Properties

Label 338.6.e
Level 338338
Weight 66
Character orbit 338.e
Rep. character χ338(23,)\chi_{338}(23,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 128128
Sturm bound 273273

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 338.e (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 273273

Dimensions

The following table gives the dimensions of various subspaces of M6(338,[χ])M_{6}(338, [\chi]).

Total New Old
Modular forms 484 128 356
Cusp forms 428 128 300
Eisenstein series 56 0 56

Trace form

128q+1024q4360q74964q9+368q10504q11+2096q142112q1516384q16+2452q17+6888q191440q203352q227764q2382580q252316q27+46752q98+O(q100) 128 q + 1024 q^{4} - 360 q^{7} - 4964 q^{9} + 368 q^{10} - 504 q^{11} + 2096 q^{14} - 2112 q^{15} - 16384 q^{16} + 2452 q^{17} + 6888 q^{19} - 1440 q^{20} - 3352 q^{22} - 7764 q^{23} - 82580 q^{25} - 2316 q^{27}+ \cdots - 46752 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(338,[χ])S_{6}^{\mathrm{new}}(338, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S6old(338,[χ])S_{6}^{\mathrm{old}}(338, [\chi]) into lower level spaces

S6old(338,[χ]) S_{6}^{\mathrm{old}}(338, [\chi]) \simeq S6new(13,[χ])S_{6}^{\mathrm{new}}(13, [\chi])4^{\oplus 4}\oplusS6new(26,[χ])S_{6}^{\mathrm{new}}(26, [\chi])2^{\oplus 2}\oplusS6new(169,[χ])S_{6}^{\mathrm{new}}(169, [\chi])2^{\oplus 2}