Properties

Label 338.6.e
Level $338$
Weight $6$
Character orbit 338.e
Rep. character $\chi_{338}(23,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $128$
Sturm bound $273$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(273\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(338, [\chi])\).

Total New Old
Modular forms 484 128 356
Cusp forms 428 128 300
Eisenstein series 56 0 56

Trace form

\( 128 q + 1024 q^{4} - 360 q^{7} - 4964 q^{9} + 368 q^{10} - 504 q^{11} + 2096 q^{14} - 2112 q^{15} - 16384 q^{16} + 2452 q^{17} + 6888 q^{19} - 1440 q^{20} - 3352 q^{22} - 7764 q^{23} - 82580 q^{25} - 2316 q^{27}+ \cdots - 46752 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(338, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(338, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)