Defining parameters
Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 338.e (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(273\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(338, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 484 | 128 | 356 |
Cusp forms | 428 | 128 | 300 |
Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(338, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{6}^{\mathrm{old}}(338, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)