i
\(576\) −503.130 + 871.446i −0.0363954 + 0.0630386i
\(577\) 14074.3i 1.01546i 0.861517 + 0.507729i \(0.169515\pi\)
−0.861517 + 0.507729i \(0.830485\pi\)
\(578\) −18976.2 10955.9i −1.36558 0.788417i
\(579\) 8762.26 + 5058.89i 0.628924 + 0.363109i
\(580\) 4026.40i 0.288254i
\(581\) 3241.83 5615.01i 0.231486 0.400946i
\(582\) −275.696 477.520i −0.0196357 0.0340100i
\(583\) 10916.1 6302.39i 0.775467 0.447716i
\(584\) 9020.45 0.639159
\(585\) 0 0
\(586\) 4506.30 0.317668
\(587\) 3806.69 2197.79i 0.267664 0.154536i −0.360162 0.932890i \(-0.617278\pi\)
0.627826 + 0.778354i \(0.283945\pi\)
\(588\) 682.172 + 1181.56i 0.0478441 + 0.0828684i
\(589\) 8389.08 14530.3i 0.586869 1.01649i
\(590\) 4231.08i 0.295239i
\(591\) 7937.48 + 4582.71i 0.552461 + 0.318963i
\(592\) −3066.00 1770.15i −0.212857 0.122893i
\(593\) 9239.06i 0.639802i −0.947451 0.319901i \(-0.896350\pi\)
0.947451 0.319901i \(-0.103650\pi\)
\(594\) 2812.16 4870.80i 0.194249 0.336450i
\(595\) 6658.98 + 11533.7i 0.458810 + 0.794681i
\(596\) −6022.82 + 3477.28i −0.413933 + 0.238985i
\(597\) 3229.21 0.221378
\(598\) 0 0
\(599\) −15261.0 −1.04098 −0.520492 0.853867i \(-0.674251\pi\)
−0.520492 + 0.853867i \(0.674251\pi\)
\(600\) −1831.14 + 1057.21i −0.124593 + 0.0719340i
\(601\) −8195.48 14195.0i −0.556241 0.963437i −0.997806 0.0662077i \(-0.978910\pi\)
0.441565 0.897229i \(-0.354423\pi\)
\(602\) 5621.17 9736.15i 0.380568 0.659162i
\(603\) 110.131i 0.00743761i
\(604\) 6664.13 + 3847.54i 0.448940 + 0.259195i
\(605\) −5579.01 3221.04i −0.374907 0.216453i
\(606\) 4812.38i 0.322590i
\(607\) −7031.79 + 12179.4i −0.470200 + 0.814411i −0.999419 0.0340744i \(-0.989152\pi\)
0.529219 + 0.848485i \(0.322485\pi\)
\(608\) −1555.31 2693.88i −0.103744 0.179690i
\(609\) −6685.22 + 3859.71i −0.444825 + 0.256820i
\(610\) −11042.4 −0.732941
\(611\) 0 0
\(612\) −7922.52 −0.523282
\(613\) −6391.17 + 3689.94i −0.421104 + 0.243125i −0.695550 0.718478i \(-0.744839\pi\)
0.274445 + 0.961603i \(0.411506\pi\)
\(614\) −6633.50 11489.6i −0.436004 0.755181i
\(615\) −320.956 + 555.912i −0.0210442 + 0.0364496i
\(616\) 2436.49i 0.159365i
\(617\) −9868.51 5697.59i −0.643908 0.371761i 0.142210 0.989836i \(-0.454579\pi\)
−0.786118 + 0.618076i \(0.787912\pi\)
\(618\) −5441.29 3141.53i −0.354176 0.204483i
\(619\) 5223.75i 0.339192i 0.985514 + 0.169596i \(0.0542464\pi\)
−0.985514 + 0.169596i \(0.945754\pi\)
\(620\) 2348.79 4068.23i 0.152145 0.263523i
\(621\) −9314.78 16133.7i −0.601915 1.04255i
\(622\) −1413.05 + 815.823i −0.0910901 + 0.0525909i
\(623\) 5038.53 0.324020
\(624\) 0 0
\(625\) 407.511 0.0260807
\(626\) 10685.8 6169.43i 0.682251 0.393898i
\(627\) 3199.25 + 5541.26i 0.203773 + 0.352945i
\(628\) 550.103 952.807i 0.0349546 0.0605432i
\(629\) 27873.7i 1.76693i
\(630\) 2879.09 + 1662.24i 0.182072 + 0.105120i
\(631\) 16565.8 + 9564.25i 1.04512 + 0.603402i 0.921280 0.388900i \(-0.127145\pi\)
0.123843 + 0.992302i \(0.460478\pi\)
\(632\) 2224.64i 0.140018i
\(633\) −6342.12 + 10984.9i −0.398225 + 0.689746i
\(634\) 8846.56 + 15322.7i 0.554167 + 0.959846i
\(635\) −10947.9 + 6320.75i −0.684177 + 0.395010i
\(636\) 8638.07 0.538556
\(637\) 0 0
\(638\) 5799.59 0.359887
\(639\) 11584.5 6688.34i 0.717179 0.414064i
\(640\) −435.460 754.239i −0.0268954 0.0465843i
\(641\) 930.204 1611.16i 0.0573180 0.0992777i −0.835943 0.548817i \(-0.815078\pi\)
0.893261 + 0.449539i \(0.148412\pi\)
\(642\) 8051.26i 0.494950i
\(643\) 8284.94 + 4783.31i 0.508128 + 0.293368i 0.732064 0.681236i \(-0.238557\pi\)
−0.223936 + 0.974604i \(0.571891\pi\)
\(644\) 6989.23 + 4035.23i 0.427662 + 0.246911i
\(645\) 8266.08i 0.504615i
\(646\) 12245.4 21209.6i 0.745801 1.29176i
\(647\) 11478.5 + 19881.3i 0.697473 + 1.20806i 0.969340 + 0.245724i \(0.0790256\pi\)
−0.271867 + 0.962335i \(0.587641\pi\)
\(648\) 396.833 229.111i 0.0240572 0.0138894i
\(649\) −6094.41 −0.368608
\(650\) 0 0
\(651\) −9006.22 −0.542215
\(652\) −13414.5 + 7744.87i −0.805756 + 0.465203i
\(653\) 2049.77 + 3550.30i 0.122838 + 0.212763i 0.920886 0.389832i \(-0.127467\pi\)
−0.798047 + 0.602595i \(0.794134\pi\)
\(654\) 401.356 695.168i 0.0239973 0.0415646i
\(655\) 12708.1i 0.758086i
\(656\) 389.275 + 224.748i 0.0231687 + 0.0133764i
\(657\) 15353.2 + 8864.17i 0.911698 + 0.526369i
\(658\) 14185.8i 0.840455i
\(659\) −14231.6 + 24649.9i −0.841252 + 1.45709i 0.0475845 + 0.998867i \(0.484848\pi\)
−0.888837 + 0.458224i \(0.848486\pi\)
\(660\) 895.732 + 1551.45i 0.0528278 + 0.0915004i
\(661\) −7094.82 + 4096.20i −0.417483 + 0.241034i −0.694000 0.719975i \(-0.744153\pi\)
0.276517 + 0.961009i \(0.410820\pi\)
\(662\) 19022.4 1.11681
\(663\) 0 0
\(664\) −3338.21 −0.195102
\(665\) −8900.07 + 5138.46i −0.518992 + 0.299640i
\(666\) −3478.97 6025.75i −0.202413 0.350590i
\(667\) 9605.07 16636.5i 0.557586 0.965767i
\(668\) 2849.64i 0.165054i
\(669\) 12698.3 + 7331.37i 0.733849 + 0.423688i
\(670\) 82.5484 + 47.6593i 0.00475988 + 0.00274812i
\(671\) 15905.4i 0.915083i
\(672\) −834.866 + 1446.03i −0.0479251 + 0.0830086i
\(673\) 17137.1 + 29682.2i 0.981553 + 1.70010i 0.656354 + 0.754453i \(0.272098\pi\)
0.325199 + 0.945646i \(0.394569\pi\)
\(674\) 8219.99 4745.81i 0.469766 0.271219i
\(675\) −11291.7 −0.643880
\(676\) 0 0
\(677\) −11531.2 −0.654623 −0.327311 0.944917i \(-0.606143\pi\)
−0.327311 + 0.944917i \(0.606143\pi\)
\(678\) −3528.82 + 2037.36i −0.199887 + 0.115405i
\(679\) 637.817 + 1104.73i 0.0360489 + 0.0624385i
\(680\) 3428.48 5938.30i 0.193347 0.334888i
\(681\) 6135.32i 0.345236i
\(682\) 5859.84 + 3383.18i 0.329010 + 0.189954i
\(683\) −6534.72 3772.82i −0.366097 0.211366i 0.305655 0.952142i \(-0.401125\pi\)
−0.671752 + 0.740776i \(0.734458\pi\)
\(684\) 6113.48i 0.341746i
\(685\) 1793.37 3106.20i 0.100031 0.173258i
\(686\) −6907.74 11964.5i −0.384459 0.665902i
\(687\) 12728.0 7348.51i 0.706846 0.408098i
\(688\) −5788.29 −0.320751
\(689\) 0 0
\(690\) 5933.92 0.327392
\(691\) 29859.0 17239.1i 1.64384 0.949069i 0.664383 0.747392i \(-0.268694\pi\)
0.979452 0.201677i \(-0.0646391\pi\)
\(692\) 1623.39 + 2811.79i 0.0891791 + 0.154463i
\(693\) −2394.28 + 4147.02i −0.131243 + 0.227319i
\(694\) 18768.7i 1.02659i
\(695\) 8809.01 + 5085.88i 0.480784 + 0.277581i
\(696\) 3441.99 + 1987.23i 0.187454 + 0.108227i
\(697\) 3538.99i 0.192323i
\(698\) −9310.83 + 16126.8i −0.504900 + 0.874512i
\(699\) 7931.77 + 13738.2i 0.429195 + 0.743387i
\(700\) 4236.30 2445.83i 0.228739 0.132063i
\(701\) −1042.89 −0.0561905 −0.0280952 0.999605i \(-0.508944\pi\)
−0.0280952 + 0.999605i \(0.508944\pi\)
\(702\) 0 0
\(703\) 21508.9 1.15395
\(704\) 1086.40 627.233i 0.0581609 0.0335792i
\(705\) −5215.15 9032.90i −0.278601 0.482551i
\(706\) 1232.01 2133.91i 0.0656761 0.113754i
\(707\) 11133.3i 0.592238i
\(708\) −3616.96 2088.25i −0.191997 0.110849i
\(709\) 16263.8 + 9389.88i 0.861492 + 0.497383i 0.864512 0.502613i \(-0.167628\pi\)
−0.00301951 + 0.999995i \(0.500961\pi\)
\(710\) 11577.6i 0.611969i
\(711\) 2186.10 3786.43i 0.115310 0.199722i
\(712\) −1297.08 2246.62i −0.0682729 0.118252i
\(713\) 19409.7 11206.2i 1.01949 0.588605i
\(714\) −13146.2 −0.689053
\(715\) 0 0
\(716\) 3455.35 0.180353
\(717\) 6724.42 3882.35i 0.350249 0.202216i
\(718\) −6179.13 10702.6i −0.321174 0.556290i
\(719\) 17256.2 29888.6i 0.895059 1.55029i 0.0613275 0.998118i \(-0.480467\pi\)
0.833732 0.552170i \(-0.186200\pi\)
\(720\) 1711.66i 0.0885971i
\(721\) 12588.3 + 7267.86i 0.650226 + 0.375408i
\(722\) 4486.41 + 2590.23i 0.231256 + 0.133516i
\(723\) 24002.7i 1.23468i
\(724\) −2853.77 + 4942.88i −0.146491 + 0.253730i
\(725\) −5821.82 10083.7i −0.298230 0.516550i
\(726\) 5507.05 3179.50i 0.281523 0.162537i
\(727\) 6114.86 0.311950 0.155975 0.987761i \(-0.450148\pi\)
0.155975 + 0.987761i \(0.450148\pi\)
\(728\) 0 0
\(729\) 13909.0 0.706650
\(730\) −13288.2 + 7671.97i −0.673726 + 0.388976i
\(731\) −22786.3 39467.0i −1.15292 1.99691i
\(732\) 5449.99 9439.66i 0.275188 0.476639i
\(733\) 20350.9i 1.02548i −0.858543 0.512742i \(-0.828630\pi\)
0.858543 0.512742i \(-0.171370\pi\)
\(734\) 814.191 + 470.073i 0.0409432 + 0.0236386i
\(735\) −2009.85 1160.39i −0.100863 0.0582333i
\(736\) 4155.20i 0.208102i
\(737\) −68.6481 + 118.902i −0.00343105 + 0.00594276i
\(738\) 441.709 + 765.062i 0.0220319 + 0.0381603i
\(739\) −9284.97 + 5360.68i −0.462183 + 0.266841i −0.712962 0.701203i \(-0.752647\pi\)
0.250779 + 0.968044i \(0.419313\pi\)
\(740\) 6022.12 0.299159
\(741\) 0 0
\(742\) −19984.0 −0.988727
\(743\) −24012.1 + 13863.4i −1.18562 + 0.684519i −0.957308 0.289069i \(-0.906654\pi\)
−0.228313 + 0.973588i \(0.573321\pi\)
\(744\) 2318.50 + 4015.76i 0.114248 + 0.197883i
\(745\) 5914.91 10244.9i 0.290880 0.503818i
\(746\) 10236.6i 0.502398i
\(747\) −5681.78 3280.38i −0.278294 0.160673i
\(748\) 8553.49 + 4938.36i 0.418110 + 0.241396i
\(749\) 18626.4i 0.908671i
\(750\) 4654.47 8061.78i 0.226610 0.392499i
\(751\) −15684.0 27165.5i −0.762075 1.31995i −0.941779 0.336232i \(-0.890847\pi\)
0.179704 0.983721i \(-0.442486\pi\)
\(752\) −6325.25 + 3651.89i −0.306726 + 0.177089i
\(753\) 9196.41 0.445068
\(754\) 0 0
\(755\) −13089.4 −0.630959
\(756\) −7722.31 + 4458.48i −0.371505 + 0.214488i
\(757\) −4458.12 7721.68i −0.214046 0.370739i 0.738931 0.673781i \(-0.235331\pi\)
−0.952977 + 0.303042i \(0.901998\pi\)
\(758\) −494.948 + 857.275i −0.0237168 + 0.0410787i
\(759\) 8547.17i 0.408752i
\(760\) 4582.34 + 2645.62i 0.218709 + 0.126272i
\(761\) 9762.51 + 5636.39i 0.465034 + 0.268487i 0.714158 0.699984i \(-0.246810\pi\)
−0.249125 + 0.968471i \(0.580143\pi\)
\(762\) 12478.4i 0.593237i
\(763\) −928.527 + 1608.26i −0.0440563 + 0.0763077i
\(764\) −1568.86 2717.35i −0.0742924 0.128678i
\(765\) 11670.8 6738.17i 0.551582 0.318456i
\(766\) 8609.02 0.406079
\(767\) 0 0
\(768\) 859.687 0.0403923
\(769\) −8009.36 + 4624.21i −0.375585 + 0.216844i −0.675896 0.736997i \(-0.736243\pi\)
0.300311 + 0.953841i \(0.402910\pi\)
\(770\) −2072.26 3589.26i −0.0969857 0.167984i
\(771\) −10169.1 + 17613.4i −0.475008 + 0.822738i
\(772\) 12051.6i 0.561848i
\(773\) 11568.3 + 6678.95i 0.538269 + 0.310770i 0.744377 0.667759i \(-0.232746\pi\)
−0.206108 + 0.978529i \(0.566080\pi\)
\(774\) −9851.93 5688.01i −0.457520 0.264149i
\(775\) 13584.6i 0.629643i
\(776\) 328.390 568.789i 0.0151914 0.0263123i
\(777\) −5772.81 9998.81i −0.266536 0.461654i
\(778\) −9698.58 + 5599.48i −0.446929 + 0.258035i
\(779\) −2730.89 −0.125602
\(780\) 0 0
\(781\) −16676.2 −0.764049
\(782\) 28331.9 16357.5i 1.29559 0.748007i
\(783\) 10612.5 + 18381.4i 0.484369 + 0.838951i
\(784\) −812.556 + 1407.39i −0.0370151 + 0.0641121i
\(785\) 1871.47i 0.0850899i
\(786\) 10863.6 + 6272.09i 0.492991 + 0.284629i
\(787\) 43.1767 + 24.9281i 0.00195563 + 0.00112909i 0.500977 0.865460i \(-0.332974\pi\)
−0.499022 + 0.866589i \(0.666307\pi\)
\(788\) 10917.2i 0.493540i
\(789\) −8956.50 + 15513.1i −0.404132 + 0.699977i
\(790\) 1892.07 + 3277.17i 0.0852114 + 0.147590i
\(791\) 8163.84 4713.40i 0.366969 0.211870i
\(792\) 2465.47 0.110614
\(793\) 0 0
\(794\) 19614.2 0.876677
\(795\) −12724.9 + 7346.75i −0.567682 + 0.327751i
\(796\) 1923.21 + 3331.09i 0.0856361 + 0.148326i
\(797\) −5756.94 + 9971.31i −0.255861 + 0.443164i −0.965129 0.261775i \(-0.915692\pi\)
0.709268 + 0.704939i \(0.249026\pi\)
\(798\) 10144.4i 0.450008i
\(799\) −49800.2 28752.2i −2.20501 1.27306i
\(800\) −2181.13 1259.27i −0.0963932 0.0556526i
\(801\) 5098.45i 0.224900i
\(802\) −14658.4 + 25389.2i −0.645396 + 1.11786i
\(803\) −11050.6 19140.3i −0.485640 0.841153i
\(804\) −81.4837 + 47.0446i −0.00357426 + 0.00206360i
\(805\) −13728.0 −0.601054
\(806\) 0 0
\(807\) 2079.57 0.0907118
\(808\) 4964.20 2866.08i 0.216139 0.124788i
\(809\) −6503.80 11264.9i −0.282647 0.489559i 0.689389 0.724391i \(-0.257879\pi\)
−0.972036 + 0.234833i \(0.924546\pi\)
\(810\) −389.722 + 675.019i −0.0169055 + 0.0292812i
\(811\) 1032.74i 0.0447156i 0.999750 + 0.0223578i \(0.00711731\pi\)
−0.999750 + 0.0223578i \(0.992883\pi\)
\(812\) −7962.97 4597.42i −0.344145 0.198692i
\(813\) 3809.39 + 2199.35i 0.164331 + 0.0948765i
\(814\) 8674.21i 0.373502i
\(815\) 13174.2 22818.3i 0.566222 0.980724i
\(816\) 3384.26 + 5861.71i 0.145187 + 0.251472i
\(817\) 30455.1 17583.2i 1.30415 0.752949i
\(818\) −21370.8 −0.913461
\(819\) 0 0
\(820\) −764.601 −0.0325622
\(821\) −4408.83 + 2545.44i −0.187417 + 0.108205i −0.590773 0.806838i \(-0.701177\pi\)
0.403356 + 0.915043i \(0.367844\pi\)
\(822\) 1770.24 + 3066.14i 0.0751145 + 0.130102i
\(823\) 10894.9 18870.5i 0.461447 0.799250i −0.537586 0.843209i \(-0.680664\pi\)
0.999033 + 0.0439588i \(0.0139970\pi\)
\(824\) 7483.94i 0.316402i
\(825\) 4486.53 + 2590.30i 0.189335 + 0.109312i
\(826\) 8367.77 + 4831.13i 0.352484 + 0.203507i
\(827\) 22544.8i 0.947955i 0.880537 + 0.473977i \(0.157182\pi\)
−0.880537 + 0.473977i \(0.842818\pi\)
\(828\) 4083.22 7072.34i 0.171379 0.296837i
\(829\) −5248.91 9091.38i −0.219906 0.380888i 0.734873 0.678205i \(-0.237242\pi\)
−0.954779 + 0.297316i \(0.903908\pi\)
\(830\) 4917.60 2839.18i 0.205653 0.118734i
\(831\) −22105.5 −0.922780
\(832\) 0 0
\(833\) −12794.9 −0.532193
\(834\) −8695.39 + 5020.29i −0.361027 + 0.208439i
\(835\) 2423.64 + 4197.87i 0.100447 + 0.173980i
\(836\) −3810.72 + 6600.37i −0.157651 + 0.273060i
\(837\) 24763.2i 1.02263i
\(838\) −11102.7 6410.14i −0.457680 0.264242i
\(839\) −12499.5 7216.59i −0.514340 0.296954i 0.220276 0.975438i \(-0.429304\pi\)
−0.734616 + 0.678483i \(0.762637\pi\)
\(840\) 2840.24i 0.116664i
\(841\) 1251.25 2167.22i 0.0513037 0.0888607i
\(842\) −2672.97 4629.72i −0.109402 0.189490i
\(843\) −21539.2 + 12435.7i −0.880011 + 0.508075i
\(844\) −15108.6 −0.616183
\(845\) 0 0
\(846\) −14354.5 −0.583353
\(847\) −12740.4 + 7355.70i −0.516844 + 0.298400i
\(848\) 5144.53 + 8910.60i 0.208330 + 0.360839i
\(849\) 3727.46 6456.15i 0.150679 0.260983i
\(850\) 19829.1i 0.800158i
\(851\) 24882.5 + 14365.9i 1.00230 + 0.578681i
\(852\) −9897.14 5714.11i −0.397970 0.229768i
\(853\) 4097.21i 0.164462i 0.996613 + 0.0822309i \(0.0262045\pi\)
−0.996613 + 0.0822309i \(0.973796\pi\)
\(854\) −12608.4 + 21838.5i −0.505213 + 0.875055i
\(855\) 5199.56 + 9005.91i 0.207978 + 0.360229i
\(856\) 8305.27 4795.05i 0.331622 0.191462i
\(857\) 5188.52 0.206810 0.103405 0.994639i \(-0.467026\pi\)
0.103405 + 0.994639i \(0.467026\pi\)
\(858\) 0 0
\(859\) 6351.40 0.252278 0.126139 0.992013i \(-0.459741\pi\)
0.126139 + 0.992013i \(0.459741\pi\)
\(860\) 8526.87 4922.99i 0.338098 0.195201i
\(861\) 732.947 + 1269.50i 0.0290114 + 0.0502491i
\(862\) −5175.73 + 8964.63i −0.204508 + 0.354219i
\(863\) 19337.4i 0.762751i −0.924420 0.381376i \(-0.875450\pi\)
0.924420 0.381376i \(-0.124550\pi\)
\(864\) 3975.95 + 2295.52i 0.156556 + 0.0903878i
\(865\) −4782.90 2761.41i −0.188004 0.108544i
\(866\) 8343.92i 0.327411i
\(867\) −18395.8 + 31862.4i −0.720593 + 1.24810i
\(868\) −5363.80 9290.37i −0.209745 0.363290i
\(869\) −4720.41 + 2725.33i −0.184268 + 0.106387i
\(870\) −6760.63 −0.263456
\(871\) 0 0
\(872\) 956.134 0.0371316
\(873\) 1117.87 645.402i 0.0433381 0.0250212i
\(874\) 12622.4 + 21862.6i 0.488510 + 0.846124i
\(875\) −10768.0 + 18650.7i −0.416029 + 0.720583i
\(876\) 15146.0i 0.584175i
\(877\) −14740.2 8510.28i −0.567552 0.327676i 0.188619 0.982050i \(-0.439599\pi\)
−0.756171 + 0.654374i \(0.772932\pi\)
\(878\) 18471.5 + 10664.5i 0.710005 + 0.409921i
\(879\) 7566.42i 0.290340i
\(880\) −1066.93 + 1847.98i −0.0408709 + 0.0707904i
\(881\) −7506.10 13000.9i −0.287045 0.497177i 0.686058 0.727547i \(-0.259340\pi\)
−0.973103 + 0.230370i \(0.926006\pi\)
\(882\) −2766.01 + 1596.96i −0.105597 + 0.0609664i
\(883\) 46753.9 1.78187 0.890936 0.454129i \(-0.150049\pi\)
0.890936 + 0.454129i \(0.150049\pi\)
\(884\) 0 0
\(885\) 7104.31 0.269840
\(886\) 3675.69 2122.16i 0.139376 0.0804688i
\(887\) 5953.40 + 10311.6i 0.225361 + 0.390337i 0.956428 0.291969i \(-0.0943104\pi\)
−0.731066 + 0.682306i \(0.760977\pi\)
\(888\) −2972.22 + 5148.04i −0.112321 + 0.194546i
\(889\) 28868.6i 1.08911i
\(890\) 3821.53 + 2206.36i 0.143930 + 0.0830982i
\(891\) −972.292 561.353i −0.0365578 0.0211067i
\(892\) 17465.2i 0.655582i
\(893\) 22186.8 38428.8i 0.831416 1.44006i
\(894\) 5838.62 + 10112.8i 0.218426 + 0.378324i
\(895\) −5090.15 + 2938.80i −0.190106 + 0.109758i
\(896\) −1988.87 −0.0741556
\(897\) 0 0
\(898\) −30570.8 −1.13604
\(899\) −22113.9 + 12767.5i −0.820400 + 0.473658i
\(900\) −2474.92 4286.68i −0.0916636 0.158766i
\(901\) −40504.1 + 70155.2i −1.49766 + 2.59402i
\(902\) 1101.32i 0.0406542i
\(903\) −16347.7 9438.37i −0.602457 0.347829i
\(904\) −4203.28 2426.77i −0.154645 0.0892843i
\(905\) 9708.63i 0.356603i
\(906\) 6460.31 11189.6i 0.236898 0.410319i
\(907\) 14577.2 + 25248.5i 0.533660 + 0.924326i 0.999227 + 0.0393134i \(0.0125171\pi\)
−0.465567 + 0.885013i \(0.654150\pi\)
\(908\) 6328.88 3653.98i 0.231312 0.133548i
\(909\) 11265.7 0.411068
\(910\) 0 0
\(911\) −6426.94 −0.233737 −0.116868 0.993147i \(-0.537286\pi\)
−0.116868 + 0.993147i \(0.537286\pi\)
\(912\) −4523.24 + 2611.49i −0.164232 + 0.0948193i
\(913\) 4089.52 + 7083.26i 0.148240 + 0.256760i
\(914\) −8533.93 + 14781.2i −0.308837 + 0.534922i
\(915\) 18541.1i 0.669889i
\(916\) 15160.7 + 8753.03i 0.546860 + 0.315730i
\(917\) −25132.7 14510.4i −0.905075 0.522545i
\(918\) 36146.3i 1.29957i
\(919\) 13666.7 23671.5i 0.490560 0.849674i −0.509381 0.860541i \(-0.670126\pi\)
0.999941 + 0.0108669i \(0.00345909\pi\)
\(920\) 3534.04 + 6121.13i 0.126645 + 0.219356i
\(921\) −19291.9 + 11138.2i −0.690216 + 0.398496i
\(922\) 12413.5 0.443404
\(923\) 0 0
\(924\) 4091.06 0.145656
\(925\) 15081.8 8707.46i 0.536092 0.309513i
\(926\) 14278.3 + 24730.8i 0.506711 + 0.877649i
\(927\) 7354.28 12738.0i 0.260568 0.451317i
\(928\) 4734.11i 0.167462i
\(929\) −7564.48 4367.36i −0.267150 0.154239i 0.360442 0.932782i \(-0.382626\pi\)
−0.627592 + 0.778542i \(0.715959\pi\)
\(930\) −6830.87 3943.80i −0.240853 0.139056i
\(931\) 9873.29i 0.347566i
\(932\) −9447.78 + 16364.0i −0.332052 + 0.575131i
\(933\) 1369.83 + 2372.61i 0.0480667 + 0.0832539i
\(934\) 3096.17 1787.57i 0.108469 0.0626244i
\(935\) −16800.5 −0.587630
\(936\) 0 0
\(937\) 38518.8 1.34296 0.671480 0.741023i \(-0.265659\pi\)
0.671480 + 0.741023i \(0.265659\pi\)
\(938\) 188.511 108.837i 0.00656193 0.00378853i
\(939\) −10358.9 17942.2i −0.360012 0.623559i
\(940\) 6211.92 10759.4i 0.215543 0.373332i
\(941\) 33183.6i 1.14958i 0.818301 + 0.574790i \(0.194916\pi\)
−0.818301 + 0.574790i \(0.805084\pi\)
\(942\) −1599.84 923.666i −0.0553349 0.0319476i
\(943\) −3159.21 1823.97i −0.109097 0.0629870i
\(944\) 4974.77i 0.171520i
\(945\) 7583.94 13135.8i 0.261064 0.452176i
\(946\) 7091.04 + 12282.0i 0.243710 + 0.422118i
\(947\) −24763.2 + 14297.1i −0.849733 + 0.490594i −0.860561 0.509348i \(-0.829887\pi\)
0.0108276 + 0.999941i \(0.496553\pi\)
\(948\) −3735.34 −0.127973
\(949\) 0 0
\(950\) 15301.3 0.522569
\(951\) 25728.0 14854.1i 0.877274 0.506494i
\(952\) −7829.42 13560.9i −0.266547 0.461673i
\(953\) −4792.89 + 8301.53i −0.162914 + 0.282175i −0.935913 0.352232i \(-0.885423\pi\)
0.772999 + 0.634408i \(0.218756\pi\)
\(954\) 20221.6i 0.686268i
\(955\) 4622.25 + 2668.66i 0.156621 + 0.0904249i
\(956\) 8009.67 + 4624.38i 0.270974 + 0.156447i
\(957\) 9737.96i 0.328927i
\(958\) 13735.6 23790.7i 0.463232 0.802342i
\(959\) −4095.40 7093.45i −0.137901 0.238852i
\(960\) −1266.43 + 731.171i −0.0425768 + 0.0245817i
\(961\) −0.495919 −1.66466e−5
\(962\) 0 0
\(963\) 18847.9 0.630701
\(964\) 24760.0 14295.2i 0.827247 0.477611i
\(965\) −10250.0 17753.5i −0.341926 0.592233i
\(966\) 6775.46 11735.4i 0.225670 0.390871i
\(967\) 5738.23i 0.190826i 0.995438 + 0.0954132i \(0.0304172\pi\)
−0.995438 + 0.0954132i \(0.969583\pi\)
\(968\) 6559.62 + 3787.20i 0.217804 + 0.125749i
\(969\) −35612.5 20560.9i −1.18064 0.681642i
\(970\) 1117.19i 0.0369804i
\(971\) 23508.0 40717.0i 0.776938 1.34570i −0.156760 0.987637i \(-0.550105\pi\)
0.933699 0.358060i \(-0.116562\pi\)
\(972\) 7362.67 + 12752.5i 0.242961 + 0.420820i
\(973\) 20116.6 11614.3i 0.662804 0.382670i
\(974\) 34038.1 1.11976
\(975\) 0 0
\(976\) 12983.3 0.425805
\(977\) −31456.5 + 18161.4i −1.03007 + 0.594713i −0.917006 0.398874i \(-0.869401\pi\)
−0.113068 + 0.993587i \(0.536068\pi\)
\(978\) 13004.2 + 22524.0i 0.425184 + 0.736440i
\(979\) −3178.03 + 5504.50i −0.103749 + 0.179698i
\(980\) 2764.34i 0.0901058i
\(981\) 1627.38 + 939.569i 0.0529646 + 0.0305791i
\(982\) −23629.8 13642.7i −0.767879 0.443335i
\(983\) 33276.4i 1.07971i 0.841759 + 0.539854i \(0.181520\pi\)
−0.841759 + 0.539854i \(0.818480\pi\)
\(984\) 377.369 653.623i 0.0122257 0.0211755i
\(985\) −9285.17 16082.4i −0.300356 0.520231i
\(986\) −32279.2 + 18636.4i −1.04257 + 0.601930i
\(987\) −23819.0 −0.768154
\(988\) 0 0
\(989\) 46975.7 1.51035
\(990\) −3631.94 + 2096.90i −0.116596 + 0.0673170i
\(991\) 23175.4 + 40141.0i 0.742877 + 1.28670i 0.951180 + 0.308636i \(0.0998725\pi\)
−0.208303 + 0.978064i \(0.566794\pi\)
\(992\) −2761.63 + 4783.29i −0.0883891 + 0.153094i
\(993\) 31940.0i 1.02073i
\(994\) 22896.8 + 13219.5i 0.730627 + 0.421827i
\(995\) −5666.25 3271.41i −0.180535 0.104232i
\(996\) 5605.11i 0.178318i
\(997\) −9198.72 + 15932.6i −0.292203 + 0.506110i −0.974330 0.225123i \(-0.927722\pi\)
0.682127 + 0.731233i \(0.261055\pi\)
\(998\) 4507.63 + 7807.44i 0.142972 + 0.247636i
\(999\) −27492.3 + 15872.7i −0.870690 + 0.502693i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.e.i.23.9 24
13.2 odd 12 338.4.a.o.1.4 yes 6
13.3 even 3 338.4.b.h.337.10 12
13.4 even 6 inner 338.4.e.i.147.9 24
13.5 odd 4 338.4.c.o.315.3 12
13.6 odd 12 338.4.c.o.191.3 12
13.7 odd 12 338.4.c.p.191.3 12
13.8 odd 4 338.4.c.p.315.3 12
13.9 even 3 inner 338.4.e.i.147.6 24
13.10 even 6 338.4.b.h.337.4 12
13.11 odd 12 338.4.a.n.1.4 6
13.12 even 2 inner 338.4.e.i.23.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.4 6 13.11 odd 12
338.4.a.o.1.4 yes 6 13.2 odd 12
338.4.b.h.337.4 12 13.10 even 6
338.4.b.h.337.10 12 13.3 even 3
338.4.c.o.191.3 12 13.6 odd 12
338.4.c.o.315.3 12 13.5 odd 4
338.4.c.p.191.3 12 13.7 odd 12
338.4.c.p.315.3 12 13.8 odd 4
338.4.e.i.23.6 24 13.12 even 2 inner
338.4.e.i.23.9 24 1.1 even 1 trivial
338.4.e.i.147.6 24 13.9 even 3 inner
338.4.e.i.147.9 24 13.4 even 6 inner